The Structure and Physiology of the Nuclear Pore Complex and Its Role in Gene Expression and Human Disease

Total Page:16

File Type:pdf, Size:1020Kb

The Structure and Physiology of the Nuclear Pore Complex and Its Role in Gene Expression and Human Disease Journal of Young Investigators RESEARCH REVIEW The Structure and Physiology of the Nuclear Pore Complex and its Role in Gene Expression and Human Disease Kevin Doello1* The Nuclear Pore Complex (NPC) is a protein channel that communicates and transports molecules between the cytoplasm and the nucleoplasm. It has a complex structure composed of many structural proteins, mainly nucleoporins and transporter proteins, and its biosynthesis is an extremely regulated and cell cycle phase dependent process. Moreover, in the present review, it will be shown that this structure could play a decisive role in gene expression and in the pathogenesis of several diseases. On the one hand, NPC affects gene expression by regulating epigenetic enzymes and affecting the nucleocytoplasmic balance of transcription factors and small nuclear RNAs. On the other hand, diverse studies show that NPC is involved in some diseases and pathological processes like aging, neurodegenerative diseases and extrapyramidal syndromes, cancer, cardiovascular diseases, infectious diseases and genetic syndromes. In conclusion, NPC might be an important element in the control of gene transcription and cell phenotype, and perhaps, it will become a future pharmacologic target for several diseases in which it is involved in. INTRODUCTION The Nuclear Pore Complex (NPC) is a cellular component that is cytoplasmic filaments, and nuclear ring. They are all made by located within the nuclear envelope. It is a protein channel that approximately 30 different proteins called nucleoporins allows macromolecules to cross from the cytoplasm to the (D’Angelo and Hetzer 2008). nucleoplasm and vice versa. This establishes an important Nuclear basket is composed of a ring of nucleoporins physiological process known as nucleocytoplasmic transport (Nup153 and Nup50) which bind filaments of Tpr protein, (Jamali et al. 2011). NPCs are not only involved in transport but making up a structure with a basket shape (Brohawn et al. 2009; also have an important relationship with epigenetic enzymes and Hoelz et al. 2011). Cytoplasmic filaments are made up by the transcription factors, which are both proteins that participate in nucleoporins Nup88, Nup214 and Nup358 (Brohawn et al. 2009; gene expression (Van de Vosse et al. 2011). Moreover, it has Hoelz et al. 2011). Finally, the nuclear ring has four parts, been demonstrated that the NPC is linked to many diseases such namely, the membrane ring, the spoke ring, the inner ring or as aging, neurodegenerative diseases and extrapyramidal nuclear ring, and the outer ring or cytoplasmic ring. The syndromes, cancer, cardiovascular diseases (arrhythmias and membrane ring anchors the NPC to the nuclear envelope and sudden death), infectious diseases and genetic syndromes. For comprises nucleoporins gp210, Ndc1 and Pom121. The spoke example, in cancer or genetic syndromes, mutations exist in the ring is located centrally in respect to the membrane ring and is proteins that form the NPC (Capelson and Hetzer 2009). The built by nucleoporins Nup53, Nup54, Nup58, Nup62 Nup93, objectives of this review are to revise the structure and Nup98, Nup155, Nup188 and Nup205 (Brohawn et al. 2009; physiology of the NPC and investigate its role in gene expression Hoelz et al. 2011). Finally, the outer and the inner rings are and diseases in order to clearly understand the possible role of composed of nucleoporins Nup37, Nup43, Nup85, Nup96, the NPC as a gene expression regulator and a future therapeutic Nup107, Nup133, Nup160, Sec13 and Seh1 (Alber et al. 2007; target. Beck et al. 2007; Brohawn et al. 2009; Cronshaw et al. 2002; Hoelz et al. 2011; Lim et al. 2008; Stoffler et al. 2003). Another Structure of the nuclear