Small Is Big Investigating Nanotechnology and Its Applications TEACHER NOTES

Total Page:16

File Type:pdf, Size:1020Kb

Small Is Big Investigating Nanotechnology and Its Applications TEACHER NOTES Small is Big Investigating Nanotechnology and its Applications TEACHER NOTES Lesson Overview Nanotechnology is the science of studying and creating materials, devices, and systems using very small particles that measure from 1 to 100 nanometers. This investigation introduces students to the nanoscale. They work in cooperative groups to understand key ideas related to nanotechnology and identify examples of its use. Inquiry – Students investigate key concepts and structures used in nanotechnology. They discover that matter at the nanoscale has different properties and behavior than the same matter at a larger scale. They learn that advances in technology spur innovation in product use and development. NOS – Understand how nanotechnology is being applied to create new materials (science is a blend of logic and imagination). STEM – Students conduct internet-based research using wireless technology to learn about nanotechnology; they determine how engineers apply nanoscale particles and systems to improve methods and develop new products. Suggested Time 3 45-minute periods Boil water just before class Set up document camera Class Materials for teacher demonstration. 20 cm nitinol wire 20 cm copper or other metal wire Print and Electronic Resources 4 250 mL beakers • National Nanotechnology Initiative laptop computers with internet access http://www.nano.gov/ hot plate • Nanooze Magazine Bunsen burner or candle http://www.nanooze.org/main/Nano test tube clamp oze/English.html pot holder • How Stuff Works http://science.howstuffworks.com/n Preparation anotechnology.htm# Reserve a computer cart for • Nanotechnology: Big Things from a classroom use. Tiny World, National Identify and bookmark websites for Nanotechnology Initiative, July 7, student research. 2008. Shape nitinol (memory wire) for teacher demonstration. Bend the • Streaming video Powers of Ten wire into a shape, such as a letter. http://www.youtube.com/watch?v= Holding it with a pair of test tube U04_1iKKC2c clamps, heat the wire over a candle • Applet based on Powers of Ten or Bunsen burner. Let the wire video.http://sciencenetlinks.com/too cool on a pot holder. Straighten ls/powers-of-ten/ out the wire. © Fairfax County School Board page 1 This document may be reproduced for classroom use only and may not be used or reproduced for any other purpose. Small is Big Investigating Nanotechnology and its Applications TEACHER NOTES Key Terms (such as the development of the nanoscale scanning tunneling microscope and nanotechnology atomic force microscope) have given scientists the tools to understand how nanostructures work and, more Essential Understandings importantly, why they work. Conceptual Understanding ► All matter has physical and Researchers have found that particles chemical properties. in the range of 1 to 100 nanometers ► The ability to manipulate the have significantly different properties placement of individual atoms in from particles of the same substance in tiny structures allows for the the visible range. Properties such as design of new type of materials melting point, fluorescence, electrical with desired properties. conductivity, magnetic permeability ► Matter at the nanoscale has (the ability of a material to support the unusual properties and functions formation of a magnetic field within because of its small size and large itself), and chemical reactivity have surface area. been shown to change with the size of Procedural Knowledge the particle. Gold particles, for ► A nanometer (nm) is one billionth instance, are usually gold on the visible of a meter. 1nm = 0.000000001 m -9 scale, but appear red or purple at the (or 1.0 x 10 m). It takes about 3 - nanoscale. 10 atoms to span the length of a nanometer. The difference in the properties of ► Nanotechnology is the study and matter at the nanoscale has been creation of functional materials, attributed to their larger surface-to- devices, and systems using matter volume ratios. As the surface area of that measures from 1 to 100 matter increases, more of the nanometers. substance contacts surrounding ► Nanotechnology has produced new materials; this impacts reactivity. The knowledge and innovations that ability to manipulate the structure of a were not previously possible. substance at the nanoscale allows scientists to tailor-make materials with Teacher Information specific properties that can make them Why is there so much interest in stronger, lighter, more durable, or nanotechnology? There is nothing better conductors of electricity. Over especially new about it. Medieval 800 consumer nanoproducts are artists used nanoscale gold salts to currently available in the industries of produce vibrant colors for their stained sports equipment, textiles, cosmetics, glass window designs and nature food storage, automotive products, routinely manipulates nanoparticles to electronics, information technology, air make proteins. The big difference is and water filtration, and medical that modern advances in microscopy