Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad para el Estudio de los Mamíferos Argentina

Jayat, Pablo; Pacheco, Silvia; Ortiz, Pablo E. A PREDICTIVE DISTRIBUTION MODEL FOR Andinomys edax (RODENTIA: CRICETIDAE) IN ARGENTINA Mastozoología Neotropical, vol. 16, núm. 2, diciembre, 2009, pp. 321-332 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina

Available in: http://www.redalyc.org/articulo.oa?id=45712497005

How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 16(2):321-332, Mendoza, 2009 ISSN 0327-9383 ©SAREM, 2009 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar

A PREDICTIVE DISTRIBUTION MODEL FOR Andinomys edax (RODENTIA: CRICETIDAE) IN ARGENTINA

Pablo Jayat1, Silvia Pacheco2 and Pablo E. Ortiz3

1 Laboratorio de Investigaciones Ecológicas de las Yungas (LIEY), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina [Correspondencia: ]. 2 Sistema de Información Geográfica Ambiental, Fundación ProYungas, Yerba Buena, Tucumán, Argentina. 3 Cátedra de Paleontología, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.

ABSTRACT: We studied the distribution of Andinomys edax (Rodentia, Cricetidae, Sigmodontinae) in northwestern Argentina. Presence data obtained from field records, museum specimens and literature were used to model the potential distribution of this species. Andinomys edax was known in Argentina from only 41 occurrence localities, most of them restricted to Jujuy province. Here we add new localities from Catamarca, Jujuy, Salta and Tucumán provinces. We used the maximum entropy method (Maxent) and seven environmental variables to produce a potential distribution map of the species. The 7.015 cumulative threshold (corresponding to the equal test of sensitivity and specificity) was the most efficient hypothetical distribution according to the omission rate. The area under the curve (AUC) was of 0.987 for training data. The model indicates that A. edax is mainly distributed on the more humid eastern montane ranges in the region, associated to high altitude grasslands and ecotonal zones between 1500 and 4000 m in Yungas, Prepuna, Puna and High Andean environments. These results, as well as the known fossil record for the species in Argentina, indicate the ecological plasticity of A. edax, present in the region at least since Middle-Upper Pleistocene times.

RESUMEN: Un modelo predictivo de distribución para Andinomys edax (Rodentia: Cricetidae) en Argentina. Se estudió la distribución de Andinomys edax (Rodentia, Crice- tidae, Sigmodontinae) en el noroeste de Argentina. Para modelar la distribución potencial de la especie se usaron datos de presencia obtenidos a partir de registros de campo, de especímenes depositados en colecciones y de la literatura. Andinomys edax se conocía en Argentina por sólo 41 localidades, la mayoría de ellas en la provincia de Jujuy. En este trabajo se adicionan nuevas localidades para las provincias de Catamarca, Jujuy, Salta y Tucumán. El mapa de distribución potencial de la especie fue modelado utilizando el método de máxima entropía (Maxent) y siete variables ambientales. De acuerdo con la tasa de omisión, el umbral acumulativo de 7.015 (correspondiente al test de igualdad de sensitividad y especificidad) determinó la distribución hipotética más eficiente. El área bajo la curva (AUC) para el test ROC fue de 0.987 para los datos de entrenamiento. De acuerdo con el modelo, A. edax se distribuye principalmente sobre las laderas orientales húmedas de los cordones montañosos de la región, asociada a pastizales de altura y sus ecotonos entre 1500 y 4000 m, en ambientes de Yungas, Prepuna, Puna y Altos Andes. Estos

Recibido 29 diciembre 2008. Aceptado 13 abril 2009. Editor asociado: J Morrone 322 Mastozoología Neotropical, 16(2):321-332, Mendoza, 2009 P Jayat et al. http://www.sarem.org.ar

resultados, así como el registro fósil de la especie en Argentina, indican una gran plasticidad ecológica de A. edax, presente en la región al menos desde el Pleistoceno medio-superior.

Key words. Maxent. Northwestern Argentina. Potential distribution. Sigmodontinae.

Palabras clave. Distribución potencial. Maxent. Noroeste de Argentina. Sigmodontinae.

