Generalized Gibbs' Phase Rule

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Gibbs' Phase Rule Generalized Gibbs’ Phase Rule Wenhao Suna*, Matthew J. Powell-Palmb aDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States bDepartment of Mechanical Engineering, University of California at Berkeley, Berkeley, California, 94709, United States *Correspondence to: [email protected] Abstract Gibbs’ Phase Rule describes the nature of phase boundaries on phase diagrams and is a foundational principle in materials thermodynamics. In Gibbs’ original derivation, he stipulates that the Phase Rule applies only to “simple systems”—defined to be homogeneous, isotropic, uncharged, and large enough that surface effects can be neglected; and not acted upon by electric, magnetic or gravitational fields. Modern functional materials—spanning nanomaterials, multiferrorics, materials for energy storage and conversion, colloidal crystals, etc.—are decidedly non-simple, leveraging various additional forms of thermodynamic work to achieve their functionality. Here, we extend Gibbs’ original arguments on phase coexistence to derive a generalized Phase Rule, based in the combinatorial geometry of high-dimensional convex polytopes. The generalized Phase Rule offers a conceptual and mathematical framework to interpret equilibrium and phase coexistence in advanced modern materials. In On the Equilibrium of Heterogeneous Substances,1 Josiah Willard Gibbs derived the Phase Rule, providing a general rule for the number of phases that can coexist at a given thermodynamic condition. Commonly written as F = C – P + 2, Gibbs’ Phase Rule provides a relationship between the number of components, C; the number of phases, P; and the number of degrees of freedom, F— which is the number of intensive variables (temperature, pressure, etc.) that can be changed while maintaining the same number of coexisting phases. By deriving the rules of phase coexistence, Gibbs’ Phase Rule also established the nature of phase boundaries and provided the foundation for phase diagrams, which are today fundamental thermodynamic constructs at the core of materials science. In his original 1876 derivation, Gibbs stipulates that his analysis of phase coexistence applies to ‘simple systems’—defined to be macroscopically homogeneous, isotropic, uncharged and chemically inert; uninfluenced by gravity, electricity, distortion of the solid masses, or capillary tensions. Modern functional materials are decidedly non-simple, often leveraging additional forms of thermodynamic work, such as those listed in Table 1. For example, surface and interfacial energies are crucial for evaluating the thermodynamics of nanomaterials.2,3,4 Multiferrorics and piezoelectrics manifest their valuable switching properties under applied stress and electromagnetic fields.5,6 Corrosive environments subject steels and catalysts to harsh pH and electric oxidation-reduction potentials.7 Semiconductor fabrication relies on epitaxial strain between a target material and a substrate to control phase selection.8,9,10 Entropy determines the structure of soft materials—such as colloids and polymers,11,12,13 as well as in high-component disordered alloys14 and ceramics.15 Table 1. Thermodynamic conjugate variables, as adapted from Reference 16 Conjugate Variable Intensive Variable Extensive Variable Differential term in dU Thermal energy Heat Temperature (T) Entropy (S) TdS Mechanical work Pressure-Volume Pressure (P) Volume (V) –PdV Stress-Strain Stress (ϵ) Strain (σ) σdϵ Gravitational Gravitational Potential (ψ = gh) Mass (m = ΣMini) Ψdm Surface Surface Energy (γ) Surface Area (A) γdA Electromagnetic work Charge Transfer Voltage (ϕi) Charge (Qi) ϕidQi Electric Polarization Electric Field (E) Dipole Moment (P) E dP Magnetic Polarization Magnetic Field B Magnetic Moment (M) B dM Chemical work ∙ ∙ Chemical reactions Chemical Potential (μi) Component (ni) μidni The materials that comprise modern science and technology are far more diverse, wonderful and complicated than Gibbs could have anticipated in the late 19th century. However, because Gibbs’ Phase Rule is only formulated to describe ‘simple systems’, there is often great confusion over whether or not an experiment actually produced equilibrium phases, or if kinetic limitations resulted in metastable or non-equilibrium byproducts. Given the diverse thermodynamic environments in which modern functional materials find themselves, it would be