pore complex protein called Aladin or Adracalin (Cronshaw and Matunis 2003) The NPC is an octagonal protein channel (Fabergé 1973) that is is located at the NPC as well and binds to a nucleoporin named between 40 and 90 nm in diameter (Webster et al. 2009) and 200 Ndc1 (Kind et al. 2009; Yamazumi et al. 2009) (Figure 1). nm in depth (Gall 1967). There are approximately 2000 NPCs in The nucleoporins that form the NPC can be classified a cell. Nevertheless, this number can vary depending on the cell into three groups: transmembrane nucleoporins (approximately type studied, the phase of the cell cycle and external aggressions 10%); structural nucleoporins (50%); and FG-nucleoporins (40% (Maeshima et al. 2011; Maul et al. 1980). of the total population) (Rout and Wente 1994). There are three structures within a NPC: nuclear basket, The deepest nucleoporins in the NPC project some of their peptide fragments into the pore hole. These peptide 1 School of Medicine, University of Granada, 18071 Granada, sequences are natively unfolded and hence are polypeptides Spain without a secondary structure folding. They make up a peptide web within the pore complex hole. In this web there are *To whom Correspondence should be nucleoporins containing GLFG (glycine-leucine-phenylalanine- addressed: [email protected] glycine repeats), FXFG (phenylalanine-x-phenylalanine-glycine repeats) and FG (the most common type) (phenylalanine-glycine 87 JYI | June 2013 | Vol. 25 Issue 6 2013 Journal of Young Investigators Journal of Young Investigators RESEARCH REVIEW repeats). These FGs are extremely important for the NPC’s Function of the nuclear pore complex involvement in the nucleocytoplasmic transport of NPC is responsible for the exchange of macromolecules and macromolecules, as FGs function as the anchoring points for the other substances between the nucleus and the cytoplasm cargo, indicate the direction of transport and adapt to appropriate (nucleocytoplasmic transport). There are two forms of transport. pore size (Denning et al. 2003; Terry and Wente 2009; Yang 1) simple diffusion, which occurs in molecules smaller than 40 2011). kDa (e.g. water, ions and metabolites) (Keminer and Peters 1999) The NPC is tightly bound to the nuclear membrane and and 2) nuclear translocation, for macromolecules like mRNA, the nuclear lamina by protein Pom121 and another NPC proteins, snRNA, tRNA, microRNA, transcription factors, histones, respectively (Hawryluk – Gara et al. 2005; Mitchell et al. 2010). enzymes and even viral proteins and nucleic acids (Ribbeck and The protein Pom121 comprises membrane ring in the NPC Görlich 2001). (Mitchell et al. 2010) and anchors NPC to nuclear membrane, Nuclear translocation can happen in two directions: while other NPC proteins are involved in the anchorage with nuclear import, in which molecules go into the nucleus, and nuclear export, a phenomenon where molecules go out to the cytoplasm. Both of them are extremely regulated processes and require transporter proteins (Jamali et al. 2011). Transport proteins involved in nucleocytoplasmic transport Transporter proteins can be classified into two groups: energetic molecules and anchoring molecules. Both of them are located in the NPC and are fundamental for nucleocytoplasmic transport (Marelli et al. 2001). Ran is a protein, from the family of Ras, which supplies the energy needed for the nucleocytoplasmic transport. It binds GTP or GDP, so it carries phosphate groups between the nucleoplasm and the cytoplasm (Sekiguchi et al. 2000). Anchoring transport proteins are called kariopherins. There are two kinds of kariopherins, namely exportins and importins (Gorlich and Laskey 1995; Marelli et al. 2001). Exportins, a protein group with seven elements, transport cargo from nucleus to cytoplasm (nuclear export) after recognizing them by a peptide sequence called nuclear export signal (NES) which is rich in leucine (Kutay and Güttinger 2005). On the other Figure 1. The nuclear pore