INTRODUCTION MATERIAL AND METHODS

Among Neotropical mammals, the subfamily For the ecoregions nomenclature we followed Sigmodontinae (Rodentia, Cricetidae) is one Burkart et al. (1999) and for the belts of the Yungas of the most diversified and complex groups, ecoregion we followed Brown et al. (2001). Distri- with approximately 380 species (Musser and butional data of A. edax were obtained from field work through captured specimens (JPJ, PEO) and Carleton, 2005). In the last decade, phyloge- owl pellets samples (PEO-e), study of museum netic analyses based on molecular characters specimens and bibliographic revision. The new have identified several sigmodontine genera specimens studied, here informed with their field that cannot be placed into any of the previ- numbers, will be deposited at the Colección de ously recognized suprageneric groups (Smith Mamíferos Lillo (CML), San Miguel de Tucumán, and Patton, 1999; D’Elía, 2003; D’Elía et al., Tucumán, Argentina. The studied collections were 2003). Smith and Patton (1999) treated these CML and Museo de Ciencias Naturales “Bernar- genera as “unique lineages” and D’Elía (2003) dino Rivadavia” (MACN), , Argen- referred to them as genera without clear phy- tina. Information on all specimens examined is provided in the Appendix. Geographic coordinates logenetic relationships, as Sigmodontinae were obtained with a GPS and from maps of the incertae sedis. One of these unique lines is the Instituto Geográfico Militar (IGM, Argentina, scales monotypic genus Andinomys Thomas (D’Elía 1:250 000 and 1:500 000) with five decimal de- et al., 2005, 2006), previously assigned to the grees precision. tribe Phyllotini based on its morphology (e.g. We used seven environmental variables to build Hershkovitz, 1962; Olds and Anderson, 1989; the distribution model. These variables constitute Steppan, 1995). Andinomys edax Thomas a subset of 16 climatic, six vegetation and three 1902, the only species of the genus, is a very topographic variables analyzed, that were selected distinctive species among sigmodontines by its with the object of avoid multicollinearity. All seven variables had Pearson correlation values (r) lower particular cranial, dental (Hershkovitz, 1962; than 0.7 for P = 0.05. The spatial resolution of Steppan, 1995), and molecular characters variables was 30 arc seconds, approximately equal (D’Elía et al., 2005). to 0.72 km2 in the study area (Hijmans et al., 2004). Andinomys edax has a broad distribution in Climatic variables were obtained from the web page the Central Andean region of South America, of WORLDCLIM (http://biogeo.berkeley.edu/ from southeastern Peru, through southwestern worldclim) and included temperature mean diurnal Bolivia and northernmost Chile to northwest- range, maximum temperature of the warmest month, ern Argentina (Pine et al., 1979; Redford and temperature annual range, and annual precipitation. Eisenberg, 1992; Anderson, 1997; Eisenberg The topographic variable (altitude) was obtained from the digital elevation model (DEM) produced and Redford, 1999; D’Elía et al., 2006). In by NASA (Shuttle Radar Topographic Mission Argentina A. edax is known from a few records [SRTM]), available from http:// and, as most sigmodontine species, no poten- glcfapp.umiacs.umd.edu:8080/esdi/index.jsp. Veg- tial distribution map has been built for the etation variables consist of two estimates of the species. The aim of this contribution is to Normalized Difference Vegetation Index (NDVI), model the potential distribution for Andinomys available from http://edcdaac.usgs.gov/1KM/ edax and provide new occurrence localities in 1kmhomepage.htlm. These variables were calcu- Argentina. lated from maximum monthly values (sensu Parra DISTRIBUTION OF Andinomys edax IN ARGENTINA 323 et al., 2004) and are: medium “greenness” (num- Potential distribution ber of months where each pixel had a value be- tween 109 and 150; Holben, 1986) and annual sea- The performance of the omission rate and sonality (100 x [overall maximum - overall mini- predicted area as a function of the cumulative mum] / overall maximum; Hurlbert and Haskell, threshold indicates that the equal test of sen- 2003). We used NDVI data from two years, April 1992 to March 1993 and February 1995 to Janu- sitivity and specificity threshold (7.015) rep- ary 1996. resents the best distributional hypothesis for We used Maxent (Phillips et al., 2006) to model the distributional record data and environmen- the Andinomys edax distribution. This general- tal variables considered in our study. Addi- purpose method estimates a target probability dis- tionally, the ROC analysis, with an AUC of tribution by finding the probability distribution of 0.987 for training data, indicates a good per- maximum entropy, subject to a set of constraints formance of the model. representing the incomplete information about the The potential distribution map indicates that target distribution (Phillips et al., 2006; Phillips A. edax is mainly distributed between 1500 and Dudík, 2008). When applied to presence-only species distribution, the pixels of the study area and 4000 m elevation on the more humid make up the space on which the Maxent probabil- eastern montane ranges in the region, on Cor- ity distribution is defined, pixels with known spe- dillera Oriental, Sierras Centrales and north- cies occurrence records constituted the sample ernmost Sierras Pampeanas. The species seems points, and the constraints are expressed in terms mainly associated with high altitude grasslands of functions of the environmental variables (Phillips and related ecotonal areas of Altos Andes and et al., 2006; Phillips and Dudík, 2008). The best Yungas ecoregions (sensu Burkart et al., 1999). threshold, which defines the species distribution, Moreover, on western slopes the distributional can be determined through the performance of the hypothesis indicates that it occurs in grassy omission rate and predicted area as a function of the cumulative threshold (Phillips et al., 2006). areas of Monte de Sierras y Bolsones through The Maxent procedure randomly selects 75% of the entire region and in the most humid places the presence data to build the model (Appendix). of Puna in Jujuy province (Fig. 1b). A few We validated the model by a threshold-indepen- pixels in the model also indicate the potential dent test, the receiver operating characteristic presence of A. edax for the Chaco Seco (ROC) analysis (Fielding and Bell, 1997; ecoregion in northeastern Salta and in lower McPherson et al., 2004). The ROC characterizes belts of Yungas forest in central Tucumán (Fig. the performance of the model at all possible thresh- 1b). olds by a single number, the area under the curve The diverse environmental conditions where (AUC). A. edax lives, from Puna (mean annual rain- RESULTS fall <350 mm; mean annual temperature <10°C) to Yungas (mean annual rainfall >1500 Distributional records mm; mean annual temperature >16 °C), sug- gests that this species has a high ecological We obtained 41 records from the literature, plasticity. This can also be inferred from the for Jujuy, Salta, Tucumán and Catamarca prov- fossil record. Andinomys edax has been an inces (Fig. 1a and Appendix; Thomas, 1913, ubiquitous sigmodontine in northwestern Ar- 1921; Yepes, 1935; Hershkovitz, 1962; gentina since, at least, the Late Pleistocene Heinonen Fortabat and Bosso, 1994; Mares et times (Ortiz and Jayat, 2007a), and all the small al., 1997; Díaz, 1999; Díaz and Barquez, 1999, mammal fossil assemblages where it has been 2007; Díaz et al., 2000; Jayat et al., 2008). In found suggest a wide range of this contribution we add five new localities paleoenvironmental conditions (Ortiz, 2001; from Catamarca, Jujuy, Salta and Tucumán Ortiz and Pardiñas, 2001; Teta and Ortiz, 2002; provinces (Fig. 1a and Appendix). Ortiz and Jayat, 2007a,b). 324 Mastozoología Neotropical, 16(2):321-332, Mendoza, 2009 P Jayat et al. http://www.sarem.org.ar in Argentina. Andinomys edax in the ecoregions of northwestern Argentina; b) Potential distribution edax

Andinomys . a) Recording localities of Fig. 1 DISTRIBUTION OF Andinomys edax IN ARGENTINA 325

