Planar K-Path in Subexponential Time and Polynomial Space

Total Page:16

File Type:pdf, Size:1020Kb

Planar K-Path in Subexponential Time and Polynomial Space Planar k-Path in Subexponential Time and Polynomial Space Daniel Lokshtanov1, Matthias Mnich2, and Saket Saurabh3 1 University of California, San Diego, USA, [email protected] 2 International Computer Science Institute, Berkeley, USA, [email protected] 3 The Institute of Mathematical Sciences, Chennai, India, [email protected] Abstract. In the k-Path problem we are given an n-vertex graph G to- gether with an integer k and asked whether G contains a path of length k as a subgraph. We give the first subexponential time, polynomial space parameterized algorithm for k-Path on planar graphs, and more gen- erally, on H-minor-free graphs. The running time of our algorithm is p 2 O(2O( k log k)nO(1)). 1 Introduction In the k-Path problem we are given a n-vertex graph G and integer k and asked whether G contains a path of length k as a subgraph. The problem is a gen- eralization of the classical Hamiltonian Path problem, which is known to be NP-complete [16] even when restricted to planar graphs [15]. On the other hand k-Path is known to admit a subexponential time parameterized algorithm when the input is restricted to planar, or more generally H-minor free graphs [4]. For the case of k-Path a subexponential time parameterized algorithm means an algorithm with running time 2o(k)nO(1). More generally, in parameterized com- plexity problem instances come equipped with a parameter k and a problem is said to be fixed parameter tractable (FPT) if there is an algorithm for the problem that runs in time f(k)nO(1). The algorithm is said to be a subexponential time parameterized algorithm if f(k) ≤ 2o(k). For an introduction to parameterized algorithms and complexity see the textbooks [10, 11, 22]. In this paper we pose the following question. Does k-Path on planar graphs admit a subexponential time parameterized algorithm which only uses space polynomial in n? Wep give a positive answer to this question by presenting a poly- 2 nomial space, 2O( k log k)nO(1) time algorithm for k-Path restricted to planar graphs. Our algorithm easily generalizes to any family of graphs which exclude a fixed graph H as a minor. pThe fastest parameterized algorithmp for k-Path on planar graphs runs in 2O( k)nO(1) time and uses 2O( k) log n + nO(1) space [9]. The algorithm we present uses polynomial space, but is slower by a factor of O(log2 k) in the exponent of 2. Is the trade-off worth it? In general, does it make sense to settle for slightly slower algorithms if used space is reduced drastically? We believe that such a trade-off is reasonable because algorithms that use exponential time and space tend to run out of space long before they run out of time. In the survey paper on exponential time algorithms, Woeginger [24] states that \algorithms with exponential space complexities are absolutely useless for real life applica- tions". This line of reasoning has opened up an interesting research direction; for which problems can we obtain space-efficient algorithms that are (almost) as time-efficient as the fastest ones? Some progress has been made { Fomin, Grandoni and Kratsch [12] gave a 6knO(log k) time, polynomial space algorithm for the Steiner Tree problem and showed how to use it to obtain a O(1:60n) time polynomial space algorithm. In a breakthrough paper, Nederlof [21] gave a 2knO(1) time polynomial space algorithm for Steiner Tree. Subsequently, Lokshtanov and Nederlof [20] devised general sufficient conditions for turning exponential space dynamic programming algorithms into polynomial space al- gorithms based on algebraic transforms. It is natural to ask which problems admit polynomial space FPT algorithms. While this might look like a whole new research program, the question has a surprising answer; any problem for which a polynomial space FPT algorithm is remotely feasible has one. In particular, a necessary condition for a problem to have a polynomial space FPT algorithm is to have an FPT algorithm. Another necessary condition is that the problem is solvable in polynomial space and time ng(k) for some function g (that is, a polynomial space XP algorithm for the problem). A well-known trick from parameterized complexity shows that these two conditions are not only necessary, but also sufficient. Theorem 1. If a parameterized problem Π has an algorithm A which uses f(k)nc time and space, and an algorithm B