complex (NPC). This image shows the main hand, importins transport molecules from the cytoplasm to the parts in which the NPC is divided and the specific proteins that compound nucleus (nuclear import) when a sequence known as nuclear them. Nuclear basket (in orange) is composed of Nup153 and Nup50 which bind filaments of Tpr protein. Cytoplasmic filaments (in purple) are localization signal (NLS) is located in the cargo (Kalderon et al. made up by the nucleoporins Nup88, Nup214 and Nup358. The nuclear 1984). ring has four parts, namely, the membrane ring (in brown), the spoke ring Importins are more complex than exportins because (in red and grey), the inner ring or nuclear ring and the outer ring or they are composed of two subunits called importin A and cytoplasmic ring (both in green). The membrane ring anchors the ring importin B that work together, but in some cases they can also complex to the nuclear envelope and comprises nucleoporins gp210, Ndc1 work separately. There are many forms of importin A and B, and and Pom121. The spoke ring comprises the nucleoporins Nup53, Nup54, consequently, lots of different combinations exist as well Nup58, Nup62 Nup93, Nup155, Nup188 and Nup205. The outer and the (Gorlich et al. 1995) inner rings are composed of nucleoporins Nup37, Nup43, Nup85, Nup96, Nup107, Nup133, Nup160, Sec13 and Seh1. Other important proteins are Nuclear Import also show in the picture. Nuclear import starts with a cytoplasmic protein that contains a NLS that is recognized by importin A, which then subsequently binds to Importin B. Although, this is the paradigm, many NLS nuclear lamina (A-lamina and B-lamina proteins) Lamina are recognized by importins that are not made up by two determines the location of NPC, because NPCs are more frequent subunits. The Cargo NLS – Importin A – Importin B complex in places of the nuclear envelope with B – lamina and less interacts with the elements of the NPC, more exactly with the FG common in the regions with A – lamina. Nup53, Nup153 and - Nups, binding to FG, GLFG or FXFG nucleoporins Pom121 bind to B – lamina, while Nup 88 binds to A – lamina temporarily. Not all FG - Nups have the same affinity to the (Hawryluk – Gara et al. 2005; Hawryluk – Gara et al. 2008; importin (especially importin B), existing FG - Nups called Lussi et al. 2011; Mitchell et al. 2010; Schwarz – Herion et al. clusters with more binding power (Bayliss et al.
Recommended publications
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Overexpressed Nup88 Stabilized Through Interaction with Nup62 Promotes NFB
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063057; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Overexpressed Nup88 stabilized through interaction with Nup62 promotes NFB dependent pathways in cancer Usha Singh1, Atul Samaiya2, and Ram Kumar Mishra1,* 1 Nups and Sumo Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, 462066, India. 2 Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh, 462016, India * To whom correspondence should be addressed. Corresponding Author: Phone – +91-755-2691407 Fax - +91-755-2692392 Email- [email protected] Keywords Nup88; NFB; Head and neck cancer; ubiquitination; cell proliferation; inflammation 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063057; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Nuclear pores control nucleo-cytoplasmic trafficking and directly or indirectly regulate vital cellular processes. Nup88, important for Crm1 mediated nuclear export process, is overexpressed in many cancers. A positive correlation exists between progressive stages of cancer and Nup88 expression. However, links between Nup88 overexpression and head and neck cancer are insignificant, and mechanistic details are non-existent. Here, we report that Nup88 exhibits positive correlation in head and neck cancer in addition to elevated Nup62 levels. We demonstrate that Nup88 interacts with Nup62 in a cell-cycle and glycosylation independent manner.