DISCUSSION AND CONCLUSION and so, the resulting model constitute a geo- graphic representation of the fundamental eco- With a few outstanding exceptions (e.g., logical niche (FN) and not the distributional Akodon lutescens, A. simulator, Phyllotis area of the species (Soberón and Peterson, osilae, and P. xanthopygus), most of north- 2005). This last area is determined by a mix- western sigmodontine species are known by a ture of biotic and abiotic factors in a complex few occurrence localities. Until recently, the spatial context. Notwithstanding, we tried to distributional information for Andinomys edax approach to the distributional area of A. edax was scarce and concentrated to the northern using our own knowledge about areas in north- extreme of this region, with almost 60% of western Argentina where the species is absent the distributional records in Jujuy province and taking advantage of the spatial scale of (Díaz, 1999; Díaz and Barquez, 2007). Re- our study. In this way, although the distribu- cently, we added several records for the spe- tion of A. edax extends northward to southern cies in high altitudinal grassland environments, Peru, we choose to model its distribution only most of them for the south of northwestern in Argentina. We have much more informa- Argentina (Jayat et al., 2008). Here we offer tion for their distribution in this country (pres- all the records at hand for the species in the ence and absence data), we examined most of region, filling a noteworthy gap of informa- the cited specimens, and we know in detail tion. the geographic features and environmental Predictive modelling of species occurrences characteristics of northwestern Argentina, has become an important tool in biogeographi- which allowed us to interpret and evaluate the cal and ecological studies, with many contri- performance of the model. The regional scale butions in the last 20 years (Scott et al., 2002; of this analysis indicates, at least theoretically, Guisan and Thuiller, 2005; Guisan et al., a low influence of biotic factors on the result- 2006). The proliferation of new technologies, ing model (Soberón and Peterson, 2005). such as Geographic Information Systems, new The model obtained for A. edax in the study statistical packages and specific programs area is a good approximation according to our dedicated to prediction of distributions, as well field experience and has relatively sound vali- as the growing accessibility to global data- dation values. Notwithstanding, new occur- bases, have successfully promoted the devel- rence records could improve the distributional opment of this topic. Among several available hypothesis obtained here. In our model build- modelling techniques, Maxent has proved to ing we used seven environmental variables be a good tool for determining distributional related to climatic, topographic and vegeta- areas without absence data, few recording tion characteristics of the area; however, bet- localities, limited environmental data and for ter results can be obtained by using more re- a number of taxonomical groups and geo- lated species life requirements variables (e.g. graphic areas (Phillips et al., 2006; Benito food resources availability). Unfortunately, as de Pandos and Peñas de Giles, 2007; Guisan for many sigmodontine species of northwest- et al., 2007a,b; Giovanelli et al., 2008; ern Argentina, there is not enough information Ortega-Huerta and Townsend Peterson, about habitat requirements for A. edax. 2008). Many additional advantages for Albeit all the A. edax records in Argentina Maxent procedure have been delineated in come mainly from highland grasslands of Phillips et al. (2006). Jujuy, Salta, Tucumán and Catamarca prov- We use a “correlative approach” to ecologi- inces, the potential distribution indicates its cal niche modeling (Soberón and Peterson, presence in several mountainous areas in La 2005). In this approach, the algorithm (in this Rioja and Córdoba provinces, such as Sierras case Maxent) searches the map for areas that de Velazco, Famatina, Sierras Grandes and are “similar” ecologically (often climatic) to Sierras Chicas (Fig. 1b). Until now, there were those where the species is known to occur, no known records for the species in these ar- 326 Mastozoología Neotropical, 16(2):321-332, Mendoza, 2009 P Jayat et al. http://www.sarem.org.ar eas, despite environmental similarities with with more humid and warmer climatic condi- nearby areas situated northward in Catamarca tions and a very different vegetation structure. province. This absence can be explained by This apparently incongruent record, as well as the lack of sampling in Sierra de Velazco and the distributional prediction, is probably the Famatina ranges, both large and unexplored result of inadequate sampling in this interme- areas. However, the absence of A. edax in diate altitudinal belt. The sigmodontines of the Sierras Grandes could be related to historical Yungas ecoregion in northwestern Argentina causes, being the species unable to colonize have been relatively well surveyed at low these areas across regions occupied by exten- (Selva Pedemontana) and high (Bosque sive dry and warm Chaco environments. Al- Montano and Pastizales de Neblina) elevations ternatively, a possible colonization of Sierras (Jayat et al., 2008, in press), but there are very Grandes during Quaternary times followed by few collecting localities in Selva Montana, local extinction can not be ruled out. It is between 700 and 1400 m elevation. The sec- necessary to highlight that many surveys were ond low elevation area includes very small accomplished in this hilly area but A. edax patches of Chaco environments in northeast- has never been registered (Polop, 1989, 1991; ern Salta (Fig. 1b). Our field experience and Priotto et al., 1996; Altrichter et al., 2001, all the available distributional evidence indi- 2004; Kufner et al., 2004). cate that this is clearly an overestimation of The model predicts the presence of the spe- the real distribution, and we think the species cies for extensive areas of Monte de Sierras y is not present in the Chacoan region. In spite Bolsones environments in all the study area. of more than 100 localities until now surveyed, We think that the more xeric areas in this Andinomys edax was not registered in this xeric ecoregion are not a good environment for A. ecoregion. edax. The presence of the species in areas such In the present record of the as Campo del Arenal (Catamarca) and low species is very poor, restricted to only five elevation places of the Valles Calchaquíes localities in central and northernmost areas. In (Tucumán and Salta) constitutes probably an spite of these few records, the potential distri- overestimation of the real distribution. Most