Paraspeckles: Possible Nuclear Hubs by the RNA for the RNA

Total Page:16

File Type:pdf, Size:1020Kb

Paraspeckles: Possible Nuclear Hubs by the RNA for the RNA BioMol Concepts, Vol. 3 (2012), pp. 415–428 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/bmc-2012-0017 Review Paraspeckles: possible nuclear hubs by the RNA for the RNA Tetsuro Hirose 1, * and Shinichi Nakagawa 2 Introduction 1 Biomedicinal Information Research Center , National Institute of Advanced Industrial Science and Technology, The eukaryotic cell nucleus is highly compartmentalized. 2-4-7 Aomi, Koutou 135-0064, Tokyo , Japan More than 10 membraneless subnuclear organelles have 2 RNA Biology Laboratory , RIKEN Advanced Research been identifi ed (1, 2) . These so-called nuclear bodies exist Institute, 2-1 Hirosawa, Wako 351-0198 , Japan in the interchromosomal space, where they are enriched in multiple nuclear regulatory factors, such as transcription and * Corresponding author RNA-processing factors. These factors are thought to serve e-mail: [email protected] as specialized hubs for various nuclear events, including transcriptional regulation and RNA processing (3, 4) . Some nuclear bodies serve as sites for the biogenesis of macromo- Abstract lecular machineries, such as ribosomes and spliceosomes. Multiple cancer cell types show striking alterations in their The mammalian cell nucleus is a highly compartmental- nuclear body organization, including changes in the numbers, ized system in which multiple subnuclear structures, called shapes and sizes of certain nuclear bodies (5) . The structural nuclear bodies, exist in the nucleoplasmic spaces. Some of complexity and dynamics of nuclear bodies have been impli- the nuclear bodies contain specifi c long non-coding RNAs cated in the regulation of complex gene expression pathways (ncRNAs) as their components, and may serve as sites for in mammalian cells. long ncRNA functions that remain largely enigmatic. A Also known as the ‘ ribosome factory ’ , the nucleolus is the paraspeckle is a nuclear body that is almost ubiquitously classic nuclear body and the site at which RNA polymerase I observed in mammalian cultured cells but is cell population- transcription, pre-rRNA processing and modifi cation and sub- specifi c in adult mouse tissue. The paraspeckle structure is sequent ribosomal protein assembly occur sequentially within RNase-sensitive. Long ncRNAs, termed MEN ε / β ncRNAs the hierarchical structure of the nucleolus (6, 7) . (also referred to as NEAT1 ncRNAs), have been identi- Cajal bodies (CBs) were originally discovered in the fi ed as the RNA components of the paraspeckles. Specifi c nucleus of various cell types at the beginning of the 20 th cen- elimination has revealed that MEN ε / β ncRNAs are essential tury (8) . CBs are spherical suborganelles of 0.2 – 2.0 µ m in components for the formation of the intact paraspeckle struc- diameter that can be specifi cally marked by autoantibodies ture. Paraspeckle formation requires the continual MENε / β against p80/Coilin. They are involved in the biogenesis of ncRNA biogenesis process, including ongoing transcrip- multiple small nuclear ribonucleoprotein particles (snRNPs) tion, alternative 3′ -end processing, and stabilization. Some and small nucleolar ribonucleoprotein particles (snoRNPs) paraspeckle-localized RNA-binding proteins (p54/nrb and (9, 10) . CBs often overlap with distinct subnuclear structures PSF) direct paraspeckle formation through the selective sta- called histone locus bodies, in which histone gene clusters, bilization of MEN β ncRNA. Both MEN ε / β ncRNA expres- histone gene transcription factors and histone mRNA pro- sion and their subsequent interactions with paraspeckle cessing factors, such as NPAT and U7 snRNP, are localized proteins can be regulated under environmental and develop- (10, 11) . mental conditions, which are refl ected in the size and num- Gems are nuclear bodies that contain a large protein com- ber of the paraspeckles. However, how paraspeckles function plex, including the survival motor neuron (SMN) protein, and remains largely unsolved. Paraspeckles appear to serve as the often overlap with CBs (10, 12) . Although the SMN complex site of nuclear retention of specifi c mRNAs that are selec- is involved in the biogenesis of snRNPs in the cytoplasm, its tively transported to the cytoplasm upon certain signals. roles in nuclear gems are poorly understood. Alternatively, MENε / β ncRNAs may sequester paraspeckle The nuclei of various cell types each contain 25 – 50 irregu- proteins that function outside the paraspeckles. This review larly shaped nuclear structures, called nuclear speckles, of focuses on known aspects of paraspeckles and provides a 0.8 – 1.8 µ m in diameter. These structures are identical to model of their structure and function. the interchromatin granule clusters (IGS) seen by electron microscopy. The pre-mRNA splicing machinery, including Keywords: long non-coding RNA; nuclear body; small nuclear ribonucleoprotein particles (snRNPs), spli- paraspeckle; RNA-binding protein; RNA-protein interaction. ceosome subunits, and other non-snRNP protein splicing 416 T. Hirose and S. Nakagawa factors, shows a punctate nuclear localization pattern that is to distinct nuclear foci (Sam68 bodies) at the periphery of usually termed ‘ a speckled pattern ’ (13, 14) . In spite of the the nucleolus. Electron