Prime Geodesic Theorem in the Three-Dimensional Hyperbolic Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Number Theory
Number Theory Syllabus for the TEMPUS-SEE PhD Course Muharem Avdispahić1 Department of Mathematics, University of Sarajevo Stefan Dodunekov2 Institute of Mathematics and Informatics Bulgarian Academy of Sciences Wolfgang A. Schmid3 University of Graz/Ecole Polytechnique Paris Course goals Number theory has always exhibited a unique feature that some appealing and easily stated problems tend to resist the attempts for solution over very long periods of time. It has influenced and has been influenced by developments in many mathematical disciplines. Several breaktroughs that took place during last decades on one hand and unprecented range of applications on the other, have significantly enlarged the interested mathematical community. The course is designed to provide insights into some areas of modern research in analytic, algebraic and computational/algorithmic number theory. The extent of exposure to advanced themes will depend on the mathematical background of paricipants. Prerequisites Prerequisites vary from one part of the course to another and range from elementary number theory, complex analysis, some Fourier analysis, standard course in algebra (basics of finite group theory commutative rings, ideals, basic Galois theory of fields), to data structures and programming skills. Course modules (20 units each) I. Analytic Number Theory Lecturer: Prof. Dr. Muharem Avdispahić, University of Sarajevo II. Algebraic Number Theory Lecturer: Asso. Prof. Dr. Ivan Chipchakov, IMI, Bulgarian Academy of Sciences III. Computational Number Theory -
Scientific Report for 2013
Scientific Report for 2013 Impressum: Eigent¨umer,Verleger, Herausgeber: The Erwin Schr¨odingerInternational Institute for Mathematical Physics - U of Vienna (DVR 0065528), Boltzmanngasse 9, A-1090 Vienna. Redaktion: Goulnara Arzhantseva, Joachim Schwermer. Supported by the Austrian Federal Min- istry of Science and Research (BMWF) through the U of Vienna. Contents Preface 3 The Institute and its Mission in 2013 . 3 Scientific activities in 2013 . 4 The ESI in 2013 . 6 Scientific Reports 7 Main Research Programmes . 7 Teichm¨ullerTheory . 7 The Geometry of Topological D-branes, Categories, and Applications . 11 Jets and Quantum Fields for LHC and Future Colliders . 18 GEOQUANT 2013 . 25 Forcing, Large Cardinals and Descriptive Set Theory . 28 Heights in Diophantine Geometry, Group Theory and Additive Combinatorics . 31 Workshops organized independently of the Main Programmes . 36 ESI Anniversary - Two Decades at the Interface of Mathematics and Physics The [Un]reasonable Effectiveness of Mathematics in the Natural Sciences . 36 Word maps and stability of representations . 38 Complexity and dimension theory of skew products systems . 42 Advances in the theory of automorphic forms and their L-functions . 44 Research in Teams . 51 Marcella Hanzer and Goran Muic: Eisenstein Series . 51 Vladimir N. Remeslennikov et al: On the first-order theories of free pro-p groups, group extensions and free product groups . 53 Raimar Wulkenhaar et al: Exactly solvable quantum field theory in four dimensions . 57 Jan Spakula et al: Nuclear dimension and coarse geometry . 60 Alan Carey et al: Non-commutative geometry and spectral invariants . 62 Senior Research Fellows Programme . 64 Vladimir Korepin: The Algebraic Bethe Ansatz . 64 Simon Scott: Logarithmic TQFT, torsion, and trace invariants . -
The Selberg Trace Formula & Prime Orbit Theorem