bution map predicts the presence of A. edax of locations in Monte de Sierras y Bolsones for large areas in the eastern slopes of Sierra where A. edax was registered are associated de Santa Victoria and Sierra de Zenta, in the to humid microenvironments, with nearby northern part of the province, where we think watercourses flanked by dense bunch grasses. the species is indeed present (Fig. 1b). Probably, the prediction of the species pres- The model also indicates the A. edax pres- ence in xeric areas of the Monte is conse- ence in highland grasslands of isolated eastern quence of the use of owl pellets records (lo- mountain systems of all the region, such as calities 10, 14 and 29). We think that using Sierra de Santa Bárbara, Sierra del Centinela owl pellets samples for predicting species dis- (Jujuy), Sierra de Metán, Sierra de la tribution in areas with high environmental Candelaria (Salta), Sierra de Medina, Sierra heterogeneity, and sharply contrasting condi- del Campo (Tucumán), and Sierra de Ancasti tions in short distances, must be taken with (Catamarca) (Fig. 1b). In these systems we caution. recorded other two sigmodontine species A few low elevation areas (below 1000 m) (Necromys lactens and Phyllotis osilae) re- are considered as an adequate environment for stricted to highland grassland environments A. edax by the Maxent model. One of these through most of Northwestern Argentina and areas is located in Selva Montana of Yungas, usually registered simpatrically with A. edax around the Sierra de San Javier, Tucumán (Fig. (Jayat and Pacheco, 2006; Jayat et al., 2006, 1). From this area there is one record for Horco 2008). This similar distributional pattern to- Molle, a noticeably different locality from the gether with the proximity of these systems rest of sites where A. edax has been trapped, DISTRIBUTION OF Andinomys edax IN ARGENTINA 327 respect to areas of proved presence, suggest (ANPCyT), Consejo de Investigaciones de la Universidad that A. edax is also present in these areas. Nacional de Tucumán (CIUNT), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Although A. edax is mainly a dweller of high and Fundación ProYungas. This work was possible altitude grasslands and related ecotonal high- thanks to the institutional support of the Laboratorio de land systems, it inhabits humid places of very Investigaciones Ecológicas de las Yungas and Cátedra dissimilar ecoregions, being part of very dif- de Paleontología, Universidad Nacional de Tucumán. ferent micromammal assemblages from the Middle-Upper Pleistocene to present time. LITERATURE CITED Notwithstanding the noteworthy Quaternary ALTRICHTER M, M KUFNER, L GIRAUDO, G environmental changes that have impacted on GAVIER, D TAMBURINI, A CALABRESE, M SIRONI, and L ARGUELLO. 2001. Comunidades small mammal communities in northwestern de micromamíferos de bosque serrano y pastizal de Argentina (Ortiz et al., 2000a; Ortiz and altura de la Reserva La Quebrada, Córdoba, Argen- Pardiñas, 2001; Pardiñas et al., 2002; Teta and tina. Vida Silvestre Neotropical 10:58-61 Ortiz, 2002; Ortiz and Jayat, 2007a, b), A. ALTRICHTER M, M KUFNER, L GIRAUDO, G GAVIER, D TAMBURINI, M SIRONI and L edax is present in most of the studied fossil ARGUELLO. 2004. Comunidades de assemblages in this region. micromamíferos de bosque serrano y pastizal de Clearly, the distributional hypothesis ob- altura en la Sierra Chica, Córdoba, Argentina. tained here can be improved with additional Ecología Aplicada 3:122-127. ANDERSON S. 1997. Mammals of Bolivia, field data coming from northwestern Argen- and distribution. Bulletin of the American Museum tina, including all its distributional area in of Natural History 231:1-652. South America, and with a better knowledge BENITO DE PANDO B and J PEÑAS DE GILES. 2007. on the ecological requirements of the species. Aplicación de modelos de distribución de especies a la conservación de la biodiversidad en el sureste However, this hypothesis represents the best de la Península Ibérica. GeoFocus (Artículos) 7:1578- available approximation and constitutes an 5157. objective tool for conservation planning in BROWN AD, HR GRAU, LR MALIZIA, and A GRAU. Argentina. This distributional model, and those 2001. Argentina. Pp. 623-659, in: Bosques Nublados del Neotrópico (M Kappelle y AD Brown, eds.). obtained for other species in this region (e.g. Instituto Nacional de Biodiversidad (INBio). Costa Porcasi et al., 2005; Jayat and Pacheco, 2006), Rica. can constitute the base for further studies on BURKART R, N BARBARO, RO SANCHEZ, and DA ecology and biogeography of the GÓMEZ. 1999. Eco-regiones de la Argentina. Administración de Parques Nacionales, PRODIA. sigmodontines in northwestern Argentina and CABRERA AL. 1976. Regiones fitogeográficas de la the foundations for the development of appro- República Argentina. Enciclopedia Argentina de priate conservation policies based on Agricultura y Jardinería 2:1-85. areographic characteristics such as size of to- CAPLLONCH P, A AUTINO, MM DÍAZ, RM BÁRQUEZ, and M GOYTIA. 1997. Los mamíferos tal area, shape and connectivity, hot spot ar- del Parque Biológico Sierra de San Javier, Tucumán, eas, and endemicity. Argentina: observaciones sobre su sistemática y distribución. Mastozoología Neotropical 4:49-71. ACKNOWLEDGMENTS D´ELÍA G. 2003. Phylogenetics of Sigmodontinae (Ro- dentia, Muroidea, Cricetidae), with special reference to the akodont group, and with additional comments We thank J. Babot, J. Ballesteros, J. Carilla, D. Juri, E. on historical biogeography. Cladistics 19:307-323. Martin, D. Miotti, G. Namen, J. Powell, F. Scacchi and D´ELÍA G, EM GONZÁLEZ, and UFJ PARDIÑAS. J. Torres Dowdall for helping us during field work. S. 2003. Phylogenetic analysis of sigmodontinae ro- McLaren provided us with photographic material of the dents (Muroidea), with special reference to the Carnegie Museum of Natural History, USA. We are akodont genus Deltamys. Mammalian Biology indebted to the following curators: R. Bárquez (Colección 68:351-364. de Mamíferos Lillo, Tucumán, Argentina), J. Powell D’ELÍA G, UFJ PARDIÑAS, and P MYERS. 2005. An (Colección Paleovertebrados Lillo, Tucumán, Argentina) introduction to the genus Bibimys (Rodentia: and O. Vaccaro (Museo Argentino de Ciencias Natu- Sigmodontinae): Phylogenetic position and alpha rales “Bernardino Rivadavia”, Buenos Aires, Argentina). taxonomy. Pp. 211-246, in: Mammalian diversifica- Two anonymous reviewers improved significantly the tion: from Chromosomes to Phylogeography (A original manuscript. Financial support was provided by Celebration of the Career of James L. Patton) (E Agencia Nacional de Promoción Científica y Tecnológica 328 Mastozoología Neotropical, 16(2):321-332, Mendoza, 2009 P Jayat et al. http://www.sarem.org.ar