which uses ng(k) time and poly- nomial space, then Π can be solved in nc+1 + f(k)g(k) time and polynomial space. Proof. If n ≥ f(k) then run algorithm A, this takes polynomial time and space. If n ≤ f(k) then run algorithm B, this takes polynomial space and f(k)g(k) time. ut Because of Theorem 1 the right question to ask is not which problems ad- mit polynomial space FPT algorithms, but rather which problems admit fast polynomial space FPT algorithms. Obvious candidates for scrutiny are prob- lems for which the fastest parameterized algorithms require exponential space. Graph problems restricted to planar and H-minor free graphs havep this prop- erty { the Bidimensionality theory of Demaine et al. [4] gives 2O( k)nO(1) or p 2O( k log k)nO(1) time algorithms for a multitude of graph problems on H-minor free graphs. However, these algorithms crucially depend on exponential space dynamic programming algorithms on graphs of bounded treewidth. In partic- ular, the crux of all bidimiensionality basedp algorithms is to first bound the treewidth of the input graph by t = O( k), and then solve the problems in 2O(t)n (or tO(t)n) time and 2O(t) log n (or tO(t) log n) space. We refer to follow- ing surveys for further details on the the Bidimensionality theory and its several applications [5, 8]. 2 Interestingly, using another simple trick we can make most of the algorithms for bidimensional problems on H-minor free graphs run in polynomial space, at the cost of a O(log k) factor in the exponent of the running time. The trick has two components, the first is that (almost) all of the 2O(t)n time and 2O(t log t)n time dynamic programming algorithms on graphs of treewidth t can be turned into polynomial space divide and conquer algorithms with running time nO(t) and nO(t log t). The second component is that most problems for which the Bidi- mensionality theory of Demaine et al. [4] gives fast algorithms admit linear kernels on planar and H-minor-free graphs [3, 14]. A linear kernel for a parame- terized graph problem is a polynomial time pre-processing algorithm that takes instances (G; k) and transforms them into equivalent instances (G0; k0) of the same problem such that k0 = O(k) and V (G0) = O(k). Now the subexponential time algorithms of Demaine et al. [4] can be made to run in polynomial space as follows. Run the pre-processing algorithm first, to ensure that the numberp of ver- tices in the input graph is at most O(k). Bound the treewidth by t = O( k) as before, but replace the 2O(t)n (or tO(t)n) time algorithms by nO(t) (or nO(t log t)) time polynomial space algorithms. Since n = O(k) this second step uses only p p 2 2O( k log k) (or 2O( k log k)) time respectively. We remark that for many of these problems one can even remove the log k overhead in the exponent by using a Lipton-Tarjan separator approach [18, 19] instead of the polynomial space algo- rithms for graphs of bounded treewidth after obtaining the linear kernel for the problem, as done in [1]. In the above argument it was crucial that the problem considered admits a linear kernel. What about the problems that do not? Notably, the k-Path prob- lem does have a subexponential time parameterized algorithm on H-minor-free graphs. At the same time k-Path does not admit a linear (or polynomial size) kernel unless the polynomial hierarchy collapses to the third level [2], even when the input is restricted to planar graphs. Thus, with respect to parameterized polynomial space, subexponential time algorithms for planar graph problems, k-Path standsp out as a blank spot in an almost chartered map. Our polynomial 2 space, 2O( k log k)nO(1) time algorithm for k-Path on H-minor free graphs fills this gap. Our approach for obtaining polynomial space subexponential time al- gorithm for k-Path seems applicable to other problems also that do not admit polynomial kernels or not known to admit a polynomial kernel. 2 Definitions and Notations In this section we give various definitions which we make use of in the pa- per. Let G be a graph then we use V (G) and E(G) to denote its vertex set and the edge set respectively. A graph G0 is a subgraph of G if V (G0) ⊆ V (G) and E(G0) ⊆ E(G). The subgraph G0 is called an induced subgraph of G if E(G0) = fuv 2 E(G) j u; v 2 V (G0)g, in this case, G0 is also called the subgraph induced by V 0 and denoted with G[V 0]. By N(u) we denote the (open) neighborhood of u, that is, the set of all vertices adjacent to u. The closed neighbourhood of u is 3 S N[u] = N(u) [ fug.