microscopic analysis has revealed accumulation of splicing factors in nuclear speckles, subse- that Sam68 bodies contain nucleic acids, presumably RNA. quent studies indicated that splicing generally does not occur The targeting of Sam68 to these nuclear bodies involves its in nuclear speckles. Currently, nuclear speckles are widely highly conserved RNA-binding domain (GSG domain) (35) . considered to be the reservoir of various splicing factors that Another splicing regulatory factor, polypyrimidine tract bind- are translocated to the transcriptionally active sites of the ing protein (PTB), colocalizes to a distinct perinucleolar com- chromosome (14) . partment (PNC) with several RNA polymerase III transcripts, Many nuclear bodies contain specifi c RNA molecules, including ribonuclease P RNA and RNase mitochondrial pro- including those that are unlikely to code for polypeptides, cessing (MRP) RNA (36) . Thus, many nuclear bodies contain so-called non-coding RNAs (ncRNAs). Genome-wide tran- specifi c ncRNA molecules and RNA-binding proteins and scriptomic analyses have revealed that numerous ncRNAs are may serve as platforms for the regulation of gene expression produced from multiple intergenic regions and various por- and ribonucleoprotein biogenesis, in addition to their func- tions of the human and mouse genomes (15 – 20) . Recently, tions as reservoirs. several abundant long ncRNAs were shown to localize to This review will focus on the structure and function of the specifi c nuclear bodies. This fi nding raised the intriguing pos- specifi c nuclear body called the paraspeckle, which is com- sibility that these nuclear bodies are sites where the ncRNAs prised of specifi c nuclear-retained long ncRNAs and multiple play certain regulatory roles in nuclear events, such as gene RNA-binding proteins. Recent research has uncovered the expression, the modulation of protein function or the biogen- unique architecture of the paraspeckle and the possible regula- esis of macromolecular machineries (21 – 25) . tory functions that are encoded by its abundant long ncRNAs. For instance, nuclear speckles contain the highly abun- The signifi cance of the ncRNAs in paraspeckle structural for- dant long ncRNA Malat-1 (also known as nuclear enrichment mation and its functional relevance are discussed, with con- abundant transcript 2 [NEAT2]) and unidentifi ed polyadeny- sideration of other recently reported nuclear RNA granules lated RNAs. Malat-1 is a nuclear ncRNA of ∼ 8 kb in size involved in stress response and diseases. that is signifi cantly associated with cancer metastasis (26, 27) . Malat-1 ncRNA reportedly regulates alternative splicing patterns by modulating the phosphorylation status of SR-rich The paraspeckle: its discovery and unusual splicing factors (28) and controls synaptogenesis by modu- features lating the expression of genes involved in this process (29) . Rosenfeld and colleagues reported that Malat-1 associates The paraspeckle was discovered in 2002 by the Angus Lamond with unmethylated Polycomb 2 (Pc2) in nuclear speckles, Laboratory at the University of Dundee, Scotland (37) . Because which leads to relocation of the target gene locus. This event these new nuclear bodies were localized in close proximity to triggers the SUMOylation of Pc2, which leads to activation nuclear speckles, they were named ‘ paraspeckles ’ . Initially, of the growth-control gene program (30) . By contrast, methy- Lamond and his colleagues performed large-scale proteomics lated Pc2 associates with TUG1 ncRNA, which specifi cally analyses of isolated HeLa cell nucleoli treated with the tran- localizes to Polycomb bodies (PcGs). This process leads to scription inhibitor actin omycin D, identifying 279 nucleolar the relocation and suppression of the above genes under qui- protein candidates. Among the functionally uncharacterized escent conditions (30) . Thus, it has been suggested that long proteins in the identifi ed nucleolar protein candidates, two ncRNAs in the nuclear bodies integrate the various regula- proteins, named paraspeckle proteins 1 and 2 (PSP1 and PSP2, tory events by sequestering and dissociating the key regula- respectively), exhibited nuclear punctate localization (37) . tory factors. Interestingly, PSP1 and PSP2 were not enriched in nucleoli Although the detailed
Recommended publications
  • Building the Interphase Nucleus: a Study on the Kinetics of 3D Chromosome Formation, Temporal Relation to Active Transcription, and the Role of Nuclear Rnas
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2020-07-28 Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs Kristin N. Abramo University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Cell Biology Commons, Computational Biology Commons, Genomics Commons, Laboratory and Basic Science Research Commons, Molecular Biology Commons, Molecular Genetics Commons, and the Systems Biology Commons Repository Citation Abramo KN. (2020). Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs. GSBS Dissertations and Theses. https://doi.org/10.13028/a9gd-gw44. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/1099 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N. ABRAMO Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPOPHY July 28, 2020 Program in Systems Biology, Interdisciplinary Graduate Program BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N.