Lacey and P Myers, eds.). University of California HEINONEN FORTABAT S and A BOSSO. 1994. Publication in Zoology. Nuevos aportes para el conocimiento de la D’ELÍA G, P TETA, and UFJ PARDIÑAS. 2006. Incertae mastofauna del Parque Nacional Calilegua (Provincia Sedis. Pp. 197-202, in: Mamíferos de Argentina: de Jujuy, Argentina). Mastozoología Neotropical sistemática y distribución (RM Bárquez, MM Díaz 1:51-60. and RA Ojeda, eds.). Sociedad Argentina para el HERSHKOVITZ P. 1962. Evolution of Neotropical crice- Estudio de los Mamíferos. tine rodents (Muridae) with special reference to the DALBY PL and MA MARES. 1974. Notes on the dis- phyllotine group. Fieldiana Zoology 46:1-524. tribution of the coney rat, Reithrodon auritus, in HIJMANS R, S CAMERON, and J PARRA. 2004. Northwestern Argentina. American Midland Natu- WorldClim, version 1.2. A square kilometer resolu- ralist 92:205-206. tion database of global terrestrial surface climate. DÍAZ MM. 1999. Mamíferos de la Provincia de Jujuy: http://www.biogeo.berkeley.edu sistemática, distribución y ecología. Unpublished HOLBEN BN. 1986. Characteristics of maximum-value Ph.D. dissertation, Facultad de Ciencias Naturales e composite images for temporal AVHRR data. Inter- Instituto Miguel Lillo, Universidad Nacional de national Journal of Remote Sensing 7:1435-1445. Tucumán, Tucumán, Argentina. HURLBERT A and J HASKELL. 2003. The effect of DÍAZ MM and RM BARQUEZ. 1999. Contributions to energy and seasonality on avian species richness and the knowledge of the mammals of Jujuy Province, community composition. American Naturalist Argentina. The Southwestern Naturalist 44:324-333. 161:83-97. DÍAZ MM and RM BARQUEZ. 2007. The Wild Mam- JAYAT JP and S PACHECO. 2006. Distribución de mals of Jujuy Province, Argentina: Systematics and Necromys lactens y Phyllotis osilae (Rodentia: Crice- Distribution. Pp. 417-578, in: The Quintessential tidae: Sigmodontinae) en el noroeste argentino: Naturalist: Honoring the Life and Legacy of Oliver modelos predictivos basados en el concepto de nicho P. Pearson (DA Kelt, EP Lessa, J Salazar-Bravo, ecológico. Mastozoología Neotropical 13:69-88. and JL Patton, eds.). University of California Pub- JAYAT JP, PE ORTIZ, and MD MIOTTI. 2008. lications in Zoology 134. Distribución de sigmodontinos (Rodentia: Cricetidae) DÍAZ MM, JK BRAUN, MA MARES, and RM en pastizales de neblina del noroeste argentino. Acta BARQUEZ. 2000. An update of the taxonomy, sys- Zoológica Mexicana 24:137-177. tematic, and distribution of the mammals of Salta JAYAT JP, PE ORTIZ, and MD MIOTTI. In press. Province, Argentina. Occasional Papers of the Okla- Mamíferos de la selva pedemontana del noroeste homa Museum of Natural History 10:1-52. argentino. In: Ecología, historia natural y EISENBERG JF and KH REDFORD. 1999. Mammals conservación de la selva pedemontana de las yungas of the Neotropics, Volume 3. The Central Neotropics. australes (AD Brown, PG Blendinger, T Lomáscolo, Ecuador, Peru, Bolivia, Brazil. The University of and P García Bes, eds.). Ediciones del Subtrópico. Chicago Press, Chicago and London. JAYAT JP, PE ORTIZ, P TETA, UFJ PARDIÑAS, and FIELDING AH y J F BELL. 1997. A review of methods G D’ELÍA. 2006. Nuevas localidades para for the assessment of prediction errors in conserva- algunos roedores sigmodontinos (Rodentia: Crice- tion presence/absence models. Environmental Con- tidae). Mastozoología Neotropical 13:51-67. servation 24:38-49. KUFNER MB, G GAVIER, and D TAMBURINI. 2004. GIOVANELLI JGR, CFB HADDAD, and J Comunidades de roedores de pampas de altura en ALEXANDRINO. 2008. Predicting the potential las Sierras Grandes en Córdoba, Argentina. Ecología distribution of the alien invasive American bullfrog Aplicada 3:118-121. (Lithobates catesbeianus) in Brazil. Biological In- MC PHERSON JM, W JETZ, and DJ ROGERS. 2004. vasions 10:585-590. The effects of species’ range sizes on the accuracy GUISAN A, CH GRAHAM, J ELITH, and F of distribution models: ecological phenomenon or HUETTMANN. 2007a. Sensitivity of predictive statistical artefact? Journal of Applied Ecology species distribution models to change in grain size. 41:811-823. Diversity and Distributions 13:332-340. MARES MA, RA OJEDA, JK BRAUN, and RM GUISAN A, A LEHMANN, S FERRIER, R ASPINALL, BÁRQUEZ. 1997. Systematics, distribution, and R OVERTON, M AUSTIN, and T HASTIE. 2006. ecology of the mammals of Catamarca Province, Making better biogeographic predictions of species Argentina. Pp. 89-141, in: Life among the Muses: distribution. Journal of Applied Ecology 43:386-392. Papers in Honor of James S. Findley (TL Yates, WL GUISAN A and W THUILLER. 2005. Predicting spe- Gannon, and E Wilson, eds.). The Museum of South- cies distribution: offering more than simple habitat western Biology, The University of New Mexico, models. Ecology Letters 8:993-1009. Albuquerque. GUISAN A, NE ZIMMERMANN, J ELITH, CH MUSSER GG and MD CARLETON. 2005. Superfamily GRAHAM, S PHILLIPS, and AT PETERSON. Muroidea. Pp. 894-1531, in: Mammal Species of 2007b. What matters for predicting the occurrences the World. A taxonomic and geographic reference of trees: techniques, data, or species’ characteristics? (DE Wilson and DM Reeder, eds.). The Johns Ecological Monographs 77:615-630. Hopkins University Press, Baltimore, 3rd edition. DISTRIBUTION OF Andinomys edax IN ARGENTINA 329