treatment and diagnostics. © Fairfax County School Board page 2 This document may be reproduced for classroom use only and may not be used or reproduced for any other purpose. Small is Big Investigating Nanotechnology and its Applications TEACHER NOTES New processes and technologies carry 2. Pass the nitinol wire around the both benefits and risks. Temperature, room and allow students to salinity, habitat, or other biological describe its properties. Record factors may transform nanomaterials their responses on the chart in the released into the environment and physical properties column. Repeat change atmospheric, soil, or water this same process with the other chemistry producing unintended wire. consequences that impact human health and the environment. As a 3. ENGAGE - Select a student result, the United States has created volunteer to bend the nitinol wire the National Nanotechnology Initiative into any shape. Select a second (NNI) that coordinates the volunteer to bend the other wire nanotechnology-related activities of 25 into any shape. Display the shapes federal agencies in the areas of of the two wires for all students to science, engineering, technology, and observe. regulatory affairs. This coordinated research provides data needed to 4. Put both wires into a beaker and assess the risks to public health and pour cold water over them; have the environment while pursuing the the class observe the results. A beneficial use of nanotechnology. document camera or other method of projection may be used so that Teaching Suggestions all students clearly see the effect of Pre-Assessment the water on the metals (i.e., none). Each student will name the biggest and smallest things with which they are 5. Next, pour the cold water off and familiar and list five other things that then pour boiling water over the fall between them, in size order. Each wires in the beaker. Make sure that student will also demonstrate the students can see clearly because relationship between meters, they will observe that the nitinol centimeters, and millimeters using a wire will transform into the shape variety of systems (e.g., fraction, you molded before the start of class decimal, and exponent). (see Preparation) whereas the other wire will not. Before Investigation 1. LINK – Ask students to list as many 6. Ask students to observe the new of the physical and chemical properties of the wires and add properties of matter they have them to the properties chart created studied in this unit as they can in earlier. Ask students to name the two minutes. Record their new property they have just responses on a large class chart observed (shape memory). Ask that has been divided into two them to suggest practical uses for columns – one for each type of shape memory (e.g., repairing property. broken bones, straightening teeth, reinforcing arteries and veins, © Fairfax County School Board page 3 This document may be reproduced for classroom use only and may not be used or reproduced for any other purpose. Small is Big Investigating Nanotechnology and its Applications TEACHER NOTES maintaining the shape of golf clubs supplying newsprint or other and eyeglasses, etc.). method for groups to show what they have identified as the key 7. EXPLAIN - Tell students they have ideas in each passage. Have the just witnessed an example of class come to consensus on the nanotechnology. Ask them if they key ideas for each of the eight key are familiar with the term. If anyone concepts of nanotechnology. is, ask them to briefly share what it is, and how they know about it. 11. Read aloud Step 1 (S 246) and Note: Students will conduct explain to students that they will collaborative research on come back to apply what they learn nanotechnology so the teacher about nanotechnology to these does not need to explicitly teach concepts after they have conducted about nanotechnology since that is their research about different types what students will discover from of nanotechnology. their research. 12. Have students count off (1-8) and 8. Read together the opening form new groups of 3-4 students paragraphs as well as the based upon number (i.e., all the 1's Questions for investigation. Ask in a group, 2's in a group, etc.). students to complete the Prediction which asks them to 13. Read Step 2 (S 247) and assign identify which of the everyday one category of nanotechnology to products listed incorporate each group. Students can use the nanotechnology (all are examples online references listed in the of nanotechnology except the iPod investigation or other resources and tiny camera). provided by you to conduct their research. Remind groups that they 9. Tell students they will will need to be concise in their collaboratively perform research writing and just capture the main designed to help them understand ideas of each type of the way nanotechnology uses nanotechnology and a few properties to improve the interesting examples. A word of performance of materials. caution, there is a lot of information available about nanotechnology. During Investigation Periodically remind students to 10. ACTIVE LEARNING – Form groups collect only the key ideas about of two to four students.