    [Show full text]
  • Nuclear Bodies Reorganize During Myogenesis in Vitro and Are
    Homma et al. Skeletal Muscle (2016) 6:42 DOI 10.1186/s13395-016-0113-7 RESEARCH Open Access Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4 Sachiko Homma1, Mary Lou Beermann1, Bryant Yu1, Frederick M. Boyce2 and Jeffrey Boone Miller1,3* Abstract Background: Nuclear bodies, such as nucleoli, PML bodies, and SC35 speckles, are dynamic sub-nuclear structures that regulate multiple genetic and epigenetic processes. Additional regulation is provided by RNA/DNA handling proteins, notably TDP-43 and FUS, which have been linked to ALS pathology. Previous work showed that mouse cell line myotubes have fewer but larger nucleoli than myoblasts, and we had found that nuclear aggregation of TDP-43 in human myotubes was induced by expression of DUX4-FL, a transcription factor that is aberrantly expressed and causes pathology in facioscapulohumeral dystrophy (FSHD). However, questions remained about nuclear bodies in human myogenesis and in muscle disease. Methods: We examined nucleoli, PML bodies, SC35 speckles, TDP-43, and FUS in myoblasts and myotubes derived from healthy donors and from patients with FSHD, laminin-alpha-2-deficiency (MDC1A), and alpha-sarcoglycan- deficiency (LGMD2D). We further examined how these nuclear bodies and proteins were affected by DUX4-FL expression. Results: We found that nucleoli, PML bodies, and SC35 speckles reorganized during differentiation in vitro, with all three becoming less abundant in myotube vs. myoblast nuclei. In addition, though PML bodies did not change in size, both nucleoli and SC35 speckles were larger in myotube than myoblast nuclei. Similar patterns of nuclear body reorganization occurred in healthy control, MDC1A, and LGMD2D cultures, as well as in the large fraction of nuclei that did not show DUX4-FL expression in FSHD cultures.
    [Show full text]
  • Nuclear Domains
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cold Spring Harbor Laboratory Institutional Repository CELL SCIENCE AT A GLANCE 2891 Nuclear domains dynamic structures and, in addition, nuclear pore complex has been shown to rapid protein exchange occurs between have a remarkable substructure, in which David L. Spector many of the domains and the a basket extends into the nucleoplasm. Cold Spring Harbor Laboratory, One Bungtown nucleoplasm (Misteli, 2001). An The peripheral nuclear lamina lies Road, Cold Spring Harbor, NY 11724, USA extensive effort is currently underway by inside the nuclear envelope and is (e-mail: [email protected]) numerous laboratories to determine the composed of lamins A/C and B and is biological function(s) associated with thought to play a role in regulating Journal of Cell Science 114, 2891-2893 (2001) © The Company of Biologists Ltd each domain. The accompanying poster nuclear envelope structure and presents an overview of commonly anchoring interphase chromatin at the The mammalian cell nucleus is a observed nuclear domains. nuclear periphery. Internal patches of membrane-bound organelle that contains lamin protein are also present in the the machinery essential for gene The nucleus is bounded by a nuclear nucleoplasm (Moir et al., 2000). The expression. Although early studies envelope, a double-membrane structure, cartoon depicts much of the nuclear suggested that little organization exists of which the outer membrane is envelope/peripheral lamina as within this compartment, more contiguous with the rough endoplasmic transparent, so that internal structures contemporary studies have identified an reticulum and is often studded with can be more easily observed.