Recommended publications
  • Steiner Tree
    Approximation Algorithms Lecture 2 10/19/10 1 (Metric) Steiner Tree Problem: Steiner Tree. Given an undirected graph G=(V,E) with non-negative edge + costs c : E Q whose vertex set is partitioned into required and →Steiner vertices, find a minimum cost tree in G that contains all required vertices. In the metric Steiner Tree Problem, G is the complete graph and edge costs satisfy the triangle inequality, i.e. c(u, w) c(u, v)+c(v, w) ≤ for all u, v, w V . ∈ 2 (Metric) Steiner Tree Steiner required 3 (Metric) Steiner Tree Steiner required 4 Metric Steiner Tree Let Π 1 , Π 2 be minimization problems. An approximation factor preserving reduction from Π 1 to Π 2 consists of two poly-time computable functions f,g , such that • for any instance I 1 of Π 1 , I 2 = f ( I 1 ) is an instance of Π2 such that opt ( I ) opt ( I ) , and Π2 2 ≤ Π1 1 • for any solution t of I 2 , s = g ( I 1 ,t ) is a solution of I 1 such that obj (I ,s) obj (I ,t). Π1 1 ≤ Π2 2 Proposition 1 There is an approximation factor preserving reduction from the Steiner Tree Problem to the metric Steiner Tree Problem. 5 Metric Steiner Tree Algorithm 3: Metric Steiner Tree via MST. Given a complete graph G=(V,E) with metric edge costs, let R be its set of required vertices. Output a spanning tree of minimum cost (MST) on vertices R. Theorem 2 Algorithm 3 is a factor 2 approximation algorithm for the metric Steiner Tree Problem.
    [Show full text]
  • Exact Algorithms for the Steiner Tree Problem
    Exact Algorithms for the Steiner Tree Problem Xinhui Wang The research presented in this dissertation was funded by the Netherlands Organization for Scientific Research (NWO) grant 500.30.204 (exact algo- rithms) and carried out at the group of Discrete Mathematics and Mathe- matical Programming (DMMP), Department of Applied Mathematics, Fac- ulty of Electrical Engineering, Mathematics and Computer Science of the University of Twente, the Netherlands. Netherlands Organization for Scientific Research NWO Grant 500.30.204 Exact algorithms. UT/EWI/TW/DMMP Enschede, the Netherlands. UT/CTIT Enschede, the Netherlands. The financial support from University of Twente for this research work is gratefully acknowledged. The printing of this thesis is also partly supported by CTIT, University of Twente. The thesis was typeset in LATEX by the author and printed by W¨ohrmann Printing Service, Zutphen. Copyright c Xinhui Wang, Enschede, 2008. ISBN 978-90-365-2660-9 ISSN 1381-3617 (CTIT Ph.D. thesis Series No. 08-116) All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permis- sion from the copyright owner. EXACT ALGORITHMS FOR THE STEINER TREE PROBLEM DISSERTATION to obtain the degree of doctor at the University of Twente, on the authority of the rector magnificus, prof. dr. W. H. M. Zijm, on account of the decision of the graduation committee, to be publicly defended on Wednesday 25th of June 2008 at 15.00 hrs by Xinhui Wang born on 11th of February 1978 in Henan, China.