Recommended publications
  • Meso/Micro/Nano Scale Technologies
    Meso/Micro/Nano Scale Technologies Clayton Teague, Chief, APTD, MEL John Evans, Chief, ISD, MEL June 8, 1999 Contents of Presentation • What we (MEL) have done in meso-scale area • What is nanotechnology • Nanotechnology is important • Principal message • Why is it important to industry and NIST? – Examples of industry/NIST work at all scales • Challenges for NIST • Long term needs at the nano-scale • Short term needs at the meso/micro-scales • Priorities • Ideas • Discussion topics Background • During past 9 months, MEL has explored measurements and standards needs of meso and micro-scale manufacturing • Visited 20 companies • Conducted and participated in three workshops jointly sponsored with DARPA and NSF • Organized informal NIST-wide co-ordinating group for meso/micro/nano scale activities • All feedback from these efforts points toward an exploding growth of nanotechnology • We see a continuum of needs for NIST efforts from the macro-scale to the nano-scale What is Nanotechnology? • Technology on the scale of atoms -100 pm- up to biomolecular systems as large as cells - 10’s mm • “Top-down” - achieving increased miniaturization through extension of existing microfabrication schemes • “Bottom-up” - capability to construct functional components, devices, and systems from building blocks of atoms and molecules Nanotechnology Strategies Nanotechnology is important! • “We’ve got to learn how to build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells.” Richard Smalley, Nobel Laureate, 1995 • “I believe nanoscience and nanotechnology will be central to the next epoch of the information age …” John Armstrong, formerly Chief Scientist of IBM, 1991 • “If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering.” Neal Lane, Director OSTP, 1998 • “Nanotechnology has given us the tools to make contact with the world of the molecule and the atom.
    [Show full text]
  • Biomedical Nanotechnology.Pdf
    BIOMEDICAL NANOTECHNOLOGY BIOMEDICAL NANOTECHNOLOGY Edited by Neelina H. Malsch Boca Raton London New York Singapore CRC PRESS, a Taylor & Francis title, part of the Taylor and Francis Group. Published in 2005 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2005 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10987654321 International Standard Book Number-10: 0-8247-2579-4 (Hardcover) International Standard Book Number-13: 978-0-8247-2579-2 (Hardcover) Library of Congress Card Number 2005045702 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users.