    [Show full text]
  • S1 Supplemental Materials Supplemental Methods Supplemental Figure 1. Immune Phenotype of Mcd19 Targeted CAR T and Dose Titratio
    Supplemental Materials Supplemental Methods Supplemental Figure 1. Immune phenotype of mCD19 targeted CAR T and dose titration of in vivo efficacy. Supplemental Figure 2. Gene expression of fluorescent-protein tagged CAR T cells. Supplemental Figure 3. Fluorescent protein tagged CAR T cells function similarly to non-tagged counterparts. Supplemental Figure 4. Transduction efficiency and immune phenotype of mCD19 targeted CAR T cells for survival study (Figure 2D). Supplemental Figure 5. Transduction efficiency and immune phenotype of CAR T cells used in irradiated CAR T study (Fig. 3B-C). Supplemental Figure 6. Differential gene expression of CD4+ m19-humBBz CAR T cells. Supplemental Figure 7. CAR expression and CD4/CD8 subsets of human CD19 targeted CAR T cells for Figure 5E-G. Supplemental Figure 8. Transduction efficiency and immune phenotype of mCD19 targeted wild type (WT) and TRAF1-/- CAR T cells used for in vivo study (Figure 6D). Supplemental Figure 9. Mutated m19-musBBz CAR T cells have increased NF-κB signaling, improved cytokine production, anti-apoptosis, and in vivo function. Supplemental Figure 10. TRAF and CAR co-expression in human CD19-targeted CAR T cells. Supplemental Figure 11. TRAF2 over-expressed h19BBz CAR T cells show similar in vivo efficacy to h19BBz CAR T cells in an aggressive leukemia model. S1 Supplemental Table 1. Probesets increased in m19z and m1928z vs m19-musBBz CAR T cells. Supplemental Table 2. Probesets increased in m19-musBBz vs m19z and m1928z CAR T cells. Supplemental Table 3. Probesets differentially expressed in m19z vs m19-musBBz CAR T cells. Supplemental Table 4. Probesets differentially expressed in m1928z vs m19-musBBz CAR T cells.
    [Show full text]
  • Nuclear Non-Chromatin Proteinaceous Structures: Their Role in the Organization and Function of the Interphase Nucleus
    J. Cell Set. 44, 395-435 (1980) 295 Printed in Great Britain © Company of BiologitU Limited igSo NUCLEAR NON-CHROMATIN PROTEINACEOUS STRUCTURES: THEIR ROLE IN THE ORGANIZATION AND FUNCTION OF THE INTERPHASE NUCLEUS PAUL S. AGUTTER* AND JONATHAN C. W. RICHARDSONf • Department of Biological Sciences, Napier College, Colinton Road, Edinburgh EH10 5DT, Scotland and f Department of Physiology and Pharmacology, University of St Andrews, Bute Medical Buildings, St Andrews, Fife, Scotland REVIEW ARTICLE: CONTENTS I. INTRODUCTION page 39s (1) Historical background 395 (2) Nomenclature 397 II. NUCLEAR PROTEIN MATRIX AND NUCLEAR GHOSTS 397 (1) Isolation 397 (2) Composition 398 (3) Ultrastructure 401 (4) Enzyme activities associated with the nuclear protein matrix 405 (5) Contractility of the nuclear protein matrix 405 (6) Functions associated with the nucleai protein matrix 408 III. SUBFRACTIONS OF THE NUCLEAR PROTEIN MATRIX 411 (A) The pore-lamina 411 (1) Isolation 411 (2) Composition 413 (3) Ultrastructure 414 (4) The molecular organization of the pore-lamina 417 (B) Other subfractions 419 IV. COMPOSITIONAL AND FUNCTIONAL DIFFERENCES BETWEEN THE PORE-LAMINA AND THE REMAINDER OF THE NUCLEAR PROTEIN MATRIX 42O V. PROSPECTS FOR FURTHER RESEARCH 422 (1) The role of the nuclear protein matrix in nucleo-cytoplasmic RNA transport 422 (2) Relevance of a knowledge of factors affecting the stability of the intra- nuclear regions of the matrix to the further development of methods for isolation of the nuclear envelope 423 (3) Fate of the nuclear matrix during mitosis 423 I. INTRODUCTION (1) Historical background Since 1949 there have been several accounts of a 'honeycomb layer' or 'nuclear cortex' in the nuclei of lower eukaryotes (Callan, Randall & Tomlin, 1949; Callan & Tomlin, 1950; Harris & James, 1952; Pappas, 1956; Beams, Tahmisian, Devine & 26-2 396 P.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Nup88 (22): Sc-136009