    [Show full text]
  • On the Approximability of the Steiner Tree Problem
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Theoretical Computer Science 295 (2003) 387–402 www.elsevier.com/locate/tcs On the approximability of the Steiner tree problem Martin Thimm1 Institut fur Informatik, Lehrstuhl fur Algorithmen und Komplexitat, Humboldt Universitat zu Berlin, D-10099 Berlin, Germany Received 24 August 2001; received in revised form 8 February 2002; accepted 8 March 2002 Abstract We show that it is not possible to approximate the minimum Steiner tree problem within 1+ 1 unless RP = NP. The currently best known lower bound is 1 + 1 . The reduction is 162 400 from Hastad’s6 nonapproximability result for maximum satisÿability of linear equation modulo 2. The improvement on the nonapproximability ratio is mainly based on the fact that our reduction does not use variable gadgets. This idea was introduced by Papadimitriou and Vempala. c 2002 Elsevier Science B.V. All rights reserved. Keywords: Minimum Steiner tree; Approximability; Gadget reduction; Lower bounds 1. Introduction Suppose that we are given a graph G =(V; E), a metric given by edge weights c : E → R, and a set of required vertices T ⊂ V , the terminals. The minimum Steiner tree problem consists of ÿnding a subtree of G of minimum weight that spans all vertices in T. The Steiner tree problem in graphs has obvious applications in the design of var- ious communications, distributions and transportation systems. For example, the wire routing phase in physical VLSI-design can be formulated as a Steiner tree problem [12]. Another type of problem that can be solved with the help of Steiner trees is the computation of phylogenetic trees in biology.
    [Show full text]
  • The Minimum Degree Group Steiner Problem
    The minimum Degree Group Steiner Problem Guy Kortsarz∗ Zeev Nutovy January 29, 2021 Abstract The DB-GST problem is given an undirected graph G(V; E), and a collection of q groups fgigi=1; gi ⊆ V , find a tree that contains at least one vertex from every group gi, so that the maximal degree is minimal. This problem was motivated by On-Line algorithms [8], and has applications in VLSI design and fast Broadcasting. In the WDB-GST problem, every vertex v has individual degree bound dv, and every e 2 E has a cost c(e) > 0. The goal is,, to find a tree that contains at least one terminal from every group, so that for every v, degT (v) ≤ dv, and among such trees, find the one with minimum cost. We give an (O(log2 n);O(log2 n)) bicriteria approximation ratio the WDB-GST problem on trees inputs. This implies an O(log2 n) approximation for DB-GST on tree inputs. The previously best known ratio for the WDB-GST problem on trees was a bicriteria (O(log2 n);O(log3 n)) (the approximation for the degrees is O(log3 n)) ratio which is folklore. Getting O(log2 n) approximation requires careful case analysis and was not known. Our result for WDB-GST generalizes the classic result of [6] that approximated the cost within O(log2 n), but did not approximate the degree. Our main result is an O(log3 n) approximation for the DB-GST problem on graphs with Bounded Treewidth. The DB-Steiner k-tree problem is given an undirected graph G(V; E), a collection of terminals S ⊆ V , and a number k, find a tree T (V 0;E0) that contains at least k terminals, of minimum maximum degree.
    [Show full text]
  • Hypergraphic LP Relaxations for Steiner Trees
    Hypergraphic LP Relaxations for Steiner Trees Deeparnab Chakrabarty Jochen K¨onemann David Pritchard University of Waterloo ∗ Abstract We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the par- tition LP relaxation introduced by K¨onemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. First, we show uncrossing techniques apply to the LP. This implies structural properties, e.g. for any basic feasible solution, the number of positive vari- ables is at most the number of terminals. Second, we show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is qua- sibipartite. Third, we give integrality gap upper bounds: an online algorithm gives an upper . bound of √3 = 1.729; and in uniformly quasibipartite instances, a greedy algorithm gives an . improved upper bound of 73/60 =1.216. 1 Introduction In the Steiner tree problem, we are given an undirected graph G = (V, E), non-negative costs ce for all edges e E, and a set of terminal vertices R V . The goal is to find a minimum-cost tree ∈ ⊆ T spanning R, and possibly some Steiner vertices from V R. We can assume that the graph is \ complete and that the costs induce a metric. The problem takes a central place in the theory of combinatorial optimization and has numerous practical applications. Since the Steiner tree problem is NP-hard1 we are interested in approximation algorithms for it.