timely to revisit Gibbs’ Phase Rule and generalize it to account for the equilibrium of heterogeneous substances under more complicated thermodynamic environments. Although Gibbs’ Phase Rule can be formulated as a simple equation, its form arises from a careful consideration of the geometric structure of thermodynamics. Here, we revisit Gibbs’ original arguments on phase coexistence, and demonstrate how the thermodynamic requirements of heterogeneous equilibrium can be mapped onto the geometry of convex polytopes17,18—a field of mathematics that began maturing in the 1960s. By examining the geometry of high-dimensional convex polytopes, we derive a generalized form of Gibbs’ Phase Rule that provides a foundation for new classes of phase diagrams, which can exist in multiple (≥3) thermodynamic dimensions and possess arbitrary thermodynamic variables on the axes. These new phase diagrams are poised to expand the thermodynamic toolkit beyond the common T-P and T-x phase diagrams, enabling materials scientists to fully interrogate the complex thermodynamic environments of modern materials. Physical origins of heterogeneous equilibrium Gibbs first explicitly writes the Phase Rule in On the Equilibrium of Heterogeneous Substances in a short two-page section titled, On Coexistent Phases of Matter, where he starts his derivation from what is today referred to as the Gibbs-Duhem equation. However, before this 1876 derivation, Gibbs produced a geometric description of phase coexistence in the second of his two 1873 papers, titled, “A method of geometrical representation of the thermodynamic properties of substances by the means of surfaces.”19 Here, we develop a generalized Phase Rule based on the arguments from this 1873 paper. First, we synthesize the essential physical arguments from both Gibbs’ 1873 and 1876 papers, using modern thermodynamic notation,20 and providing Figure 1a as an illustrative guide: 1. The Energy Surface Every substance has an Internal Energy, U, which can be represented as a function of extensive thermodynamic variables X = S, V, N, etc. The differential form of the Internal Energy is written as dU = TdS + ΣYidXi; where Yi = ∂U/∂Xi, and YiXi corresponds to the various thermodynamic conjugate variables listed in Table 1. The integrated form of this differential produces the Internal Energy surface, U(S, V, N, etc). The Internal Energy surface is an intrinsically high-dimensional object, although in ‘simple systems’ only S, V, and N terms are considered. 2. Stability Criterion For a homogeneous single-phase substance to be stable, its Internal Energy surface, U, must be positive-definite in all extensive variables; ∂2U/∂X2 > 0; or else the phase will self-separate by extent. Gibbs referred to the extensive state at which this convex curvature is violated as the Limit of Essential Stability, which we today refer to as the spinodal. 3. Heterogeneous Equilibrium A heterogeneous mixture of phases is in equilibrium when entropy is maximized, in other words, ΔS = 0. Entropy is maximized when all intensive thermodynamic variables (Y = T, P, μ, etc.) are equalized at the physical boundaries between phases within a heterogeneous mixture. 4. Surfaces of Dissipated Energy A system that has maximized entropy also has minimized Internal Energy. However, because each pure-phase U(S,V,N,X…) surface is convex, at certain extensive conditions, a mixture of heterogeneous phases can have lower total Internal Energy than any single homogeneous phase. This state of heterogeneous equilibrium can be represented by the tangent plane that forms from the convex envelope connecting multiple U(S,V,N…) surfaces of pure phases. Gibbs referred to these tangent planes of phase coexistence as ‘Surfaces of Dissipated Energy.’ The incline of these tangent planes along each extensive direction is ∂U/∂Xi, which is, by definition, the conjugate intensive variable Yi. Because these tangent planes connect coexisting phases, this implies that coexisting phases have equalized intensive variables—which satisfies the condition of maximized entropy. Gibbs referred to the U surface for pure homogeneous substances as the ‘primitive surface’, and the convex envelope describing the state of heterogeneous equilibrium as the ‘derived surface’. In modern computational thermodynamics, the derived surface can be calculated with convex hull algorithms. Phases that fall upon the derived surface are within the limit of absolute stability. As an