    SANTA CRUZ BIOTECHNOLOGY, INC. Nup88 (22): sc-136009 BACKGROUND APPLICATIONS The nuclear pore complex (NPC) mediates bidirectional macromolecular Nup88 (22) is recommended for detection of Nup88 of mouse, rat and human traffic between the nucleus and cytoplasm in eukaryotic cells and is com- origin by Western Blotting (starting dilution 1:200, dilution range 1:100- prised of more than 100 different subunits. Many of the subunits belong to 1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml a family called nucleoporins (Nups), which are characterized by the pres- of cell lysate)] and immunofluorescence (starting dilution 1:50, dilution range ence of O-linked-N-acetylglucosamine moieties and a distinctive pentapep- 1:50-1:500). tide repeat (XFXFG). Nup88 (nucleoporin 88 kDa) is a 741 amino acid protein Suitable for use as control antibody for Nup88 siRNA (h): sc-75980, Nup88 that localizes to the nucleus and functions as an essential component of siRNA (m): sc-75981, Nup88 shRNA Plasmid (h): sc-75980-SH, Nup88 shRNA the nuclear pore complex. Expressed ubiquitously, Nup88 is subject to phos- Plasmid (m): sc-75981-SH, Nup88 shRNA (h) Lentiviral Particles: sc-75980-V phorylation by ATM or ATR and is upregulated in malignant neoplasms and and Nup88 shRNA (m) Lentiviral Particles: sc-75981-V. precancerous dysplasias, suggesting a role in tumorigenesis. The gene encod- ing Nup88 maps to human chromosome 17p13.2, which comprises over 2.5% Molecular Weight of Nup88: 88 kDa. of the human genome and encodes over 1,200 genes. Positive Controls: IMR-32 cell lysate: sc-2409, HeLa whole cell lysate: sc-2200 or A-431 whole cell lysate: sc-2201.
    [Show full text]
  • Dynamic Force-Induced Direct Dissociation of Protein Complexes in a Nuclear Body in Living Cells
    ARTICLE Received 13 Jan 2012 | Accepted 26 Apr 2012 | Published 29 May 2012 DOI: 10.1038/ncomms1873 Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells Yeh-Chuin Poh1, Sergey P. Shevtsov2, Farhan Chowdhury1, Douglas C. Wu1, Sungsoo Na3, Miroslav Dundr2 & Ning Wang1 Despite past progress in understanding mechanisms of cellular mechanotransduction, it is unclear whether a local surface force can directly alter nuclear functions without intermediate biochemical cascades. Here we show that a local dynamic force via integrins results in direct displacements of coilin and SMN proteins in Cajal bodies and direct dissociation of coilin-SMN associated complexes. Spontaneous movements of coilin increase more than those of SMN in the same Cajal body after dynamic force application. Fluorescence resonance energy transfer changes of coilin-SMN depend on force magnitude, an intact F-actin, cytoskeletal tension, Lamin A/C, or substrate rigidity. Other protein pairs in Cajal bodies exhibit different magnitudes of fluorescence resonance energy transfer. Dynamic cyclic force induces tiny phase lags between various protein pairs in Cajal bodies, suggesting viscoelastic interactions between them. These findings demonstrate that dynamic force-induced direct structural changes of protein complexes in Cajal bodies may represent a unique mechanism of mechanotransduction that impacts on nuclear functions involved in gene expression. 1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Champaign, Illinois 61801, USA. 2 Department of Cell Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA. 3 Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana 46202, USA.