OLDS N and S ANDERSON. 1989. A diagnosis of the POLOP JJ. 1989. Distribution and ecological observa- tribe Phyllotini (Rodentia, Muridae). Pp. 55-74, in: tion of wild rodents in Pampa de Achala, Córdoba, Advances in Neotropical Mammalogy (KH Redford Argentina. Studies on Neotropical Fauna and Envi- and JF Eisenberg, eds.). Sandhill Crane Press, ronment 24:53-59. Gainesville, Florida. POLOP JJ. 1991. Distribución de cricétidos en las sie- ORTEGA-HUERTA MA and A TOWNSEND rras de Achala (Provincia de Córdoba, República PETERSON. 2008. Modeling ecological niches and Argentina). Revista de la Universidad Nacional de predicting geographic distributions: a test of six Río Cuarto 11:115-121. presence-only methods. Revista Mexicana de PORCASI X, GE CALDERÓN, M LAMFRI, M Biodiversidad 79:205-216. SCAVUZZO, MS SABATTINI, and JJ POLOP. ORTIZ PE. 2001. Roedores del Pleistoceno superior del 2005. Predictive distribution maps of rodent reser- valle de Tafí (Provincia de Tucumán), implicancias voir species of zoonosis in southern America. paleoambientales y paleobiogeográficas. Unpublished Mastozoología Neotropical 12:199-216. Ph.D. dissertation, Facultad de Ciencias Naturales e PRIOTTO JW, M MORANDO, and L AVILA. 1996. Instituto Miguel Lillo, Universidad Nacional de Nuevas citas de roedores de los pastizales de altura Tucumán, Argentina. de la sierra de Comechingones, Córdoba, Argentina. ORTIZ PE and JP JAYAT. 2007a. Fossil record of the Facena 12:135-137. Andean Rat, Andinomys edax (Rodentia: Cricetidae), REDFORD K and J EISENBERG. 1992. Mammals of in Argentina. Mastozoología Neotropical 14:77-83. the Neotropics, Volume 2. The Southern Cone. Chile, ORTIZ PE and JP JAYAT. 2007b. Roedores Argentina, Uruguay, Paraguay. University of Chi- sigmodontinos (Mammalia: Rodentia: Cricetidae) del cago Press, Chicago. límite Pleistoceno-Holoceno en el valle de Tafí, SCOTT J, P HEGLUND, M MORRISON, J HAUFLER, provincia de Tucumán (Argentina): tafonomía y M RAPHAEL, W WALL, and F SAMSON. 2002. significación paleoambiental. Ameghiniana 44:641- Predicting species occurrence: issues of accuracy and 660. scale. Island Press, Washington DC. ORTIZ PE and UFJ PARDIÑAS. 2001. Sigmodontinos SMITH MF and JL PATTON. 1999. Phylogenetic rela- (Mammalia, Rodentia) del Pleistoceno tardío del tionships and the radiation of sigmodontine rodents Valle de Tafí (Tucumán, Argentina): taxonomía, in South America: evidence from cytochrome b. tafonomía y reconstrucción paleoambiental. Journal of Mammalian Evolution 6:89-128. Ameghiniana 38:3-26. SOBERÓN J and AT PETERSON. 2005. Interpretation ORTIZ PE, UFJ PARDIÑAS, and S STEPPAN. 2000a. of models of fundamental ecological niches and A new fossil phyllotine (Rodentia: Muridae) from species’ distributional areas. Biodiversity Informatics northwestern Argentina and the relationships of 2:1-10. Reithrodon group. Journal of Mammalogy 81:37- STEPPAN SJ. 1995. Revision of the tribe Phyllotini 51. (Rodentia: Sigmodontinae), with a phylogenetic ORTIZ PE, S CIRIGNOLI, DH PODESTA, and UFJ hypothesis for the Sigmodontinae. Fieldiana Zool- PARDIÑAS. 2000b. New records of sigmodontine ogy, new series 80:1-112. rodents (Mammalia: Muridae) from high-Andean TETA P and PE ORTIZ. 2002. Micromamíferos andinos localities of northwestern Argentina. Biogeographica holocénicos del sitio arqueológico Inca Cueva 5, 76:133-140. Jujuy, Argentina: tafonomía, zoogeografía y PARDIÑAS UFJ, G D´ELÍA, and PE ORTIZ. 2002. reconstrucción paleoambiental. Estudios Geológicos Sigmodontinos fósiles (Rodentia, Muroidea, 58:117-135. Sigmodontinae) de América del Sur: estado actual THOMAS O. 1913. On small mammals collected in Jujuy de su conocimiento y prospectiva. Mastozoología by Senor E. Budin. Annals and Magazine of Natural Neotropical 9:209-252. History 8:136-143. PARRA J, C GRAHAM, and J FREILE. 2004. Evaluat- THOMAS O. 1919. List of mammals from the high- ing alternative data sets for ecological niche models lands of Jujuy, north Argentina, collected by Sr. E. of birds in the Andes. Ecography 27:350-360. Budin. Annals and Magazine of Natural History PHILLIPS SJ, RP ANDERSON, and RE SCHAPIRE. 9:128-135. 2006. Maximum entropy modeling of species geo- THOMAS O. 1921. On a further collection of mammals graphic distributions. Ecological Modeling 190:231- from Jujuy obtained by Sr. E. Budin. Annals and 259. Magazine of Natural History 9:608-617. PHILLIPS SJ and M DUDÍK. 2008. Modeling of species YEPES J. 1935. Consideraciones sobre el género distributions with Maxent: new extensions and a “Andinomys” (Cricetinae) y descripción de una forma comprehensive evaluation. Ecography 31:161-175. nueva. Anales del Museo Argentino de Ciencias PINE RH, SD MILLER, and ML SCHAMBERGER. Naturales “Bernardino Rivadavia” 38:333-348. 