The Selberg Trace Formula & Prime Orbit Theorem Yihan Yuan May 2019 A thesis submitted for the degree of Honours of the Australian National University Declaration The work in this thesis is my own except where otherwise stated. Yihan Yuan Acknowledgements I would like to express my gratitude to my supervisor, Prof.Andrew Hassell, for his dedication to my honours project. Without his inspiring and patient guid- ance, non of this could have be accomplished. I would like also to thank my colleague Kelly Maggs, for his help and encour- agement, so I can work with confidence and delight, even in hard times. Furthermore, I would like to thank my colleague Dean Muir and Diclehan Erdal, for their precious advice about writing styles for this thesis. Finally, I would like to thank my families for their warming support to my study, despite their holding a suspicious attitude about whether I can find a job after graduating as a mathematician. v Abstract The purpose of this thesis is to study the asymptotic property of the primitive length spectrum on compact hyperbolic surface S of genus at least 2, defined as a set with multiplicities: LS = fl(γ): γ is a primitive oriented closed geodesic on Sg: where l(γ) denotes the length of γ. In particular, we will prove the Prime Orbit Theorem. That is, for the counting function of exponential of primitive lengths, defined as l π0(x) = #fl : l 2 LS and e ≤ xg; we have the asymptotic behavior of π0(x): x π (x) ∼ : 0 ln(x) The major tool we will use is the Selberg trace formula, which states the trace of a certain compact self-adjoint operator on L2(S) can be expressed as a sum over conjugacy classes in hyperbolic Fuchsian groups. -
The Role of the Ramanujan Conjecture in Analytic Number Theory
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 2, April 2013, Pages 267–320 S 0273-0979(2013)01404-6 Article electronically published on January 14, 2013 THE ROLE OF THE RAMANUJAN CONJECTURE IN ANALYTIC NUMBER THEORY VALENTIN BLOMER AND FARRELL BRUMLEY Dedicated to the 125th birthday of Srinivasa Ramanujan Abstract. We discuss progress towards the Ramanujan conjecture for the group GLn and its relation to various other topics in analytic number theory. Contents 1. Introduction 267 2. Background on Maaß forms 270 3. The Ramanujan conjecture for Maaß forms 276 4. The Ramanujan conjecture for GLn 283 5. Numerical improvements towards the Ramanujan conjecture and applications 290 6. L-functions 294 7. Techniques over Q 298 8. Techniques over number fields 302 9. Perspectives 305 J.-P. Serre’s 1981 letter to J.-M. Deshouillers 307 Acknowledgments 313 About the authors 313 References 313 1. Introduction In a remarkable article [111], published in 1916, Ramanujan considered the func- tion ∞ ∞ Δ(z)=(2π)12e2πiz (1 − e2πinz)24 =(2π)12 τ(n)e2πinz, n=1 n=1 where z ∈ H = {z ∈ C |z>0} is in the upper half-plane. The right hand side is understood as a definition for the arithmetic function τ(n) that nowadays bears Received by the editors June 8, 2012. 2010 Mathematics Subject Classification. Primary 11F70. Key words and phrases. Ramanujan conjecture, L-functions, number fields, non-vanishing, functoriality. The first author was supported by the Volkswagen Foundation and a Starting Grant of the European Research Council. The second author is partially supported by the ANR grant ArShiFo ANR-BLANC-114-2010 and by the Advanced Research Grant 228304 from the European Research Council. -
Kuznetsov Trace Formula and the Distribution of Fourier Coefficients
A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms Jo~ao Leit~aoGuerreiro Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 c 2016 Jo~aoLeit~aoGuerreiro All Rights Reserved ABSTRACT A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms Jo~ao Leit~aoGuerreiro We study the problem of the distribution of certain GL(3) Maass forms, namely, we obtain a Weyl's law type result that characterizes the distribution of their eigenvalues, and an orthogonality relation for the Fourier coefficients of these Maass forms. The approach relies on a Kuznetsov trace formula on GL(3) and on the inversion formula for the Lebedev-Whittaker transform. The family of Maass forms being studied has zero density in the set of all GL(3) Maass forms and contains all self-dual forms. The self-dual forms on GL(3) can also be realised as symmetric square lifts of GL(2) Maass forms by the work of Gelbart-Jacquet. Furthermore, we also establish an explicit inversion formula for the Lebedev-Whittaker transform, in the nonarchimedean case, with a view to applications. Table of Contents 1 Introduction 1 2 Preliminaries 6 2.1 Maass Forms for SL(2; Z) ................................. 6 2.2 Maass Forms for SL(3; Z) ................................. 8 2.3 Fourier-Whittaker Expansion . 11 2.4 Hecke-Maass Forms and L-functions . 15 2.5 Eisenstein Series and Spectral Decomposition . 18 2.6 Kloosterman Sums . -