    [Show full text]
  • RNC-Approximation Algorithms for the Steiner Problem
    RNCApproximation Algorithms for the Steiner Problem Hans Jurgen Promel Institut fur Informatik Humb oldt Universitat zu Berlin Berlin Germany proemelinformatikhuberlinde Angelika Steger Institut fur Informatik TU Munc hen Munc hen Germany stegerinformatiktumuenchende Abstract In this pap er we present an RN C algorithm for nding a min imum spanning tree in a weighted uniform hyp ergraph assuming the edge weights are given in unary and a fully p olynomial time randomized approxima tion scheme if the edge weights are given in binary From this result we then derive RN C approximation algorithms for the Steiner problem in networks with approximation ratio for all Intro duction In recent years the Steiner tree problem in graphs attracted considerable attention as well from the theoretical p oint of view as from its applicabili ty eg in VLSIlayout It is rather easy to see and has b een known for a long time that a minimum Steiner tree spanning a given set of terminals in a graph or network can b e approximated in p olyno mial time up to a factor of cf eg Choukhmane or Kou Markowsky Berman After a long p erio d without any progress Zelikovsky Berman and Ramaiyer Zelikovsky and Karpinski and Zelikovsky improved the approximation factor step by step from to In this pap er we present RN C approximation algorithm for the Steiner problem with approximation ratio for all The running time of these algo rithms is p olynomial in and n Our algorithms also give rise to conceptually much easier and faster though randomized
    [Show full text]
  • The Euclidean Steiner Problem
    The Euclidean Steiner Problem Germander Soothill April 27, 2010 Abstract The Euclidean Steiner problem aims to find the tree of minimal length spanning a set of fixed points in the Euclidean plane while allowing the addition of extra (Steiner) points. The Euclidean Steiner tree problem is NP -hard which means there is currently no polytime algorithm for solving it. This report introduces the Euclidean Steiner tree problem and two classes of algorithms which are used to solve it: exact algorithms and heuristics. Contents 1 Introduction 3 1.1 Context and motivation . .3 1.2 Contents . .3 2 Graph Theory 4 2.1 Vertices and Edges . .4 2.2 Paths and Circuits . .5 2.3 Trees . .5 2.4 The Minimum Spanning Tree Problem . .6 2.4.1 Subgraphs . .6 2.4.2 Weighted Graphs . .7 2.4.3 The Minimum Spanning Tree Problem . .7 2.4.4 Two Algorithms: Prim's and Kruskal's . .7 2.4.5 Cayley's Theorem..................................9 2.5 Euclidean Graph Theory . 10 2.5.1 Euclidean Distance . 10 2.5.2 Euclidean Graphs . 10 2.5.3 The Euclidean Minimum Spanning Tree Problem . 11 2.6 Summary . 11 3 Computational Complexity 12 3.1 Computational Problems . 12 3.1.1 Meaning of Computational Problem . 12 3.1.2 Types of Computational Problem . 12 3.1.3 Algorithms...................................... 13 3.2 Complexity Theory . 13 3.2.1 Measuring Computational Time . 13 3.2.2 Comparing Algorithms . 14 3.2.3 Big O Notation . 14 3.2.4 Algorithmic Complexity . 15 3.2.5 Complexity of Prim's and Kruskal's algorithms .