1979. Contributions to the mammalogy of Chile. Mammalia 43:339-376. 330 Mastozoología Neotropical, 16(2):321-332, Mendoza, 2009 P Jayat et al. http://www.sarem.org.ar , z a d , 0 í n z 0 a D e 2 ; u z , . 4 q a 0 l r í 9 a 0 a 9 D 2 t B 1 0 ; e , . , 0 2 d t l o 2 6 6 6 a a n s 9 9 9 , a y s t 0 z 7 1 1 1 a e o 0 z e J 0 , , , 2 t a B 0 u e 0 z z z ; í a , t t t 0 q c . 2 7 i i i d y 0 r D l 2 r 2 , v v v a n 0 a a ; , u J z 2 o o o a . 2 t 9 B o e l 1 ; k k k e , 9 n a u . S , 2 h h h d l e 9 q s s s t z 6 6 n a r r r r n 1 e a 2 0 a í a e e e t o , t 2 1 e n z z B D 0 a H H H 1 i , a a 0 t 0 y ; ; ; ; e í í 1 , d a 6 4 a 0 7 5 1 9 9 6 1 n y H J D 2 D 2 2 0 6 2 1 1 0 2 a a , , ; ; ; ; 0 , 5 9 9 9 J 1 2 . 0 1 5 4 0 9 z 2 7 l 1 1 1 1 , ; a 5 2 0 1 2 9 a , 1 , , , í 5 , 4 5 2 2 8 8 2 9 z s s s t 4 2 6 D 2 1 4 1 e 1 a a a e N e e 0 5 0 u ; - - , 1 7 1 C m m m z L L L L 7 z q 9 i O O r o o o t a 0 J J J 9 A í r a M M M M h h h E E 0 9 P P P J J J M P P D B T T T C C C C 2 O 1 0 0 1 1 2 1 8 3 8 7 0 0 3 5 6 0 0 4 9 2 9 0 3 0 1 0 0 6 7 3 . 0 0 8 0 7 7 2 7 3 4 5 6 0 2 5 g 0 5 0 6 2 1 8 4 4 3 4 4 6 1 2 n 9 2 7 3 1 8 8 8 2 6 7 7 2 6 8 ...... o 4 6 5 5 6 5 5 5 6 5 5 6 5 5 5 Ls 6 68 6 62 6 66 60 60 62 60 68 6b 67 68 68 0 1 8 5 8 1 0 6 5 0 0 3 7 8 0 0 9 5 5 5 4 0 2 8 0 0 3 2 0 1 . 6 7 9 5 9 5 0 5 8 0 6 3 2 2 4 t 6 5 5 3 4 5 0 5 1 0 1 8 2 0 7 a 6 9 6 1 6 6 9 7 0 2 7 3 3 6 1 ...... LW 3 2 6 8 6 8 4 6 7 3 2 7 6 3 5 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° a a a a n n n n c c c c c á á á á r r r r y y y a a a a a n t t i m m m m u u u u u l l j j j j j m m m m v u u u u a a u u u u u a a a a c c c c o S° S° t t t t J° J° J° J° J° r u u u u a a a a PS T° T° T° T° C° C° C° C° APPENDIX in Argentina. Asterisks indicate the localities representing new records for species. , o s 0 r r a 3 e ñ . m a C p 0 C 0 p ; 0 a 0 e m 0 6 , d 3 s 2 0 a , a , 0 r ñ o o 5 r a b d z r 4 m C a e A n , d a ; 0 o C e i l n l Andinomys edax 0 d d m a C o a 6 n 0 r a i t C 2 0 0 V o r b t 0 , 3 b l O d a 0 á 7 2 e s d n r A 8 1 = a d a , a a ( 6 e ¸ a , o i C a 2 s r r t m d m i i a a h 0 0 , m o l n R a c n 3 r 6 3 L 0 i 0 a i r o 0 9 3 e a c 0 0 M e y 0 o 2 á d M o t 7 4 a y 0 m r l r C , n 1 2 a s a 3 a d w a 7 A r e , , e = c r a t h w 0 e c s ( e n u o u g h E a 3 v G n v r i , i P o g ñ S e a r m h i o e y b a s n c t l h E , a a i l e e 0 o C m s 8 c a r , h 0 w , n k r t o 9 m a e Pe 8 h V y o a c f k h d f 5 a 4 g s , 4 l i c o - m n i 1 h e i a 2 5 h 0 k o A c r , p e b V ) 6 , i 0 s , f n b c a a 1 i s = ) o 0 a a m m o l n c u j ( A , o c 4 h u a e a g s m u s 0 1 c h L , u r u u e = a i 0 m 8 l E l t ( o 0 , a C h f i B H 7 n l a d 0 a 0 n s f 1 n m m s a u g n 8 0 a S W o o i r a J a m , k 4 C j c 6 A ñ l a b t u o i , s a , 2 t , p m m a f s L e u i o o a o H s á , e l t k k o C d l c m a d L Q a o o a w n a t e E d 0 5 c n o n C i g i o u S a l W d P 1 1 n l c o l b p p o m r a i o a . . m N a a r a t r r a a k m r r d p p k M r r s s m r f k b b n p l p n a e a a a a l m 5 1 k 4 E A Ay A A Ay Aa B C C C C C O 3 1 * * º 3 * 5 2 0 1 4 3) 8m 5a 7m 9m 6) 2o 4 1m 1m 1 1o 1m Ns 17 1e List of the presence localities and data sources for DISTRIBUTION OF Andinomys edax IN ARGENTINA 331 d n ; a ; 5 4 y 3 9 b 9 l d 9 1 a n 1 , a D , s o z ; e s a ; 6 p 0 í s e 5 6 0 o D 3 5 9 2 Y B ; 9 7 9 , ; 9 1 1 1 z d 8 9 , e , n 0 0 4 . s 9 N u a l 0 0 e 1 e 1 . q a C 2 2 c p r n 9 6 , r t , , 0 e 0 0 a e A z . . 9 2 e 9 u 0 l l 0 0 n 0 a B 1 Y , 9 í o a a 2 M 2 2 o 0 h 7 , 7 ; 9 S d t t , c n 2 , , ; D 9 o . 4 1 . . 1 i e e n n l 9 l l , s 9 ; e 1 2 , a a s t t . s a a o 8 1 2 9 z l a a a H 6 o t 6 l t t z 6 , e 1 ñ y y . e 2 e e ; p a , 9 B i u l , í a a a 4 , t 8 t t 1 a d 7 q J J 3 d a r 5 5 a a r D 8 C , 0 t 1 ; ; a n y a 5 8 4 y y 6 z ; e 0 ; . . 9 1 3 a t a a a P 7 , 9 B i 2 5 9 3 1 J 7 2 J J h 9 0 0 9 n v 0 , 1 3 d 2 1 , ; c ; ; d 1 2 2 7 e 9 z o 5 s n 7 n 8 4 n , 6 e n 1 a k 3 a N N e e e e 3 a o 1 5 s u o - - - - , h l 4 e 7 2 C C m l z L s z z q n r i O O O O O r i r o p t a a J J a A A í í e e r a a M M h E E E E E P P J J M M M P P P D P P D B T H H C C C O 0 4 1 1 3 3 6 5 3 1 1 0 0 1 0 0 0 7 9 3 3 6 2 8 9 4 0 0 2 0 . 0 9 2 2 2 3 6 6 0 2 5 0 0 0 6 g 0 0 0 8 3 8 1 6 1 4 5 5 5 1 1 n 3 8 7 6 3 8 4 1 7 1 7 8 0 6 3 ...... o 5 5 5 5 5 4 6 6 4 6 5 4 6 5 5 Ls 6 68 61 61 6 64 68 61 68 68 6 6 67 68 67 0 4 1 8 5 6 6 5 4 3 5 6 0 1 0 0 3 4 0 0 6 6 7 5 4 7 6 0 9 0 . 