    [Show full text]
  • PDF Downloads
    Engineering Advances, 2021, 1(1), 26-30 http://www.hillpublisher.com/journals/ea/ ISSN Online: ****-**** ISSN Print: ****-**** Nanofabrics—The Smart Textile Nida Tabassum Khan1,*, Muhammad Jibran Khan2 1Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology En- gineering and Management Sciences, (BUITEMS), Quetta, Pakistan. 2Department of Electrical Engineering, Faculty of Information and Communication Technology, Balochistan University of Infor- mation Technology Engineering and Management Sciences, (BUITEMS), Quetta, Pakistan. How to cite this paper: Nida Tabassum Khan, Muhammad Jibran Khan. (2021) Abstract Nanofabrics—The Smart Textile. Engi- Nanotechnology is tied in with improving and carrying the up and coming bril- neering Advances, 1(1), 26-30. DOI: 10.26855/ea.2021.06.005 liant answers for nanoscale-level merchandise. It is tied in with organizing the particles to change measurements and improvement attributes, for example, bril- Received: April 28, 2021 liant texture. These textures can help makers with the additional significance of Accepted: May 25, 2021 expectations for everyday comforts, visual intrigue, and framework needed inno- Published: June 18, 2021 vative creations. Particles of nano size may uncover unexpected qualities unlike *Corresponding author: Nida Tabas- the mass material. Nanotechnology has multifunctional highlights in the produc- sum Khan, Department of Biotechnol- tion of textures in the advancement of resistance stain and wrinkles, fire resistant, ogy, Faculty of Life Sciences and In- antimicrobial and antistatic properties, dampness guideline, bright security and formatics, Balochistan University of Information Technology Engineering discharge attributes. Inside the texture the nanomaterials could impact various and Management Sciences, characteristics, including decrease electrical conductivity, combustibility and (BUITEMS), Quetta, Pakistan.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Nanotechnology and Picotechnology to Increase Tissue Growth: a Summary of in Vivo Studies
    Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies Ece Alpaslan1 and Thomas J Webster1,2 Author information ► Copyright and License information ► Go to: Abstract The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns. Keywords: nanomaterials, tissue engineering, toxicity Go to: Introduction Bone tissue and other organ dysfunction can be provoked by poor eating habits, stress, age-related diseases such as osteoarthritis or osteoporosis, as well as accidents.1 To date, common procedures to restore or enhance life expectancy involve medical device insertion or organ transplantation.1 However, due to the low number of donors and its high cost, organ transplantation is limited.
    [Show full text]
  • The Views of Experts and the Public Regarding Societal Preferences for Innovation in Nanotechnology
    The views of experts and the public regarding societal preferences for innovation in nanotechnology Nidhi Gupta Thesis committee Promoter Prof. Dr L.J. Frewer Professor emeritus, Food Safety and Consumer Behaviour Wageningen University Professor of Food & Society Newcastle University, UK Co-promotors Dr A.R.H. Fischer Assistant Professor, Marketing and Consumer Behaviour Group Wageningen University Dr F.W.H. Kampers Director, Biotechnology Center for Food and Health Innovation Wageningen University Other members Prof. Dr G. Antonides, Wageningen University Dr H.J.P Marvin, RIKILT, Wageningen University and Research Center Prof. Dr H. van Lente, Utrecht University Dr Q. Chaudhry, Food & Environment Research Agency (FERA), North Yorkshire,UK This research was conducted under the auspices of the Graduate School of Wageningen Social Sciences (WASS) The views of experts and the public regarding societal preferences for innovation in nanotechnology Nidhi Gupta Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 9 December 2013 at 1.30 p.m. in the Aula. Nidhi Gupta The views of experts and the public regarding societal preferences for innovation in nanotechnology, 188 pages PhD thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in English and Dutch ISBN: 978-94-6173-762-5 To Ma, Pa, Mannu and Mannat Contents A Abstract iii 1 General Introduction 1 1.1 Nanotechnology: exploring the future with key stakeholders . 3 1.2 Scope and outline of the thesis .
    [Show full text]
  • Introducing Nanoengineering and Nanotechnology to the First Year Students Through an Interactive Seminar Course
    Introducing nanoengineering and nanotechnology to the first year students through an interactive seminar course Hassan Raza1, Tehseen Z. Raza2 1 Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, USA [email protected] 2 Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA [email protected] Abstract: We report a first year seminar course on nanoengineering, which provides a unique opportunity to get exposed to the bottom-up approach and novel nanotechnology applications in an informal small class setting early in the undergraduate engineering education. Our objective is not only to introduce the fundamentals and applications of nanoengineering but also the issues related to ethics, environmental and societal impact of nanotechnology used in engineering. To make the course more interactive, laboratory tours for microfabrication facility, microscopy facility, and nanoscale laboratory at the University of Iowa are included, which inculcate the practical feel of the technology. The course also involves active student participation through weekly student presentations, highlighting topics of interest to this field, with the incentive of “nano is everywhere!” Final term papers submitted by the students involve a rigorous technology analysis through various perspectives. Furthermore, a student based peer review process is developed which helps them to improve technical writing skills, as well as address the ethical issues of academic honesty while reviewing and getting introduced to a new aspect of the area presented by their colleagues. Based on the chosen paper topics and student ratings, the student seemed motivated to learn about the novel area introduced to them through theoretical, computational and experimental aspects of the bottom-up approach.