    [Show full text]
  • Robust Algorithms for TSP and Steiner Tree
    Robust Algorithms for TSP and Steiner Tree Arun Ganesh Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, CA, USA [email protected] Bruce M. Maggs Department of Computer Science, Duke University, Durham, NC, USA Emerald Innovations, Cambridge, MA, USA [email protected] Debmalya Panigrahi Department of Computer Science, Duke University, Durham, NC, USA [email protected] Abstract Robust optimization is a widely studied area in operations research, where the algorithm takes as input a range of values and outputs a single solution that performs well for the entire range. Specifically, a robust algorithm aims to minimize regret, defined as the maximum difference between the solution’s cost and that of an optimal solution in hindsight once the input has been realized. For graph problems in P, such as shortest path and minimum spanning tree, robust polynomial-time algorithms that obtain a constant approximation on regret are known. In this paper, we study robust algorithms for minimizing regret in NP-hard graph optimization problems, and give constant approximations on regret for the classical traveling salesman and Steiner tree problems. 2012 ACM Subject Classification Theory of computation → Routing and network design problems Keywords and phrases Robust optimization, Steiner tree, traveling salesman problem Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.54 Category Track A: Algorithms, Complexity and Games Related Version https://arxiv.org/abs/2005.08137 Funding Arun Ganesh: Supported in part by NSF Award CCF-1535989. Bruce M. Maggs: Supported in part by NSF Award CCF-1535972. Debmalya Panigrahi: Supported in part by NSF grants CCF-1535972, CCF-1955703, an NSF CAREER Award CCF-1750140, and the Indo-US Virtual Networked Joint Center on Algorithms under Uncertainty.
    [Show full text]
  • The Steiner Tree Problem
    Steiner Tree Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 The Steiner Tree Problem Let G = (V,E) be an undirected graph, and let N µ V be a subset of the terminals. A Steiner tree is a tree T = (V’,E’) in G connecting all terminals in N V’ µ V, E’ µ E, N µ V’ We use k=|N|. Streiner tree problem: Given: an undirected graph G = (V,E), a terminal set N µ V, and an integer t. Question: is there a Steiner tree consisting of at most t edges in G. 2 My Last Lecture Steiner Tree. Interesting problem that we have not seen yet. Introduction Variants / applications NP-Completeness Polynomial time solvable special cases. Distance network. Solving Steiner tree with k-terminals in O*(2k)-time. Uses inclusion/exclusion. Algorithm invented by one of our former students. 3 Steiner Tree – Algorithms and Networks INTRODUCTION 4 Variants and Applications Applications: Wire routing of VLSI. Customer’s bill for renting communication networks. Other network design and facility location problems. Some variants: Vertices are points in the plane. Vertex weights / edge weights vs unit weights. Different variants for directed graphs. 5 Steiner Tree is NP-Complete Steiner Tree is NP-Complete. Membership of NP: certificate is a subset of the edges. NP-Hard: reduction from Vertex Cover. Take an instance of Vertex Cover, G=(V,E), integer k. Build G’=(V’,E’) by subdividing each edge. Set N = set of newly introduced vertices. All edges length 1. Add one superterminal connected to all vertices.
    [Show full text]
  • On the Edge Capacitated Steiner Tree Problem Arxiv:1607.07082V1
    On the edge capacitated Steiner tree problem C´edricBentz(1), Marie-Christine Costa(2), Alain Hertz(3) (1) CEDRIC, CNAM, 292 rue Saint-Martin, 75003 Paris, France (2) ENSTA Paris-Tech, University of Paris-Saclay (and CEDRIC CNAM), 91762 Palaiseau Cedex, France (3) GERAD and D´epartement de math´ematiqueset g´enieindustriel, Polytechnique Montr´eal,Canada July 26, 2016 Abstract Given a graph G = (V; E) with a root r 2 V , positive capacities fc(e)je 2 Eg, and non-negative lengths f`(e)je 2 Eg, the minimum-length (rooted) edge capacitated Steiner tree problem is to find a tree in G of minimum total length, rooted at r, spanning a given subset T ⊂ V of vertices, and such that, for each e 2 E, there are at most c(e) paths, linking r to vertices in T , that contain e. We study the complexity and approximability of the problem, considering several relevant parameters such as the number of terminals, the edge lengths and the minimum and maximum edge capacities. For all but one combinations of assumptions regarding these parameters, we settle the question, giving a complete characterization that separates tractable cases from hard ones. The only remaining open case is proved to be equivalent to a long-standing open problem. We also prove close relations between our problem and classical Steiner tree as well as vertex-disjoint paths problems. 1 Introduction The graphs in this paper can be directed or undirected. Consider a connected graph G = (V; E) with a set T ⊂ V of terminal vertices, or simply terminals, and a length (or cost) function ` : E ! Q+.
