Magazine Issue 27 2014 Australian

Total Page:16

File Type:pdf, Size:1020Kb

Magazine Issue 27 2014 Australian AUSTRALIAN MAGAZINE ISSUE 27 2014 AUSTRALIAN ANTARCTIC ISSUE 2014 MAGAZINE 27 The Australian Antarctic Division, a Division of the Department of the Environment, leads Australia’s Antarctic program and seeks to advance Australia’s Antarctic interests CONTENTS in pursuit of its vision of having ‘Antarctica valued, protected and understood’. It does this by managing Australian government activity in Antarctica, providing transport and SCIENCE logistic support to Australia’s Antarctic research program, maintaining four permanent Australian research stations, Cleaning up fuel spills in Antarctica 1 and conducting scientific research programs both on land Future ocean in a chamber 4 and in the Southern Ocean. Navy survey identifies new seabed features at Casey 6 Australia’s Antarctic national interests are to: • Preserve our sovereignty over the Australian Antarctic Antarctic marine hotspots identified by animal tracking 9 Territory, including our sovereign rights over the New ice core records rewrite volcanic history 10 adjacent offshore areas. • Take advantage of the special opportunities Antarctica Keys to a hidden marine world 11 offers for scientific research. Antarctic lakes are full of small surprises 12 • Protect the Antarctic environment, having regard to its special qualities and effects on our region. Instant sinking hooks will save seabirds in tuna longline fisheries 14 • Maintain Antarctica’s freedom from strategic and/or A life dedicated to saving seabirds 16 political confrontation. Deep sea cameras reveal limited impact of fishing around Heard Island 17 • Be informed about and able to influence developments in a region geographically proximate to Australia. Stormy seas ahead for sea ice longevity 18 • Derive any reasonable economic benefits from living and non-living resources of the Antarctic (excluding deriving HISTORY such benefits from mining and oil drilling). Journey of discovery for Antarctic heritage specialists 19 Australian Antarctic Magazine seeks to inform the Australian Australia’s Antarctic aerial history archived 20 and international Antarctic community about the activities Aurora Australis celebrates her 25th birthday 22 of the Australian Antarctic program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent Paddle unites Australian and Antarctic deserts 23 the position of the Australian Government. Australian Antarctic Magazine is produced twice a year POLICY (June and December). All text and images published in the Landscape rehabilitation in the Vestfold Hills 24 magazine are copyright of the Commonwealth of Australia, unless otherwise stated. Editorial enquiries, including requests to reproduce material, or contributions, should be addressed to: ANTARCTIC LIFE The Editor The Antarctic Selection 26 Australian Antarctic Magazine Australian Antarctic Division Leading Mawson station 28 203 Channel Highway IN BRIEF 30 Kingston, 7050 Tasmania, Australia. FREEZE FRAME 33 Australian Antarctic Division Telephone: (03) 6232 3209 (International 61 3 6232 3209) email: [email protected] Facsimile: (03) 6232 3288 (International 61 3 6232 3288) Editor: Wendy Pyper Production: Sally Chambers, Jessica Fitzpatrick. Graphic Design: Paper Monkey ISSN 1445-1735 (print version) Australian Antarctic Magazine is printed on Monza satin recycled paper; a 50% post consumer waste and 50% FSC certified fibre stock. Australian Antarctic Magazine can be viewed online: ABOUT THE COVER www.antarctica.gov.au/magazine Australian Antarctic Division Director Dr Tony Fleming took this photo of Adélie penguins on an iceberg during a visit to Commonwealth Bay in 2012. AAD9614rj SCIENCE Cleaning up fuel spills in Antarctica REBECCA MCWATTERS 1 Advances in remediation science and a developing local expertise have allowed Australian scientists and engineers to begin addressing long-term soil contamination issues at Australia’s Antarctic and subantarctic stations. Since 2003, remediation teams have applied ‘PRBs are the first step in a multi-step process creating a series of ‘biopiles’. Like PRBs, biopiles and modified existing remediation technologies, used to treat a contaminated site,’ Australian use the native soil microorganisms to break normally used under warmer, more favourable Antarctic Division Remediation Specialist, down fuel contaminants. They do so at a faster conditions, to clean up fuel spills and develop Mr Tim Spedding, said. rate, however, because the soil conditions are risk and remediation guidelines for Australia’s ‘PRBs contain the effects of a spill and minimise optimised for microbial growth by the addition Antarctic and subantarctic stations and the spread of contamination until the site can of air and moisture. environments. The work will be used to assist be more actively remediated. You need to install Over three summer seasons, seven biopiles have other Antarctic nations in their remediation them first because once you start excavating been built at Casey station, with each soil pile efforts and to tackle legacy sites such as contaminated soil for treatment you’ll also measuring some 18 x 5 m in size and 1.5 m high. Australia’s abandoned Wilkes station. thaw the ground and remobilise a lot of the The biopiles are active for up to three months At Casey station, members of the Australian contaminants in the meltwater.’ a year, when summer temperatures are high Antarctic Division’s remediation team have The PRB consists of a series of cage pallets enough to thaw the soil and release moisture. delivered a significant and ongoing decrease in containing pelletised nutrients and activated Once the soil is thawed, leachate water is soil contamination at the station over the past carbon, which is placed in the path of the re-circulated through it to increase soil moisture four years. The first stage of the Casey clean-up meltwater flow. When the water enters the distribution. A system of aeration pipes forces air began in 2005, to deal with a 6000 litre fuel barrier it becomes enriched with nutrients, through the biopiles towards a carbon filter at spill at the station’s main powerhouse in 1999. which stimulates the native soil microbes to one end, trapping any volatile compounds that The remediation team, in collaboration with begin degrading fuel captured on the activated then biodegrade or evaporate. scientists from the University of Melbourne, carbon. After a further nutrient capture installed a ‘permeable reactive barrier’ (PRB) step, clean water flows out the other side at the site. These barriers prevent fuel- of the barrier. 1. Remediation at the Main Power House fuel spill contaminated snowmelt and groundwater from site. Contaminated soil is being excavated in In Antarctica the environmental conditions front of the permeable reactive barrier (lower leaching into the surrounding environment, are such that PRBs can only passively treat right of photo) and placed into biopile 6. Biopiles by channelling it through a treatment system. contaminated meltwater, rather than actively 1-5 can be seen with their covers on. Aeration systems are visible between the biopiles. reduce soil contamination. So in 2010 the team embarked on an active approach to remediation by excavating the contaminated soil and ISSUE 27 2014 AUSTRALIAN ANTARCTIC MAGAZINE 1 SCIENCE While the technology has been used extensively biopiles and into the environment; all while ‘Our most recent tests show that hydrocarbon in the Arctic and temperate environments, the soil was being treated,’ Dr McWatters said. concentrations in the biopiles are decreasing by Antarctica has different environmental ‘We’ve also trialled a range of geotextile 50% every 500 days,’ Dr McWatters said. conditions and soil types. As a result, the team covers, which prevent contaminated dust ‘This compares to no detectable change over has had to research and tweak their materials being blown off the biopiles. five years when just the PRB technology was and methods while they work. Part of this ‘We’re looking for the right combination used to contain the contaminants on site. This is process involved testing a variety of materials of technologies that will do the job with very exciting and shows we are nearing our used to cover and to line the base of the minimal cost, maintenance and management, goal of returning remediated soil to the Casey biopiles. To do this, the remediation team and that will outlast the lifespan of the environment for specific reuse applications.’ recruited geoenvironmental engineer Dr Rebecca contaminated soil.’ But how clean is clean enough? That is the McWatters, from Queen’s University, Canada, question now occupying the remediation team for her expertise in Arctic contaminated sites, The tests were conducted on the biopiles while and ecotoxicologists at the Australian Antarctic geosynthetic materials and barrier systems. soil remediation was underway, but also in a variety of other field- and laboratory-based tests. Division (see side bar). While the soil will never ‘For the past three years we’ve been By early 2014 the team had supportive evidence return to its original state, there will be a point investigating different combinations of for a combination of materials that would do beyond which the effort to continue remediation geosynthetic liner materials on the biopiles, the job while withstanding the cold, dry, windy, will be disproportionate to the risks posed to the to test their long-term performance as a abrasive and UV-intense environment. In the environment’s flora and fauna. composite barrier system in
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • East Antartic Landfast Sea-Ice Distribution and Variability
    EAST ANTARCTIC LANDFAST SEA-ICE DISTRIBUTION AND VARIABILITY by Alexander Donald Fraser, B.Sc.-B.Comp., B.Sc. Hons Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy Institute for Marine and Antarctic Studies University of Tasmania May, 2011 I declare that this thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Signed: Alexander Donald Fraser Date: This thesis may be reproduced, archived, and communicated in any ma- terial form in whole or in part by the University of Tasmania or its agents. The publishers of the papers comprising Appendices A and B hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non published content of the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Signed: Alexander Donald Fraser Date: ABSTRACT Landfast sea ice (sea ice which is held fast to the coast or grounded icebergs, also known as fast ice) is a pre-eminent feature of the Antarctic coastal zone, where it forms an important interface between the ice sheet and pack ice/ocean to exert a ma- jor influence on high-latitude atmosphere-ocean interaction and biological processes.