    [Show full text]
  • Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms
    Biosensors 2015, 5, 712-735; doi:10.3390/bios5040712 OPEN ACCESS biosensors ISSN 2079-6374 www.mdpi.com/journal/biosensors/ Review Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms Sanaz Pilehvar * and Karolien De Wael AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-3265-3338. Academic Editors: Prabir Patra and Ashish Aphale Received: 9 September 2015 / Accepted: 14 October 2015 / Published: 23 November 2015 Abstract: Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. Keywords: nanotechnology; nanostructures; nano-bio hybrids; fullerene-biomolecule; biosensors 1. Introduction Bio-nanotechnology is a new emerging field of nanotechnology and combines knowledge from engineering, physics, and molecular engineering with biology, chemistry, and biotechnology aimed at the development of novel devices, such as biosensors, nanomedicines, and bio-photonics [1].
    [Show full text]
  • Supporting Information
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 Supporting Information For RSC Adv. “Green” Nano-Filters: Fine Nanofibers of Natural Protein for High Efficiency Filtration of Particulate Pollutants and Toxic Gases Hamid Souzandeh, Yu Wang*and Wei-Hong Zhong * School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164 (USA) E-mail: [email protected] [email protected] S0 Gelatin solution and nanofiber mat preparation. Gelatin was dissolved in mixed solvent (volume ratio, acetic acid : DI water = 80 : 20) with a concentration of 18 wt% at 65 °C. The mixed solvent was used to achieve a good electrospinning of the gelatin solution. With that ratio between water and acetic acid, it was found that a homogenous yellow solution and stable electrospinning of the solution can be achieved. The electrospinning of gelatin solution is a well- known process and the effect of viscosity on electrospinning of gelatin has been studied before.1 After the homogenous gelatin solution (18 wt%) is prepared, the nanofibers were spun at room temperature on an aluminum mesh substrate. The areal density of the nanofabrics was controlled by controlling the volume of the solution that was electrospun on the substrate. The gelatin nanofabrics possessed a thickness within the range of 8 – 20 μm. In particular, the sample with the best air filtration properties (areal density = 3.43 g/m2) possesses a thickness of about 16 μm. The gelatin nanofabrics can be handled manually even though they are not crosslinked, but it is challenging due to very high electrostatic charge of the nanofibers.
    [Show full text]
  • Nanotechnology - Fundamentals and Applications 1
    D. Cremer, CHEM 6342, Nanotechnology - Fundamentals and Applications 1 CHEM 6342 Nanotechnology – Fundamentals and Applications Class location: TBD Lectures, time and location: TBD Lab times and location: TBD Instructor: Dieter Cremer, 325 FOSC, ext 8-1300, [email protected] http://smu.edu/catco/ Office Hours: By appointment Units: 3 Grading: ABC Letter Grade Class number TBD 1. Rationale: Nanotechnology (NT) is a rather young discipline, which came up in the nineties. Nevertheless, NT has gained so much importance within the last years that universities at all rankings have introduced or are going to introduce NT teaching programs. Predictions say that NT will change our lives and society more than computer technology and electricity have done together. The course will provide an overview over NT. It will show that the nano regime is so different from other regimes because both classical and quantum effects can be active thus leading to unique properties of nano devices. NT is a highly interdisciplinary science, which will be reflected in the course by making reference to chemistry, physics, biology, pharmacy, and engineering. Applications of NT, as they are already in use today or as they are planned for the future, will be discussed. 2. Course Recommendations: The course is designed to reach all graduate students who had have an education in chemistry, physics, engineering or biology. It does not require special knowledge in mathematics or theoretical physics. The course contents will be presented in self-sustained modules, which make it possible to follow the course without special knowledge. The course will prepare for the interdisciplinary work in NT.
