Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 12, 6081–6114, 2015 www.biogeosciences-discuss.net/12/6081/2015/ doi:10.5194/bgd-12-6081-2015 BGD © Author(s) 2015. CC Attribution 3.0 License. 12, 6081–6114, 2015 This discussion paper is/has been under review for the journal Biogeosciences (BG). Dam tailwaters Please refer to the corresponding final paper in BG if available. compound the effects of reservoirs Dam tailwaters compound the effects of A. J. Ulseth and reservoirs on the longitudinal transport of R. O. Hall Jr. organic carbon in an arid river Title Page 1,2,* 2 A. J. Ulseth and R. O. Hall Jr. Abstract Introduction 1Program in Ecology, University of Wyoming, Laramie, Wyoming, USA Conclusions References 2Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA Tables Figures *now at: École Polytechniqe Fédérale de Lausanne, Lausanne, Switzerland Received: 3 April 2015 – Accepted: 7 April 2015 – Published: 24 April 2015 J I Correspondence to: A. J. Ulseth (
[email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 6081 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD Reservoirs on rivers can disrupt organic carbon (OC) transport and transformation, but less is known how downstream river reaches directly below dams contribute to OC pro- 12, 6081–6114, 2015 cessing than reservoirs alone. We compared how reservoirs and their associated tail- 5 waters affected OC quantity and quality by calculating particulate (P) OC and dissolved Dam tailwaters (D) OC fluxes, and measuring composition and bioavailability of DOC.