    [Show full text]
  • Adracalin (AAAS) Rabbit Polyclonal Antibody – TA349454 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA349454 Adracalin (AAAS) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: IHC, WB Recommended Dilution: ELISA: 1000-2000, WB: 200-1000, IHC: 50-200 Reactivity: Human, Mouse Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: Fusion protein of human AAAS Formulation: pH7.4 PBS, 0.05% NaN3, 40% Glyceroln Concentration: lot specific Purification: Antigen affinity purification Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 60 kDa Gene Name: aladin WD repeat nucleoporin Database Link: NP_056480 Entrez Gene 223921 MouseEntrez Gene 8086 Human Q9NRG9 Background: The protein encoded by this gene is a member of the WD-repeat family of regulatory proteins and may be involved in normal development of the peripheral and central nervous system. The encoded protein is part of the nuclear pore complex and is anchored there by NDC1. Defects in this gene are a cause of achalasia-addisonianism-alacrima syndrome (AAAS), also called triple-A syndrome or Allgrove syndrome. Two transcript variants encoding different isoforms have been found for this gene. Synonyms: AAA; AAASb; ADRACALA; ADRACALIN; ALADIN; GL003 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021
    [Show full text]
  • NLS-Mediated NPC Functions of the Nucleoporin Pom121
    FEBS Letters 584 (2010) 3292–3298 journal homepage: www.FEBSLetters.org NLS-mediated NPC functions of the nucleoporin Pom121 Sevil Yavuz, Rachel Santarella-Mellwig, Birgit Koch, Andreas Jaedicke, Iain W. Mattaj *,1, Wolfram Antonin **,1 European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany article info abstract Article history: RanGTP mediates nuclear import and mitotic spindle assembly by dissociating import receptors Received 23 February 2010 from nuclear localization signal (NLS) bearing proteins. We investigated the interplay between Revised 31 May 2010 import receptors and the transmembrane nucleoporin Pom121. We found that Pom121 interacts Accepted 2 July 2010 with importin a/b and a group of nucleoporins in an NLS-dependent manner. In vivo, replacement Available online 14 July 2010 of Pom121 with an NLS mutant version resulted in defective nuclear transport, induction of aber- Edited by Ulrike Kuttay rant cytoplasmic membrane stacks and decreased cell viability. We propose that the NLS sites of Pom121 affect its function in NPC assembly both by influencing nucleoporin interactions and pore membrane structure. Keywords: Pom121 Nucleoporin Structured summary: Importin MINT-7951230: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uni- protkb:O75694), Nup133 (uniprotkb:Q8WUM0) and Importin beta (uniprotkb:Q14974) by pull down (MI:0096) MINT-7951210: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0915) with Importin alpha (uni- protkb:P52170) and Importin beta (uniprotkb:P52297)
    [Show full text]
  • Genome-Wide Association for Testis Weight in the Diversity Outbred Mouse Population
    Genome-wide association for testis weight in the diversity outbred mouse population Joshua T. Yuan, Daniel M. Gatti, Vivek M. Philip, Steven Kasparek, Andrew M. Kreuzman, Benjamin Mansky, Kayvon Sharif, et al. Mammalian Genome ISSN 0938-8990 Volume 29 Combined 5-6 Mamm Genome (2018) 29:310-324 DOI 10.1007/s00335-018-9745-8 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media, LLC, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self- archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Mammalian Genome (2018) 29:310–324 https://doi.org/10.1007/s00335-018-9745-8 Genome-wide association for testis weight in the diversity outbred mouse population Joshua T. Yuan1 · Daniel M. Gatti2 · Vivek M. Philip2 · Steven Kasparek3 · Andrew M. Kreuzman4 · Benjamin Mansky4 · Kayvon Sharif4 · Dominik Taterra4 · Walter M. Taylor4 · Mary Thomas4 · Jeremy O. Ward5 · Andrew Holmes6 · Elissa J. Chesler2 · Clarissa C. Parker3,4 Received: 30 November 2017 / Accepted: 16 April 2018 / Published online: 24 April 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Testis weight is a genetically mediated trait associated with reproductive efficiency across numerous species.