    [Show full text]
  • Biogenesis of Nuclear Bodies
    Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Biogenesis of Nuclear Bodies Miroslav Dundr1 and Tom Misteli2 1Department of Cell Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Ilinois 60064 2National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 Correspondence: [email protected]; [email protected] The nucleus is unique amongst cellular organelles in that it contains a myriad of discrete suborganelles. These nuclear bodies are morphologically and molecularly distinct entities, and they host specific nuclear processes. Although the mode of biogenesis appears to differ widely between individual nuclear bodies, several common design principles are emerging, particularly, the ability of nuclear bodies to form de novo, a role of RNA as a struc- tural element and self-organization as a mode of formation. The controlled biogenesis of nuclear bodies is essential for faithful maintenance of nuclear architecture during the cell cycle and is an important part of cellular responses to intra- and extracellular events. he mammalian cell nucleus contains a mul- seems to act indirectly by regulating the local Ttitude of discrete suborganelles, referred to concentration of its components in the nucleo- as nuclear bodies or nuclear compartments plasm. (reviewed in Dundr and Misteli 2001; Spector In many ways, nuclear bodies are similar 2001; Lamond and Spector 2003; Handwerger to conventional cellular organelles in the cy- and Gall 2006; Zhao et al. 2009). These bodies toplasm. Like cytoplasmic organelles, they con- are an essential part of the nuclear landscape tain a specific set of resident proteins, which as they compartmentalize the nuclear space defines each structure molecularly.
    [Show full text]
  • DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy
    cells Review DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy Lu Zhang 1,2 and Xiaogang Li 2,3,* 1 Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; [email protected] 2 Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA 3 Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA * Correspondence: [email protected]; Tel.: +1-507-266-0110 Abstract: Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regula- tion has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis.
    [Show full text]
  • Multiple Controls Regulate Nucleostemin Partitioning Between Nucleolus and Nucleoplasm
    5124 Research Article Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm Lingjun Meng1, Hiroaki Yasumoto1 and Robert Y. L. Tsai1,* 1Center for Cancer and Stem Cell Biology, Alkek Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W Holcombe Blvd, Houston, TX 77030-3303, USA *Author for correspondence (e-mail: [email protected]) Accepted 6 October 2006 Journal of Cell Science 119, 5124-5136 Published by The Company of Biologists 2006 doi:10.1242/jcs.03292 Summary Nucleostemin plays an essential role in maintaining the nucleostemin. It interacts with both the basic and the GTP- continuous proliferation of stem cells and cancer cells. The binding domains of nucleostemin through a non-nucleolus- movement of nucleostemin between the nucleolus and the targeting region. Overexpression of the nucleolus-targeting nucleoplasm provides a dynamic way to partition the domain of RSL1D1 alone disperses nucleolar nucleostemin. nucleostemin protein between these two compartments. Loss of RSL1D1 expression reduces the compartmental size Here, we show that nucleostemin contains two nucleolus- and amount of nucleostemin in the nucleolus. Our work targeting regions, the basic and the GTP-binding domains, reveals that the partitioning of nucleostemin employs that exhibit a short and a long nucleolar retention time, complex mechanisms involving both nucleolar and respectively. In a GTP-unbound state, the nucleolus- nucleoplasmic components, and provides insight into the targeting activity of nucleostemin is blocked by a post-translational regulation of its activity. mechanism that traps its intermediate domain in the nucleoplasm. A nucleostemin-interacting protein, RSL1D1, Supplementary material available online at was identified that contains a ribosomal L1-domain.