example of a substance within the limit of essential stability but outside the limit of absolute stability, Gibbs described the metastable persistence of liquid water supercooled below 0°C. 5. The Phase Diagram The extensive states at which the Surfaces of Dissipated Energy connect with the primitive surface provide the boundaries between the single-phase and multi-phase regions of a phase diagram. In a multi-phase region, the phase fraction and extensive state of each phase can be solved by the Lever Rule. Projecting the derived surface onto axes of the thermodynamic variables produces the phase diagram. Although Gibbs’ nomenclature no longer appears in the modern thermodynamics
Recommended publications
  • Thermodynamics
    TREATISE ON THERMODYNAMICS BY DR. MAX PLANCK PROFESSOR OF THEORETICAL PHYSICS IN THE UNIVERSITY OF BERLIN TRANSLATED WITH THE AUTHOR'S SANCTION BY ALEXANDER OGG, M.A., B.Sc., PH.D., F.INST.P. PROFESSOR OF PHYSICS, UNIVERSITY OF CAPETOWN, SOUTH AFRICA THIRD EDITION TRANSLATED FROM THE SEVENTH GERMAN EDITION DOVER PUBLICATIONS, INC. FROM THE PREFACE TO THE FIRST EDITION. THE oft-repeated requests either to publish my collected papers on Thermodynamics, or to work them up into a comprehensive treatise, first suggested the writing of this book. Although the first plan would have been the simpler, especially as I found no occasion to make any important changes in the line of thought of my original papers, yet I decided to rewrite the whole subject-matter, with the inten- tion of giving at greater length, and with more detail, certain general considerations and demonstrations too concisely expressed in these papers. My chief reason, however, was that an opportunity was thus offered of presenting the entire field of Thermodynamics from a uniform point of view. This, to be sure, deprives the work of the character of an original contribution to science, and stamps it rather as an introductory text-book on Thermodynamics for students who have taken elementary courses in Physics and Chemistry, and are familiar with the elements of the Differential and Integral Calculus. The numerical values in the examples, which have been worked as applications of the theory, have, almost all of them, been taken from the original papers; only a few, that have been determined by frequent measurement, have been " taken from the tables in Kohlrausch's Leitfaden der prak- tischen Physik." It should be emphasized, however, that the numbers used, notwithstanding the care taken, have not vii x PREFACE.
    [Show full text]
  • Computational Thermodynamics: a Mature Scientific Tool for Industry and Academia*
    Pure Appl. Chem., Vol. 83, No. 5, pp. 1031–1044, 2011. doi:10.1351/PAC-CON-10-12-06 © 2011 IUPAC, Publication date (Web): 4 April 2011 Computational thermodynamics: A mature scientific tool for industry and academia* Klaus Hack GTT Technologies, Kaiserstrasse 100, D-52134 Herzogenrath, Germany Abstract: The paper gives an overview of the general theoretical background of computa- tional thermochemistry as well as recent developments in the field, showing special applica- tion cases for real world problems. The established way of applying computational thermo- dynamics is the use of so-called integrated thermodynamic databank systems (ITDS). A short overview of the capabilities of such an ITDS is given using FactSage as an example. However, there are many more applications that go beyond the closed approach of an ITDS. With advanced algorithms it is possible to include explicit reaction kinetics as an additional constraint into the method of complex equilibrium calculations. Furthermore, a method of interlinking a small number of local equilibria with a system of materials and energy streams has been developed which permits a thermodynamically based approach to process modeling which has proven superior to detailed high-resolution computational fluid dynamic models in several cases. Examples for such highly developed applications of computational thermo- dynamics will be given. The production of metallurgical grade silicon from silica and carbon will be used to demonstrate the application of several calculation methods up to a full process model. Keywords: complex equilibria; Gibbs energy; phase diagrams; process modeling; reaction equilibria; thermodynamics. INTRODUCTION The concept of using Gibbsian thermodynamics as an approach to tackle problems of industrial or aca- demic background is not new at all.