Beyond Endoscopy for the Relative Trace Formula II: Global Theory
BEYOND ENDOSCOPY FOR THE RELATIVE TRACE FORMULA II: GLOBAL THEORY YIANNIS SAKELLARIDIS Abstract. For the group G = PGL2 we perform a comparison between two relative trace formulas: on one hand, the relative trace formula of Jacquet for the quotient T \G/T , where T is a non-trivial torus, and on the other the Kuznetsov trace formula (involving Whittaker periods), applied to non-standard test functions. This gives a new proof of the celebrated result of Waldspurger on toric periods, and suggests a new way of comparing trace formulas, with some analogies to Langlands’ “Beyond Endoscopy” program. Contents 1. Introduction. 1 Part 1. Poisson summation 18 2. Generalities and the baby case. 18 3. Direct proof in the baby case 31 4. Poisson summation for the relative trace formula 41 Part 2. Spectral analysis. 54 5. Main theorems of spectral decomposition 54 6. Completion of proofs 67 7. The formula of Waldspurger 85 Appendix A. Families of locally multiplicative functions 96 Appendix B. F-representations 104 arXiv:1402.3524v3 [math.NT] 9 Mar 2017 References 107 1. Introduction. 1.1. The result of Waldspurger. The celebrated result of Waldspurger [Wal85], relating periods of cusp forms on GL2 over a nonsplit torus (against a character of the torus, but here we will restrict ourselves to the trivial character) with the central special value of the corresponding quadratic base 2010 Mathematics Subject Classification. 11F70. Key words and phrases. relative trace formula, beyond endoscopy, periods, L-functions, Waldspurger’s formula. 1 2 YIANNIS SAKELLARIDIS change L-function, was reproven by Jacquet [Jac86] using the relative trace formula. -
18.785 Notes
Contents 1 Introduction 4 1.1 What is an automorphic form? . 4 1.2 A rough definition of automorphic forms on Lie groups . 5 1.3 Specializing to G = SL(2; R)....................... 5 1.4 Goals for the course . 7 1.5 Recommended Reading . 7 2 Automorphic forms from elliptic functions 8 2.1 Elliptic Functions . 8 2.2 Constructing elliptic functions . 9 2.3 Examples of Automorphic Forms: Eisenstein Series . 14 2.4 The Fourier expansion of G2k ...................... 17 2.5 The j-function and elliptic curves . 19 3 The geometry of the upper half plane 19 3.1 The topological space ΓnH ........................ 20 3.2 Discrete subgroups of SL(2; R) ..................... 22 3.3 Arithmetic subgroups of SL(2; Q).................... 23 3.4 Linear fractional transformations . 24 3.5 Example: the structure of SL(2; Z)................... 27 3.6 Fundamental domains . 28 3.7 ΓnH∗ as a topological space . 31 3.8 ΓnH∗ as a Riemann surface . 34 3.9 A few basics about compact Riemann surfaces . 35 3.10 The genus of X(Γ) . 37 4 Automorphic Forms for Fuchsian Groups 40 4.1 A general definition of classical automorphic forms . 40 4.2 Dimensions of spaces of modular forms . 42 4.3 The Riemann-Roch theorem . 43 4.4 Proof of dimension formulas . 44 4.5 Modular forms as sections of line bundles . 46 4.6 Poincar´eSeries . 48 4.7 Fourier coefficients of Poincar´eseries . 50 4.8 The Hilbert space of cusp forms . 54 4.9 Basic estimates for Kloosterman sums . 56 4.10 The size of Fourier coefficients for general cusp forms . -
Dynamical Zeta Functions and the Distribution of Orbits