    [Show full text]
  • 1 the Nucleoporin ELYS Regulates Nuclear Size by Controlling NPC
    bioRxiv preprint doi: https://doi.org/10.1101/510230; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity Predrag Jevtić1,4, Andria C. Schibler2,4, Gianluca Pegoraro3, Tom Misteli2,*, Daniel L. Levy1,* 1 Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071 2 National Cancer Institute, NIH, Bethesda, MD, 20892 3 High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD, 20892 4 Co-first authors *Corresponding authors: Daniel L. Levy Tom Misteli University of Wyoming National Cancer Institute, NIH Department of Molecular Biology Center for Cancer Research 1000 E. University Avenue 41 Library Drive, Bldg. 41, B610 Laramie, WY, 82071 Bethesda, MD, 20892 Phone: 307-766-4806 Phone: 240-760-6669 Fax: 307-766-5098 Fax: 301-496-4951 E-mail: [email protected] E-mail: [email protected] Running Head: ELYS is a nuclear size effector Abbreviations: NE, nuclear envelope; NPC, nuclear pore complex; ER, endoplasmic reticulum; Nup, nucleoporin; FG-Nup, phenylalanine-glycine repeat nucleoporin 1 bioRxiv preprint doi: https://doi.org/10.1101/510230; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Supplementary Data Genbank Or OSE Vs RO NIA Accession Gene Name Symbol FC B-Value H3073C09 11.38 5.62 H3126B09 9.64 6.44 H3073B0
    Supplementary Data GenBank or OSE vs RO NIA accession Gene name Symbol FC B-value H3073C09 11.38 5.62 H3126B09 9.64 6.44 H3073B08 9.62 5.59 AU022767 Exportin 4 Xpo4 9.62 6.64 H3073B09 9.59 6.48 BG063925 Metallothionein 2 Mt2 9.23 18.89 H3064B07 9.21 6.10 H3073D08 8.28 6.10 AU021923 Jagged 1 Jag1 7.89 5.93 H3070D08 7.54 4.58 BG085110 Cysteine-rich protein 1 (intestinal) Crip1 6.23 16.40 BG063004 Lectin, galactose binding, soluble 1 Lgals1 5.95 10.36 BG069712 5.92 2.34 BG076976 Transcribed locus, strongly similar to NP_032521.1 lectin, galactose binding, soluble 1 5.64 8.36 BG062930 DNA segment, Chr 11, Wayne State University 99, expressed D11Wsu99e 5.63 8.76 BG086474 Insulin-like growth factor binding protein 5 Igfbp5 5.50 15.95 H3002d11 5.13 20.77 BG064706 Keratin complex 1, acidic, gene 19 Krt1-19 5.06 9.07 H3007A09 5.05 2.46 H3065F02 4.84 5.43 BG081752 4.81 1.25 H3010E09 4.71 11.90 H3064c11 4.43 1.00 BG069711 Transmembrane 4 superfamily member 9 Tm4sf9 4.29 1.23 BG077072 Actin, beta, cytoplasmic Actb 4.29 3.01 BG079788 Hemoglobin alpha, adult chain 1 Hba-a1 4.26 6.63 BG076798 4.23 0.80 BG074344 Mesothelin Msln 4.22 6.97 C78835 Actin, beta, cytoplasmic Actb 4.16 3.02 BG067531 4.15 1.61 BG073468 Hemoglobin alpha, adult chain 1 Hba-a1 4.10 6.23 H3154H07 4.08 5.38 AW550167 3.95 5.66 H3121B01 3.94 5.94 H3124f12 3.94 5.64 BG073608 Hemoglobin alpha, adult chain 1 Hba-a1 3.84 5.32 BG073617 Hemoglobin alpha, adult chain 1 Hba-a1 3.84 5.75 BG072574 Hemoglobin alpha, adult chain 1 Hba-a1 3.82 5.93 BG072211 Tumor necrosis factor receptor superfamily,
    [Show full text]