    [Show full text]
  • A Fine-Grained 3D IC Technology with NP-Dynamic Logic
    Received 13 June 2016; revised 24 February 2017; accepted 8 March 2017. Date of publication 20 March 2017; date of current version 7 June 2017. Digital Object Identifier 10.1109/TETC.2017.2684781 NP-Dynamic Skybridge: A Fine-Grained 3D IC Technology with NP-Dynamic Logic JIAJUN SHI, MINGYU LI, MOSTAFIZUR RAHMAN, SANTOSH KHASANVIS, AND CSABA ANDRAS MORITZ J. Shi, M. Li, and C.A. Moritz are with the Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003 M. Rahman is with the School of Computing and Engineering, University of Missouri, Kansas City, MO 65211 S. Khasanvis is with BlueRISC Inc., Amherst, MA 01002 CORRESPONDING AUTHOR: J. SHI ([email protected]) ABSTRACT A new 3D IC fabric named NP-Dynamic Skybridge is proposed that provides fine-grained vertical 3D integration for future technology scaling. Relying on a template of vertical nanowires, it expands our prior work to incorporate and utilize both n- and p-type transistors in a novel NP-Dynamic circuit-style compatible with true 3D integration. This enables a wide range of elementary logics leading to more compact circuits, simple clocking schemes for cascading logic stages and low buffer requirement. We detail new design concepts for larger-scale circuits, and evaluate our approach using a 4-bit nanoprocessor implemented in 16 nm technology node. A new pipelining scheme specifically designed for our 3D NP-Dynamic circuits is employed in the nanoprocessor. We compare our approach with 2D CMOS as well as state-of-the-art tran- sistor-level monolithic 3D IC (T-MI) approach. Benchmarking results for the 4-bit nanoprocessor show bene- fits of up to 56.7x density, 3.8x power and 1.7x throughput over 2D CMOS.
    [Show full text]
  • The World of Nanotechnology: an Introduction
    The World of Nanotechnology: An Introduction NACK Center www.nano4me.org The NACK Center was established at the Pennsylvania State College of Engineering, and is funded in part by a grant from the National Science Foundation. Hosted by MATEC NetWorks www.matecnetworks.org NACK Center www.nano4me.org Welcome to NACK’s Webinar Presenter Stephen J. Fonash, Ph.D. Director, Center for Nanotechnology Applications & Career Knowledge (NACK) NACK Centers Nanotechnology Applications & Career Knowledge Webinar Desired Outcomes Participant understanding of: • What is nanotechnology ? • What is so unique about the nanoscale? • Where did nanotechnology come from and why is it so “big” now? • How is nanotechnology impacting us today? • How will nanotechnology impact us in the future? NACK Center www.nano4me.org Nanotechnology What Does the Word Mean? It refers to technology based on “things” that are really, really, really small or more precisely It means technology based on particles and/or structures which have at least one dimension in the range of one billionth of a meter NACK Center www.nano4me.org How small is a Nanometer- Courtesy of NanoHorizons, Inc. NACK Center www.nano4me.org Let’s look at the “small size” ranges pictorially Let’s also get some idea of what nature makes and what man makes in these size ranges NACK Center www.nano4me.org Sizes of Some Small Naturally Occurring and Man-Made Structures Transistor of 2007 Transistors of 20-30 Years ago Drug molecule Quantum dot 1 nm 1 1 µm 1 1 mm 1 10 nm 10 10 µm 10 100 pm 100 100 µm 100 100 nm 100 Macro-scale Micro-scale Nano-scale Virus DN A tissue Human cell Individual atom Bacterium cell Protein Human hair NACK Center www.nano4me.org Note from our pictorial representation of scales that the next size range that is smaller than the nano-scale is the pico-scale NACK Center www.nano4me.org Note that neither nature nor man builds anything at this pico-scale size range.
    [Show full text]