Dynamical zeta functions and the distribution of orbits Mark Pollicott Warwick University Abstract In this survey we will consider various counting and equidistribution results associated to orbits of dynamical systems, particularly geodesic and Anosov flows. Key tools in this analysis are appropriate complex functions, such as the zeta functions of Selberg and Ruelle, and Poincar´eseries. To help place these definitions and results into a broader context, we first describe the more familiar Riemann zeta function in number theory, the Ihara zeta function for graphs and the Artin-Mazur zeta function for diffeomorphisms. Contents 1 Introduction 3 1.1 Zeta functions as complex functions . 3 1.2 Different types of zeta functions . 3 2 Zeta functions in Number Theory 3 2.1 Riemann zeta function . 4 2.2 Other types . 7 2.2.1 L-functions . 7 2.2.2 Dedekind Zeta functions . 7 2.2.3 Finite Field Zeta functions . 8 3 Zeta functions for graphs 8 3.1 Directed graphs . 8 3.1.1 The zeta function for directed graphs . 8 3.1.2 The prime graph theorem (for directed graphs) . 11 3.1.3 A dynamical viewpoint . 12 3.2 Undirected graphs: Ihara zeta function . 13 Key words: Dynamical zeta function, closed orbits, Selberg zeta function, Ihara zeta function MSC : 37C30, 37C27, 11M36 Acknowledgements: I am grateful to the organisers and participants of the Summer school \Number Theory and Dynamics" in Grenoble for their questions and comments and, in particular, to Mike Boyle for his detailed comments on the draft version of these notes. I am particularly grateful to Athanase Papadopoulos for his help with the final version. -
The Prime Geodesic Theorem
The Prime Geodesic Theorem Matt Tyler Throughout these notes, we write Γ for SL2(Z). Recall that a quadratic form Q(x; y) = [a; b; c] = ax2 +bxy+cy2 is primitive if gcd(a; b; c) = 1. The discriminant of [a; b; c] is d = b2 −4ac. We will be concerned here with the indefinite quadratic forms, which are those forms with non-square discriminant d > 0. The group Γ acts on the set of quadratic forms via the action α β Q (x; y) = Q(αx + βy; γx + δy): (0.1) γ δ This action preserves both the discriminant and the property of being primitive. We say that two quadratic forms in the same orbit are equivalent. The stabilizer of the quadratic form [a; b; c] in Γ is the group x−by 2 −cy 2 2 ∼ Γ[a;b;c] = ± x+by j x − dy = Z × Z=2Z: (0.2) ay 2 2 2 If x0; y0 > 0 are the fundamental solutions to the Pell equation x − dy , then we have x0−by0 2 −cy0 Γ[a;b;c] = ±M[a;b;c] where M[a;b;c] = x0+by0 : (0.3) ay0 2 p x0+ dy0 The two important quantities depending on the discriminant d are d = 2 and h = jfequivalence classes of primitivegj, which are analogous to the fundamental unit and narrow d forms of discriminantp d class number for Q( d), respectively. Let D be the set of positive discriminants fd > 0 j d ≡ 0; 1 (mod 4); d non-squareg, and let D(x) = fd 2 D j d ≤ xg. -
Applications of Landau's Formula
Applications of Landau’s Formula Applications of Landau’s Formula Niko Laaksonen UCL February 16th 2015 Application to Dirichlet L-functions Automorphic forms Hyperbolic Landau-type formula Applications of Landau’s Formula Introduction Landau and his work Automorphic forms Hyperbolic Landau-type formula Applications of Landau’s Formula Introduction Landau and his work Application to Dirichlet L-functions Hyperbolic Landau-type formula Applications of Landau’s Formula Introduction Landau and his work Application to Dirichlet L-functions Automorphic forms Applications of Landau’s Formula Introduction Landau and his work Application to Dirichlet L-functions Automorphic forms Hyperbolic Landau-type formula “Number theory is useful, since one can graduate with it.” Born in Berlin to a Jewish family PNT & Prime Ideal Theorem Dismissal from Göttingen Applications of Landau’s Formula Edmund Landau (1877–1938) Born in Berlin to a Jewish family PNT & Prime Ideal Theorem Dismissal from Göttingen Applications of Landau’s Formula Edmund Landau (1877–1938) “Number