    [Show full text]
  • GEMIN4 Functions As a Coregulator of the Mineralocorticoid Receptor
    J YANG, C D CLYNE, M J YOUNG and GEMIN4 as an MR coregulator 54:2 149–160 Research others GEMIN4 functions as a coregulator of the mineralocorticoid receptor Jun Yang1,2, Peter J Fuller1,2, James Morgan1, Hirotaka Shibata3, Colin D Clyne1,* and Morag J Young1,2,* Correspondence should be addressed 1MIMR-PHI Institute, PO Box 5152, Clayton, Victoria 3168, Australia to M J Young 2Department of Medicine, Monash University, Clayton, Victoria 3168, Australia Email 3Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan morag.young@ *(C D Clyne and M J Young contributed equally to this work) princehenrys.org Abstract The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Key Words Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use " mineralocorticoid receptor of MR antagonists is limited by the renal side effect of hyperkalemia. Coregulator proteins (MR) are known to be critical for nuclear receptor-mediated gene expression. Identification " coactivator of coregulators, which mediate MR activity in a tissue-specific manner, may allow for the " corepressor development of novel tissue-selective MR modulators that confer cardiac protection without " GEMIN4 adverse renal effects. Our earlier studies identified a consensus motif among MR-interacting peptides, MPxLxxLL. Gem (nuclear organelle)-associated protein 4 (GEMIN4) is one of the proteins that contain this motif. Transient transfection experiments in HEK293 and H9c2 cells demonstrated that GEMIN4 repressed agonist-induced MR transactivation in a cell-specific manner. Furthermore, overexpression of GEMIN4 significantly decreased, while knockdown of GEMIN4 increased, the mRNA expression of specific endogenous MR target genes.
    [Show full text]
  • Nucleus Size and DNA Accessibility Are Linked to the Regulation Of
    Grosch et al. BMC Biology (2020) 18:42 https://doi.org/10.1186/s12915-020-00770-y RESEARCH ARTICLE Open Access Nucleus size and DNA accessibility are linked to the regulation of paraspeckle formation in cellular differentiation Markus Grosch1, Sebastian Ittermann1, Ejona Rusha2, Tobias Greisle1, Chaido Ori1,3, Dong-Jiunn Jeffery Truong4, Adam C. O’Neill1, Anna Pertek2, Gil Gregor Westmeyer4 and Micha Drukker1,2* Abstract Background: Many long noncoding RNAs (lncRNAs) have been implicated in general and cell type-specific molecular regulation. Here, we asked what underlies the fundamental basis for the seemingly random appearance of nuclear lncRNA condensates in cells, and we sought compounds that can promote the disintegration of lncRNA condensates in vivo. Results: As a basis for comparing lncRNAs and cellular properties among different cell types, we screened lncRNAs in human pluripotent stem cells (hPSCs) that were differentiated to an atlas of cell lineages. We found that paraspeckles, which form by aggregation of the lncRNA NEAT1, are scaled by the size of the nucleus, and that small DNA-binding molecules promote the disintegration of paraspeckles and other lncRNA condensates. Furthermore, we found that paraspeckles regulate the differentiation of hPSCs. Conclusions: Positive correlation between the size of the nucleus and the number of paraspeckles exist in numerous types of human cells. The tethering and structure of paraspeckles, as well as other lncRNAs, to the genome can be disrupted by small molecules that intercalate in DNA. The structure-function relationship of lncRNAs that regulates stem cell differentiation is likely to be determined by the dynamics of nucleus size and binding site accessibility.
    [Show full text]
  • Nuclear Non-Chromatin Proteinaceous Structures: Their Role in the Organization and Function of the Interphase Nucleus
    J. Cell Set. 44, 395-435 (1980) 295 Printed in Great Britain © Company of BiologitU Limited igSo NUCLEAR NON-CHROMATIN PROTEINACEOUS STRUCTURES: THEIR ROLE IN THE ORGANIZATION AND FUNCTION OF THE INTERPHASE NUCLEUS PAUL S. AGUTTER* AND JONATHAN C. W. RICHARDSONf • Department of Biological Sciences, Napier College, Colinton Road, Edinburgh EH10 5DT, Scotland and f Department of Physiology and Pharmacology, University of St Andrews, Bute Medical Buildings, St Andrews, Fife, Scotland REVIEW ARTICLE: CONTENTS I. INTRODUCTION page 39s (1) Historical background 395 (2) Nomenclature 397 II. NUCLEAR PROTEIN MATRIX AND NUCLEAR GHOSTS 397 (1) Isolation 397 (2) Composition 398 (3) Ultrastructure 401 (4) Enzyme activities associated with the nuclear protein matrix 405 (5) Contractility of the nuclear protein matrix 405 (6) Functions associated with the nucleai protein matrix 408 III. SUBFRACTIONS OF THE NUCLEAR PROTEIN MATRIX 411 (A) The pore-lamina 411 (1) Isolation 411 (2) Composition 413 (3) Ultrastructure 414 (4) The molecular organization of the pore-lamina 417 (B) Other