    [Show full text]
  • Why the 'Infrastructure PM' Can't Give Antarctica the Cold Shoulder
    Please do not remove this page Why the ‘infrastructure PM’ can’t give Antarctica the cold shoulder McCallum, Adrian B https://research.usc.edu.au/discovery/delivery/61USC_INST:ResearchRepository/12126045700002621?l#13127312320002621 McCallum, A. B. (2013). Why the “infrastructure PM” can’t give Antarctica the cold shoulder. The Conversation, 5 December 2013. https://research.usc.edu.au/discovery/fulldisplay/alma99448982602621/61USC_INST:ResearchRepository Document Type: Published Version USC Research Bank: https://research.usc.edu.au [email protected] CC BY V4.0 Copyright © 2013 The Conversation Media Group. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) Downloaded On 2021/10/02 23:37:22 +1000 Please do not remove this page 26/02/2016 Why the 'infrastructure PM' can't give Antarctica the cold shoulder Why the ‘infrastructure PM’ can’t give Antarctica the cold shoulder December 6, 2013 6.35am AEDT Tractors and quad bikes – seen here at Australia’s Mawson Station – are only two of many forms of transport used in Antarctica. Chris Wilson/Australian Antarctic Division Adrian McCallum Lecturer in Science and Engineering, University of the Sunshine Coast Prime Minister Tony Abbott recently declared that he wanted to be known as the “infrastructure prime minister”. But what of Australia’s iciest infrastructure – that located in Antarctica? A 20­year strategic plan for Australia’s Antarctic future was recently commissioned by the federal government, but it will be another six months before Tony Press, ex­director of the Australian Antarctic Division, reveals his “blueprint”. So what is best practice when it comes to polar infrastructure, and where should Australia be heading to maintain our status as a leader in Antarctic science and operations? Stations The British Antarctic Survey completed construction of their new Halley VI Station on the floating Brunt Ice Shelf, atop the Weddell Sea, East Antarctica in 2012.
    [Show full text]
  • A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • Management Plan for Antarctic Specially Protected Area No
    Measure 5 (2014) Annex Management Plan for Antarctic Specially Protected Area No. 136 CLARK PENINSULA, BUDD COAST, WILKES LAND, EAST ANTARCTICA Introduction Antarctic Specially Protected Area (ASPA) No. 136 is located on Clark Peninsula, Wilkes Land at 66°15'S, 110°36'E (see Map A). The Clark Peninsula was originally designated as Site of Special Scientific Interest (SSSI) No. 17 under Recommendation XIII-8 (1985). A revised management plan for SSSI 17 was adopted under Measure 1 (2000). The area was redesignated and renumbered as ASPA 136 under Decision 1 (2002). Revised ASPA management plans were adopted under Measure 1 (2006) and Measure 7 (2009). ASPA 136 is primarily designated to protect the Clark Peninsula’s largely undisturbed terrestrial ecosystem. This ecosystem possesses one of the most extensive Antarctic flora communities outside of the Antarctic Peninsula and significant breeding populations of Adélie penguins (Pygoscelis adeliae) and south polar skuas (Catharacta maccormicki). ASPA 136 is approximately 9.4 km2 and is located approximately 5km north-west of Casey station. Scientific research within the Area has focused on plant communities and long term population studies of Adélie penguin colonies. The protection of this flora and fauna within the Area allows for valuable comparison with similar plant communities and penguin colonies closer to Casey station which are subject to greater levels of human disturbance. 1. Description of values to be protected ASPA 136 is primarily designated to protect Clark Peninsula’s largely undisturbed terrestrial ecosystem. Clark Peninsula’s ecosystem possesses one of the most extensive Antarctic flora communities outside of the Antarctic Peninsula.
    [Show full text]
  • In Shackleton's Footsteps
    In Shackleton’s Footsteps 20 March – 06 April 2019 | Polar Pioneer About Us Aurora Expeditions embodies the spirit of adventure, travelling to some of the most wild and adventure and discovery. Our highly experienced expedition team of naturalists, historians and remote places on our planet. With over 27 years’ experience, our small group voyages allow for destination specialists are passionate and knowledgeable – they are the secret to a fulfilling a truly intimate experience with nature. and successful voyage. Our expeditions push the boundaries with flexible and innovative itineraries, exciting wildlife Whilst we are dedicated to providing a ‘trip of a lifetime’, we are also deeply committed to experiences and fascinating lectures. You’ll share your adventure with a group of like-minded education and preservation of the environment. Our aim is to travel respectfully, creating souls in a relaxed, casual atmosphere while making the most of every opportunity for lifelong ambassadors for the protection of our destinations. DAY 1 | Wednesday 20 March 2019 Ushuaia, Beagle Channel Position: 21:50 hours Course: 84° Wind Speed: 5 knots Barometer: 1007.9 hPa & falling Latitude: 54°55’ S Speed: 9.4 knots Wind Direction: E Air Temp: 11°C Longitude: 67°26’ W Sea Temp: 9°C Finally, we were here, in Ushuaia aboard a sturdy ice-strengthened vessel. At the wharf Gary Our Argentinian pilot climbed aboard and at 1900 we cast off lines and eased away from the and Robyn ticked off names, nabbed our passports and sent us off to Kathrine and Scott for a wharf. What a feeling! The thriving city of Ushuaia receded as we motored eastward down the quick photo before boarding Polar Pioneer.