theory is useful, since one can graduate with it.” PNT & Prime Ideal Theorem Dismissal from Göttingen Applications of Landau’s Formula Edmund Landau (1877–1938) “Number theory is useful, since one can graduate with it.” Born in Berlin to a Jewish family Dismissal from Göttingen Applications of Landau’s Formula Edmund Landau (1877–1938) “Number theory is useful, since one can graduate with it.” Born in Berlin to a Jewish family PNT & Prime Ideal Theorem Applications of Landau’s Formula Edmund Landau (1877–1938) “Number theory is useful, since one can graduate with it.” Born in Berlin to a Jewish family PNT & Prime Ideal Theorem Dismissal from Göttingen Here ρ = β + iγ are the nontrivial zeros of ζ. -
Prime Geodesic Theorem for Compact Riemann Surfaces Dzenanˇ Gusiˇ C´
INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019 Prime Geodesic Theorem for Compact Riemann Surfaces Dzenanˇ Gusiˇ c´ Abstract—As it is known, there have been a number of attempts to obtain precise estimates for the number of primes not exceeding as x ! 1, for compact, d-dimensional locally symmetric x. A lot of them are related to the ones done by Chebyshev. Thus, spaces of real rank one, where π (x) is the correspond- a good deal is known about them and their limitations. The truth, Γ or otherwise, of the Riemann hypothesis, however, has still not been ing counting function, i.e., a yes function counting prime established. In this paper we derive a prime geodesic theorem for a geodesics of the length not larger than log x. compact Riemann surface regarded as a quotient of the upper half- The same prime geodesic theorem was derived by Gangolli- plane by a discontinuous group. We assume that the surface at case, Warner [9] when the underlying locally symmetric space is not considered as a compact Riemannian manifold, is equipped with necessarily compact but has a finite volume. classical Poincare metric. Our result follows from the standard theory of the zeta functions of Selberg and Ruelle. The closed geodesics The first refinement of such prime geodesic theorem (in the in this setting are in one-to-one correspondence with the conjugacy case of non-compact, real hyperbolic manifolds with cusps) classes of the corresponding group, so analysis conducted here is was given by [18] (see, [17] for a related work). -
Peter Sarnak
Peter Sarnak Bibliography 1. Spectra of singular measures as multipliers on Lp, Journal of Functional Analysis, 37, (1980). 2. Prime geodesic theorems, Ph.D. Thesis, Stanford, (1980). 3. Asymptotic behavior of periodic orbits of the horocycle flow and Einsenstein series, Comm. on Pure and Appl. Math., 34 (1981), 719-739. 4. Class numbers of indefinite binary quadratic forms, Journal of Number Theory, 15, No. 2, (1982), 229-247. 5. Spectral behavior of quasi periodic Schroedinger operators, Comm. Math. Physics, 84, (1984), 377-401. 6. Entropy estimates for geodesic flows, Ergodic Theory and Dynamical Systems, 2, (1982), 513-524. 7. Arithmetic and geometry of some hyperbolic three manifolds, Acta Mathematica, 151, (1983), 253-295. 8. (with S. Klainerman) Explicit solutions of u = 0 on Friedman-Robertson-Walker space times, Ann. Inst. Henri Poincare, 35, No. 4, (1981), 253-257. 9. (with D. Goldfeld) On sums of Kloosterman sums, Invent. Math. 71, (1983), 243-250. 10. “Maass forms and additive number theory,” in Number Theory, New York, (1982), Springer Lecture Notes 1052, D.V. Chudnovsky, ed., 286-309. 11. Domains in hyperbolic space and the Laplacian, in Diff. Equations Math. Studies Series, North Holland, 92, (1984), R. Lewis and I. Knowles, eds. 12. (with R.S.Phillips) Domains in hyperbolic space and limit sets of Kleinian groups, Acta Math., 155, (1985). 13. Class numbers of indefinite binary quadratic forms II, Journal of Number Theory, 21, No. 3, (1985), 333-346. 14. Fourth power moments of Hecke zeta functions, Comm. Pure and App. Math., XXXVIII, (1985), 167-178. Peter Sarnak 2 15. (with R.