3 3 0 7 7 6 6 3 8 0 3 6 0 5 4 t 8 9 4 3 8 6 1 1 0 9 4 6 0 0 9 a 5 8 9 9 6 5 4 7 3 5 7 5 1 3 7 ...... LW 3 6 6 6 6 3 7 4 2 7 6 3 2 6 6 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° a a n n n n n n n c c c á á á á á á á r r y y y a a a n t t i m m m m m m m u u u u l l j j j j m m v u u u u u u u a a u u u u a a c c c c c c c o S° S° t t J° J° J° J° r u u u u u u u a a PS T° T° T° T° T° T° T° C° C° ; , o 0 l a 0 l , n i ; 5 z , c u m 4 u i á m g k r a f r e 5 , a 5 a a , 0 d L 3 a C 0 r a L 0 T 8 l ; m a a 7 h i 5 3 e á ; t a c c 1 a r 4 l u , n i m L i a m , , a g a 4 M i ; o T á 0 6 S m 0 t r , m i i 0 m 0 e M a a a y c 8 t A 0 d m i a e 0 2 n m l 2 o M i n o l a 0 a r , w t , a r u a f ) 5 S h r E o s g 4 y j e g V M h g a i i a e t , , i n W h o S a L a a i E w t a t r p V ; i d , h n o n a m c d í r e n a g e o e c m i t f k r a i n l u i h t i Z a e s a o h t i 0 o n t 0 ) 5 l r a T r T C e s 0 r l u 0 1 n a r l m d n 5 o ; e g i E e 5 c o , u f 6 o 4 a d s ü d 2 e o 0 a ; s m , l l ( 8 , , r g L , l 0 a a a ) r s 1 m e s 0 r e e o r o 0 a e L e o r a , r s n c s 0 i r 2 t 0 d , e d e e e u i M o 5 a n S i l t i i , 0 á l o c e 4 l r a o o S ; n S 0 l o m i C s r h ) i a , y á r , c 3 T r p e a c á a r e = s T e a r r , r f m ( s ` u m o W = a H a o a C u Pe z C o P ( a l c 0 ) H c e l l C m L d m o l i m i = a S 0 u i ñ r e t m ( n = k r 5 o a 0 á a , T S T r ( d n t r e 4 0 b a 7 0 = e 9 e , ) t I u M i ( 0 4 o d 0 C i t 2 o f 0 a d m Z , r j 2 a s p 5 n a a , n 0 n y a a e = t o o , I e 0 4 u t o 0 i n 9 u ( a m r e r i n g r d 5 g , 0 ó 1 g a e n e = V n w n a r a 6 o i n a 5 ( , a m y t , u C s h í Z u v , L r o 2 a A L k b n f z g o r , g a o r e ( , , e H i e a l l o a a e J a o a u r l 3 l i y m d l h t l ñ i Z T L L a ) l r L o a L , s m n S e l i u n f a e n l a h e e a ; r o f k e e d , n r i o á M c i d d e r g o d d H M S a n m i m m 5 a n p e 3 n n m f z o t i a a o i s n o o o o o . l s 3 r r u a u c n 0 i 0 r r r r r P A S r r r p a r E I e c r r r r r g a 0 0 ) e e ; r u p u o e e e u e e a l l a a u i i m 5 3 3 k L E E L L 4 m D Dy Aa T H H C C C C C C S S 3 8 * º 8 7 9 6 1 3 5 8 7 0 6 2 4 0 9 1 1) 1 1 2m 2s 2 2m 2m 3m 21 2m 2 2m Ns 2E 332 Mastozoología Neotropical, 16(2):321-332, Mendoza, 2009 P Jayat et al. http://www.sarem.org.ar , s ; , e 0 , 9 z s p 0 9 e e e 2 9 u p 7 , 1 Y q e ; r z 0 , 3 a e Y 0 z 1 u a 2 B ; í 9 q , 2 r d 1 D 9 7 z 7 a . n , e 9 0 0 0 ; a s 0 B u 1 0 0 0 5 a 3 q 2 2 2 , 9 z d . r , a m 9 , , , l n (Appendix cont.) a í 3 z z z a o 1 a 5 B e e e D h t 0 , z 2 u u u e ; 0 n . T e d a q q q a í 9 2 c 9 n s ; r r r p r 9 , a 2 e a a a 3 D . - r 7 p 9 u l 7 ; B B B z a 0 e 0 1 o a 3 t a 9 5 0 í , S d d d t , S M 9 9 2 2 z e n n n . 2 D 9 9 ; ; a , a a a t 9 7 í 1 1 2 2 ; z a 2 3 z z z 6 6 6 9 , , 0 e D y . , a a a , z 9 9 9 9 0 u l ; í í í a 8 a 9 1 1 1 9 a 0 q J í 5 7 r D D D 7 1 , , , 2 t ; 9 a 1 D 2 z z z ; ; ; e , , . 2 9 t t t . , ; 9 9 9 B z i i i 3 l 8 1 h a 1 0 9 9 9 v v v a 3 1 í , c d 9 1 8 9 9 9 o o o t n n n D 1 3 1 1 1 k k k e N a e e a o ; - - , , , h h h l p C l z L L s s s 7 z z z z 5 5 i p O O r r r p t a a a a 0 3 3 A e í í í í e e e r M a M E E t 0 9 9 M P P D D D D H H H C C C 2 O S 1 1 0 8 0 0 0 0 0 0 0 3 6 0 5 0 0 0 0 0 0 0 3 7 . 6 9 3 3 0 6 0 3 0 8 2 g 6 4 3 8 5 6 0 8 0 1 4 n 4 5 3 3 4 0 2 5 0 7 8 ...... o 5 5 5 5 5 6 6 5 6 5 5 Ls 6 62 6 67 68 67 67 67 67 68 6b 0 8 0 0 0 0 0 3 0 4 0 0 0 0 0 0 0 0 3 0 9 8 . 6 2 3 6 0 6 6 3 0 1 6 t 1 1 8 1 0 1 1 3 5 6 9 a 6 5 7 1 7 4 9 3 5 8 1 ...... LW 3 6 6 2 2 2 2 7 3 6 5 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° a n n n n c c á á á á r y y y y y y a n t i m m m m u u u u u u u u l j j j j j j j j m v u u u u a u u u u u u u u a c c c c o S° t J° J° J° J J° J J° J° r u u u u a PS T T° T° T° C° 8 2 3 2 ) , f á o r a t s m e i a w M 0 n i 0 ; d a 6 0 e t 8 m t 3 n 2 a , u 0 c 4 k o 3 o r , e l 2 a z m c e 2 u i n P y a i l r t , l l i e á l C a C a r s l a i o l n a Y t o n c c a i í o ; ó e i o m c t l V i R a r m e l a m a l l p i e l a n 0 e N c a t T M o 0 d Y n o s ; , V 0 í o f e e n t f S 4 s o m n o a e , í s d o s r T 0 e m a R d i e W 0 Pe k r t o m c i r 2 a = l W = u 3 ( 2 0 ( r a C S n 1 , 0 c ) o C a s , á m 4 o l r , m e o m s 2 a a 0 L 0 k n e L N , i 0 m 0 r 0 Y m a , 2 0 5 5 i r T f M 0 o m , 5 a 2 1 a o í 0 d k r 2 c = , f , a l 0 a ( M s a , t i o 6 3 c t W o á n s T i T , = ú r , p a e ( c s a i z a a e c c e = j n e d l á i d ( i i n u V A m l a r r i a u v , a E t a n a n e a q a C r o n o ó d J V e y n m a j c c l u s M i r u o l c v n n n n o e j o a l ; o c a a i í a r i a a u Z J My M Ñ A m P Va R R T T Yy S * º 1 1 3 5 8 7 9 6 2 4 0 3 4e 3m 3) 3) 3) 3m 3r 3l 3m Ns 4i