    [Show full text]
  • Covariant Hamiltonian Field Theory 3
    December 16, 2020 2:58 WSPC/INSTRUCTION FILE kfte COVARIANT HAMILTONIAN FIELD THEORY JURGEN¨ STRUCKMEIER and ANDREAS REDELBACH GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH Planckstr. 1, 64291 Darmstadt, Germany and Johann Wolfgang Goethe-Universit¨at Frankfurt am Main Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany [email protected] Received 18 July 2007 Revised 14 December 2020 A consistent, local coordinate formulation of covariant Hamiltonian field theory is pre- sented. Whereas the covariant canonical field equations are equivalent to the Euler- Lagrange field equations, the covariant canonical transformation theory offers more gen- eral means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proved that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinites- imal canonical transformation furnishes the most general form of Noether’s theorem. We furthermore specify the generating function of an infinitesimal space-time step that conforms to the field equations. Keywords: Field theory; Hamiltonian density; covariant. PACS numbers: 11.10.Ef, 11.15Kc arXiv:0811.0508v6 [math-ph] 15 Dec 2020 1. Introduction Relativistic field theories and gauge theories are commonly formulated on the basis of a Lagrangian density L1,2,3,4. The space-time evolution of the fields is obtained by integrating the Euler-Lagrange field equations that follow from the four-dimensional representation of Hamilton’s action principle.
    [Show full text]
  • Selected Bibliography of American History Through Biography
    DOCUMENT RESUME ED 088 763 SO 007 145 AUTHOR Fustukjian, Samuel, Comp. TITLE Selected Bibliography of American History through Biography. PUB DATE Aug 71 NOTE 101p.; Represents holdings in the Penfold Library, State University of New York, College at Oswego EDRS PRICE MF-$0.75 HC-$5.40 DESCRIPTORS *American Culture; *American Studies; Architects; Bibliographies; *Biographies; Business; Education; Lawyers; Literature; Medicine; Military Personnel; Politics; Presidents; Religion; Scientists; Social Work; *United States History ABSTRACT The books included in this bibliography were written by or about notable Americans from the 16th century to the present and were selected from the moldings of the Penfield Library, State University of New York, Oswego, on the basis of the individual's contribution in his field. The division irto subject groups is borrowed from the biographical section of the "Encyclopedia of American History" with the addition of "Presidents" and includes fields in science, social science, arts and humanities, and public life. A person versatile in more than one field is categorized under the field which reflects his greatest achievement. Scientists who were more effective in the diffusion of knowledge than in original and creative work, appear in the tables as "Educators." Each bibliographic entry includes author, title, publisher, place and data of publication, and Library of Congress classification. An index of names and list of selected reference tools containing biographies concludes the bibliography. (JH) U S DEPARTMENT Of NIA1.114, EDUCATIONaWELFARE NATIONAL INSTITUTE OP EDUCATION THIS DOCUMENT HAS BEEN REPRO DUCED ExAC ICY AS RECEIVED FROM THE PERSON OR ORGANIZATIONORIGIN ATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILYREPRE SENT OFFICIAL NATIONAL INSTITUTEOF EDUCATION POSITION OR POLICY PREFACE American History, through biograRhies is a bibliography of books written about 1, notable Americans, found in Penfield Library at S.U.N.Y.
    [Show full text]
  • Henry Andrews Bumstead 1870-1920
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XIII SECOND MEMOIR BIOGRAPHICAL MEMOIR OF HENRY ANDREWS BUMSTEAD 1870-1920 BY LEIGH PAGE PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1929 HENRY ANDREWS BUMSTEAD BY LIUGH PAGE Henry Andrews Bumstead was born in the small town of Pekin, Illinois, on March 12th, 1870, son of Samuel Josiah Bumstead and Sarah Ellen Seiwell. His father, who was a physician of considerable local prominence, had graduated from the medical school in Philadelphia and was one of the first American students of medicine to go to Vienna to complete his studies. While the family was in Vienna, Bumstead, then a child three years of age, learned to speak German as fluently as he spoke English, an accomplishment which was to prove valuable to him in his subsequent career. Bumstead was descended from an old New England family which traces its origin to Thomas Bumstead, a native of Eng- land, who settled in Boston, Massachusetts, about 1640. Many of his ancestors were engaged in the professions, his paternal grandfather, the Reverend Samuel Andrews Bumstead, being a graduate of Princeton Theological Seminary and a minister in active service. From them he inherited a keen mind and an unusually retentive memory. It is related that long before he had learned to read, his Sunday school teacher surprised his mother by complimenting her on the ease with which her son had rendered the Sunday lesson. It turned out that his mother made a habit of reading the lesson to Bumstead before he left for school, and the child's remarkable performance there was due to his ability to hold in his memory every word of the lesson after hearing it read to him a single time.