subfractions 419 IV. COMPOSITIONAL AND FUNCTIONAL DIFFERENCES BETWEEN THE PORE-LAMINA AND THE REMAINDER OF THE NUCLEAR PROTEIN MATRIX 42O V. PROSPECTS FOR FURTHER RESEARCH 422 (1) The role of the nuclear protein matrix in nucleo-cytoplasmic RNA transport 422 (2) Relevance of a knowledge of factors affecting the stability of the intra- nuclear regions of the matrix to the further development of methods for isolation of the nuclear envelope 423 (3) Fate of the nuclear matrix during mitosis 423 I. INTRODUCTION (1) Historical background Since 1949 there have been several accounts of a 'honeycomb layer' or 'nuclear cortex' in the nuclei of lower eukaryotes (Callan, Randall & Tomlin, 1949; Callan & Tomlin, 1950; Harris & James, 1952; Pappas, 1956; Beams, Tahmisian, Devine & 26-2 396 P.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Dynamic Force-Induced Direct Dissociation of Protein Complexes in a Nuclear Body in Living Cells
    ARTICLE Received 13 Jan 2012 | Accepted 26 Apr 2012 | Published 29 May 2012 DOI: 10.1038/ncomms1873 Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells Yeh-Chuin Poh1, Sergey P. Shevtsov2, Farhan Chowdhury1, Douglas C. Wu1, Sungsoo Na3, Miroslav Dundr2 & Ning Wang1 Despite past progress in understanding mechanisms of cellular mechanotransduction, it is unclear whether a local surface force can directly alter nuclear functions without intermediate biochemical cascades. Here we show that a local dynamic force via integrins results in direct displacements of coilin and SMN proteins in Cajal bodies and direct dissociation of coilin-SMN associated complexes. Spontaneous movements of coilin increase more than those of SMN in the same Cajal body after dynamic force application. Fluorescence resonance energy transfer changes of coilin-SMN depend on force magnitude, an intact F-actin, cytoskeletal tension, Lamin A/C, or substrate rigidity. Other protein pairs in Cajal bodies exhibit different magnitudes of fluorescence resonance energy transfer. Dynamic cyclic force induces tiny phase lags between various protein pairs in Cajal bodies, suggesting viscoelastic interactions between them. These findings demonstrate that dynamic force-induced direct structural changes of protein complexes in Cajal bodies may represent a unique mechanism of mechanotransduction that impacts on nuclear functions involved in gene expression. 1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Champaign, Illinois 61801, USA. 2 Department of Cell Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA. 3 Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana 46202, USA.
    [Show full text]
  • Cytochemical Features Common to Nucleoli and Cytoplasmic Nucleoloids of Olea Europaea Meiocytes: Detection of Rrna by in Situ Hybridization
    Journal of Cell Science 107, 621-629 (1994) 621 Printed in Great Britain © The Company of Biologists Limited 1994 JCS8341 Cytochemical features common to nucleoli and cytoplasmic nucleoloids of Olea europaea meiocytes: detection of rRNA by in situ hybridization J. D. Alché, M. C. Fernández and M. I. Rodríguez-García* Plant Biochemistry, Molecular and Cellular Biology Department, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E- 18008 Granada, Spain *Author for correspondence SUMMARY We used light and electron microscopic techniques to study highly phosphorylated proteins. Immunohistochemical the composition of cytoplasmic nucleoloids during meiotic techniques failed to detect DNA in either structure. In situ division in Olea europaea. Nucleoloids were found in two hybridization to a 18 S rRNA probe demonstrated the clearly distinguishable morphological varieties: one similar presence of ribosomal transcripts in both the nucleolus and in morphology to the nucleolus, and composed mainly of nucleoloids. These similarities in morphology and compo- dense fibrillar component, and another surrounded by sition may reflect similar functionalities. many ribosome-like particles. Cytochemical and immuno- cytochemical techniques showed similar reactivities in nucleoloids and the nucleolus: both are ribonucleoproteic Key words: nucleoloids, nucleolar proteins, rRNA, in situ in nature, and possess argyrophillic, argentaffinic and hybridization INTRODUCTION lentum (Carretero and Rodríguez-García, unpublished observa- tions). The reason for this diversity is unknown. Cytoplasmic bodies similar in morphology and ultrastructural Nucleoloids have rarely been studied in genera other than characteristics to the nucleolus have been reported many times Lilium. Cytoplasmic nucleoloids are very common in Olea in relation to plant meiosis (Latter, 1926; Frankel, 1937; europaea during microsporogenesis and their large size and Hakansson and Levan, 1942; Gavaudan, 1948; Lindemann, peculiar morphological characteristics make them a good 1956).
    [Show full text]