    [Show full text]
  • Exact Algorithms for Steiner Tree
    Exact Algorithms for Steiner Tree Ondra Such´y Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic. [email protected] New Developments in Exact Algorithms and Lower Bounds, IIT Delhi, 13th December 2014 Ondra Such´y (FIT CTU Prague) Exact Algorithms for Steiner Tree IIT Delhi, 13.12.2014 1 / 41 Outline 1 Problem introduction and classical results 2 Exact algorithms for the general undirected case 3 Directed variants and algorithms for them 4 Algorithms for Steiner problems in sparse graphs Ondra Such´y (FIT CTU Prague) Exact Algorithms for Steiner Tree IIT Delhi, 13.12.2014 2 / 41 Steiner Tree T Steiner Tree Given: Undirected graph G = (V ; E) and a set T V ⊆ Find: A minimun size tree H = (V 0; E 0) subgraph of G such that T V 0. ⊆ Ondra Such´y (FIT CTU Prague) Exact Algorithms for Steiner Tree IIT Delhi, 13.12.2014 3 / 41 Steiner Tree T Steiner Tree Given: Undirected graph G = (V ; E) and a set T V ⊆ Find: A minimun size tree H = (V 0; E 0) subgraph of G such that T V 0. ⊆ Ondra Such´y (FIT CTU Prague) Exact Algorithms for Steiner Tree IIT Delhi, 13.12.2014 3 / 41 A minimum size: Vertex cardinality: V 0 or rather S := V 0 T (default) Edge cardinality: Ej0 =j V 0 1,j thisj isj equaln toj the above j j j j − Node weighted: Given w : V N minimize w(S) ! 0 Edge weighted: Given w : E N minimize w(E ) ! Steiner Tree (default decision variant) Given: Undirected graph G = (V ; E), a set T V , and k N ⊆ 2 Question: Is there a tree H = (V 0; E 0), subgraph of G, such that T V 0 and V 0 T k.
    [Show full text]
  • The Minimum Degree Group Steiner Tree Problem on Bounded Treewidth Graphs and Applications
    The Minimum Degree Group Steiner Tree problem on Bounded Treewidth Graphs and Applications Rajiv Gandhi1, Guy Kortsarz1, Bundit Laekhanukit2[0000−0002−4476−8914], and Haress Pareh3 1 Rutgers University-Camden, Camden NJ 08102, USA rajiv,[email protected] 2 Shanghai University of Finance and Economics, Shanghai 200433, China [email protected] 3 Rutgers University-New Brunswick, New Brunswick NJ 08901, USA [email protected] Abstract. This paper studies two network design problems whose goals are to find a tree that minimizes the maximum degree. First is the Mini- mum Degree Group Steiner Tree problem (MD-GST), where we are given an n-vertex undirected graph G(V; E), and a collection of p subsets of vertices called groups fgigi2[p], and the goal is find a tree that contains at least one vertex from every group gi while minimizing the maximum degree. Second is the Minimum Degree k-Steiner Tree problem (MDkT), where we are given an n-vertex undirected graph G(V; E), a set of p ter- minals and a number k < p, and the goal is to find a tree that spans at least k terminals while minimizing the maximum degree. We study these two problems when an input graph has bounded treewidth. We present an O(log4 n= log log n) approximation algorithm for MD- GST on bounded treewidth graphs and showed that the latter prob- lem, MDkT, can be reduced to MD-GST via a blackbox reduction that loses only an extra O(log n) factor in the approximation ratio. This gives an O(log5 n= log log n)-approximation algorithm for MDkT on bounded treewidth graphs.
    [Show full text]