    [Show full text]
  • Thermodynamics
    ME346A Introduction to Statistical Mechanics { Wei Cai { Stanford University { Win 2011 Handout 6. Thermodynamics January 26, 2011 Contents 1 Laws of thermodynamics 2 1.1 The zeroth law . .3 1.2 The first law . .4 1.3 The second law . .5 1.3.1 Efficiency of Carnot engine . .5 1.3.2 Alternative statements of the second law . .7 1.4 The third law . .8 2 Mathematics of thermodynamics 9 2.1 Equation of state . .9 2.2 Gibbs-Duhem relation . 11 2.2.1 Homogeneous function . 11 2.2.2 Virial theorem / Euler theorem . 12 2.3 Maxwell relations . 13 2.4 Legendre transform . 15 2.5 Thermodynamic potentials . 16 3 Worked examples 21 3.1 Thermodynamic potentials and Maxwell's relation . 21 3.2 Properties of ideal gas . 24 3.3 Gas expansion . 28 4 Irreversible processes 32 4.1 Entropy and irreversibility . 32 4.2 Variational statement of second law . 32 1 In the 1st lecture, we will discuss the concepts of thermodynamics, namely its 4 laws. The most important concepts are the second law and the notion of Entropy. (reading assignment: Reif x 3.10, 3.11) In the 2nd lecture, We will discuss the mathematics of thermodynamics, i.e. the machinery to make quantitative predictions. We will deal with partial derivatives and Legendre transforms. (reading assignment: Reif x 4.1-4.7, 5.1-5.12) 1 Laws of thermodynamics Thermodynamics is a branch of science connected with the nature of heat and its conver- sion to mechanical, electrical and chemical energy. (The Webster pocket dictionary defines, Thermodynamics: physics of heat.) Historically, it grew out of efforts to construct more efficient heat engines | devices for ex- tracting useful work from expanding hot gases (http://www.answers.com/thermodynamics).
    [Show full text]
  • Phase Diagrams
    Module-07 Phase Diagrams Contents 1) Equilibrium phase diagrams, Particle strengthening by precipitation and precipitation reactions 2) Kinetics of nucleation and growth 3) The iron-carbon system, phase transformations 4) Transformation rate effects and TTT diagrams, Microstructure and property changes in iron- carbon system Mixtures – Solutions – Phases Almost all materials have more than one phase in them. Thus engineering materials attain their special properties. Macroscopic basic unit of a material is called component. It refers to a independent chemical species. The components of a system may be elements, ions or compounds. A phase can be defined as a homogeneous portion of a system that has uniform physical and chemical characteristics i.e. it is a physically distinct from other phases, chemically homogeneous and mechanically separable portion of a system. A component can exist in many phases. E.g.: Water exists as ice, liquid water, and water vapor. Carbon exists as graphite and diamond. Mixtures – Solutions – Phases (contd…) When two phases are present in a system, it is not necessary that there be a difference in both physical and chemical properties; a disparity in one or the other set of properties is sufficient. A solution (liquid or solid) is phase with more than one component; a mixture is a material with more than one phase. Solute (minor component of two in a solution) does not change the structural pattern of the solvent, and the composition of any solution can be varied. In mixtures, there are different phases, each with its own atomic arrangement. It is possible to have a mixture of two different solutions! Gibbs phase rule In a system under a set of conditions, number of phases (P) exist can be related to the number of components (C) and degrees of freedom (F) by Gibbs phase rule.
    [Show full text]
  • Josiah Willard Gibbs
    GENERAL ARTICLE Josiah Willard Gibbs V Kumaran The foundations of classical thermodynamics, as taught in V Kumaran is a professor textbooks today, were laid down in nearly complete form by of chemical engineering at the Indian Institute of Josiah Willard Gibbs more than a century ago. This article Science, Bangalore. His presentsaportraitofGibbs,aquietandmodestmanwhowas research interests include responsible for some of the most important advances in the statistical mechanics and history of science. fluid mechanics. Thermodynamics, the science of the interconversion of heat and work, originated from the necessity of designing efficient engines in the late 18th and early 19th centuries. Engines are machines that convert heat energy obtained by combustion of coal, wood or other types of fuel into useful work for running trains, ships, etc. The efficiency of an engine is determined by the amount of useful work obtained for a given amount of heat input. There are two laws related to the efficiency of an engine. The first law of thermodynamics states that heat and work are inter-convertible, and it is not possible to obtain more work than the amount of heat input into the machine. The formulation of this law can be traced back to the work of Leibniz, Dalton, Joule, Clausius, and a host of other scientists in the late 17th and early 18th century. The more subtle second law of thermodynamics states that it is not possible to convert all heat into work; all engines have to ‘waste’ some of the heat input by transferring it to a heat sink. The second law also established the minimum amount of heat that has to be wasted based on the absolute temperatures of the heat source and the heat sink.
    [Show full text]
  • Introduction to Phase Diagrams*
    ASM Handbook, Volume 3, Alloy Phase Diagrams Copyright # 2016 ASM InternationalW H. Okamoto, M.E. Schlesinger and E.M. Mueller, editors All rights reserved asminternational.org Introduction to Phase Diagrams* IN MATERIALS SCIENCE, a phase is a a system with varying composition of two com- Nevertheless, phase diagrams are instrumental physically homogeneous state of matter with a ponents. While other extensive and intensive in predicting phase transformations and their given chemical composition and arrangement properties influence the phase structure, materi- resulting microstructures. True equilibrium is, of atoms. The simplest examples are the three als scientists typically hold these properties con- of course, rarely attained by metals and alloys states of matter (solid, liquid, or gas) of a pure stant for practical ease of use and interpretation. in the course of ordinary manufacture and appli- element. The solid, liquid, and gas states of a Phase diagrams are usually constructed with a cation. Rates of heating and cooling are usually pure element obviously have the same chemical constant pressure of one atmosphere. too fast, times of heat treatment too short, and composition, but each phase is obviously distinct Phase diagrams are useful graphical representa- phase changes too sluggish for the ultimate equi- physically due to differences in the bonding and tions that show the phases in equilibrium present librium state to be reached. However, any change arrangement of atoms. in the system at various specified compositions, that does occur must constitute an adjustment Some pure elements (such as iron and tita- temperatures, and pressures. It should be recog- toward equilibrium. Hence, the direction of nium) are also allotropic, which means that the nized that phase diagrams represent equilibrium change can be ascertained from the phase dia- crystal structure of the solid phase changes with conditions for an alloy, which means that very gram, and a wealth of experience is available to temperature and pressure.
    [Show full text]
  • Contact Dynamics Versus Legendrian and Lagrangian Submanifolds
    Contact Dynamics versus Legendrian and Lagrangian Submanifolds August 17, 2021 O˘gul Esen1 Department of Mathematics, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey. Manuel Lainz Valc´azar2 Instituto de Ciencias Matematicas, Campus Cantoblanco Consejo Superior de Investigaciones Cient´ıficas C/ Nicol´as Cabrera, 13–15, 28049, Madrid, Spain Manuel de Le´on3 Instituto de Ciencias Matem´aticas, Campus Cantoblanco Consejo Superior de Investigaciones Cient´ıficas C/ Nicol´as Cabrera, 13–15, 28049, Madrid, Spain and Real Academia Espa˜nola de las Ciencias. C/ Valverde, 22, 28004 Madrid, Spain. Juan Carlos Marrero4 ULL-CSIC Geometria Diferencial y Mec´anica Geom´etrica, Departamento de Matematicas, Estadistica e I O, Secci´on de Matem´aticas, Facultad de Ciencias, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain arXiv:2108.06519v1 [math.SG] 14 Aug 2021 Abstract We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (obtained by merging a special contact manifold and a Morse family) for a Legendrian submanifold. Contact Hamiltonian and Lagrangian Dynamics are 1E-mail: [email protected] 2E-mail: [email protected] 3E-mail: [email protected] 4E-mail: [email protected] 1 recast as Legendrian submanifolds of the tangent contact manifold. In this picture, the Legendre transformation is determined to be a passage between two different generators of the same Legendrian submanifold. A variant of contact Tulczyjew’s triple is constructed for evolution contact dynamics.
    [Show full text]
  • Lecture 1: Historical Overview, Statistical Paradigm, Classical Mechanics
    Lecture 1: Historical Overview, Statistical Paradigm, Classical Mechanics Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 August 23, 2017 Chapter I. Basic Principles of Stat Mechanics LectureA.G. Petukhov, 1: Historical PHYS Overview, 743 Statistical Paradigm, ClassicalAugust Mechanics 23, 2017 1 / 11 In 1905-1906 Einstein and Smoluchovski developed theory of Brownian motion. The theory was experimentally verified in 1908 by a french physical chemist Jean Perrin who was able to estimate the Avogadro number NA with very high accuracy. Daniel Bernoulli in eighteen century was the first who applied molecular-kinetic hypothesis to calculate the pressure of an ideal gas and deduct the empirical Boyle's law pV = const. In the 19th century Clausius introduced the concept of the mean free path of molecules in gases. He also stated that heat is the kinetic energy of molecules. In 1859 Maxwell applied molecular hypothesis to calculate the distribution of gas molecules over their velocities. Historical Overview According to ancient greek philosophers all matter consists of discrete particles that are permanently moving and interacting. Gas of particles is the simplest object to study. Until 20th century this molecular-kinetic theory had not been directly confirmed in spite of it's success in chemistry Chapter I. Basic Principles of Stat Mechanics LectureA.G. Petukhov, 1: Historical PHYS Overview, 743 Statistical Paradigm, ClassicalAugust Mechanics 23, 2017 2 / 11 Daniel Bernoulli in eighteen century was the first who applied molecular-kinetic hypothesis to calculate the pressure of an ideal gas and deduct the empirical Boyle's law pV = const. In the 19th century Clausius introduced the concept of the mean free path of molecules in gases.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Prof. Dr. Alberto S. Cattaneo and Nima Moshayedi January 7, 2016 2 Preface This script was written for the course called Classical Mechanics for mathematicians at the University of Zurich. The course was given by Professor Alberto S. Cattaneo in the spring semester 2014. I want to thank Professor Cattaneo for giving me his notes from the lecture and also for corrections and remarks on it. I also want to mention that this script should only be notes, which give all the definitions and so on, in a compact way and should not replace the lecture. Not every detail is written in this script, so one should also either use another book on Classical Mechanics and read the script together with the book, or use the script parallel to a lecture on Classical Mechanics. This course also gives an introduction on smooth manifolds and combines the mathematical methods of differentiable manifolds with those of Classical Mechanics. Nima Moshayedi, January 7, 2016 3 4 Contents 1 From Newton's Laws to Lagrange's equations 9 1.1 Introduction . 9 1.2 Elements of Newtonian Mechanics . 9 1.2.1 Newton's Apple . 9 1.2.2 Energy Conservation . 10 1.2.3 Phase Space . 11 1.2.4 Newton's Vector Law . 11 1.2.5 Pendulum . 11 1.2.6 The Virial Theorem . 12 1.2.7 Use of Hamiltonian as a Differential equation . 13 1.2.8 Generic Structure of One-Degree-of-Freedom Systems . 13 1.3 Calculus of Variations . 14 1.3.1 Functionals and Variations .
    [Show full text]