    [Show full text]
  • Magazine Issue 32 2017
    AUSTRALIAN ANTARCTIC MAGAZINE ISSUE 32 2017 ANTARCTICA valued, protected and understood www.antarctica.gov.au The Australian Antarctic Division, a Division of the Department of the Environment and Energy, leads Australia’s Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having ‘Antarctica valued, protected and understood’. It does this by managing Australian government activity in Antarctica, providing transport and logistic support to Australia’s Antarctic research program, maintaining four permanent Australian research stations, and conducting scientific research programs both on land and in the Southern Ocean. Australia’s Antarctic national interests are to: • Preserve our sovereignty over the Australian Antarctic Territory, including our sovereign rights over the adjacent From the OPERATIONS offshore areas. 5 A taste for shipping • Take advantage of the special opportunities Antarctica offers for scientific research. Director SCIENCE • Protect the Antarctic environment, having regard to its special qualities and effects on our region. 19 ‘Whale cams’ reveal secret • Maintain Antarctica’s freedom from strategic and/or life of ocean giants political confrontation. As this magazine went to press, entries for the “Name our Icebreaker” • Be informed about and able to influence developments in a competition were flooding in from schools around Australia. The region geographically proximate to Australia. competition is a unique and exciting opportunity for Australian • Derive any reasonable economic benefits from living and students in grades 5 to 8 to play a role in Australia’s Antarctic history non-living resources of the Antarctic (excluding deriving such benefits from mining and oil drilling). and to learn more about the Australian Antarctic Program through associated classroom materials aligned with the curriculum.
    [Show full text]
  • Australian Antarctic Magazine
    AusTRALIAN MAGAZINE ISSUE 23 2012 7317 AusTRALIAN ANTARCTIC ISSUE 2012 MAGAZINE 23 The Australian Antarctic Division, a Division of the Department for Sustainability, Environment, Water, Population and Communities, leads Australia’s CONTENTS Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having PROFILE ‘Antarctica valued, protected and understood’. It does Charting the seas of science 1 this by managing Australian government activity in Antarctica, providing transport and logistic support to SEA ICE VOYAGE Australia’s Antarctic research program, maintaining four Antarctic science in the spring sea ice zone 4 permanent Australian research stations, and conducting scientific research programs both on land and in the Sea ice sky-lab 5 Southern Ocean. Search for sea ice algae reveals hidden Antarctic icescape 6 Australia’s four Antarctic goals are: Twenty metres under the sea ice 8 • To maintain the Antarctic Treaty System and enhance Australia’s influence in it; Pumping krill into research 9 • To protect the Antarctic environment; Rhythm of Antarctic life 10 • To understand the role of Antarctica in the global SCIENCE climate system; and A brave new world as Macquarie Island moves towards recovery 12 • To undertake scientific work of practical, economic and national significance. Listening to the blues 14 Australian Antarctic Magazine seeks to inform the Bugs, soils and rocks in the Prince Charles Mountains 16 Australian and international Antarctic community Antarctic bottom water disappearing 18 about the activities of the Australian Antarctic Antarctic bioregions enhance conservation planning 19 program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent the position of Antarctic ice clouds 20 the Australian Government.
    [Show full text]
  • The Kerguelen Plateau: Marine Ecosystem + Fisheries
    THE KERGUELEN PLATEAU: MARINE ECOSYSTEM + FISHERIES Proceedings of the Second Symposium Kerguelen plateau Marine Ecosystems & Fisheries • SYMPOSIUM 2017 heardisland.antarctica.gov.au/research/kerguelen-plateau-symposium Long-term monitoring of coastal benthic habitats in the Kerguelen Islands: a legacy of decades of marine biology research J.-P. Féral1, E. Poulin2, C.A. González-Wevar3, N. Améziane4, C. Guillaumot5, E. Develay5 and T. Saucède5 1 Aix Marseille Université/CNRS/IRD/UAPV, IMBE-Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale, UMR 7263, Station Marine d’Endoume, Chemin de la Batterie des Lions, 13007 Marseille, France 2 LEM-Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, CP 7800003, Ñuñoa, Santiago, Chile 3 CENTRO FONDAP IDEAL, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile 4 MNHN/CNRS/UPMC/EPHE, ISYEB – Institut de Systématique Evolution Biodiversité, Station de Biologie Marine, BP 225, 29182 Concarneau Cedex, France 5 Université Bourgogne Franche-Comté, CNRS, Biogéosciences, UMR 6282, 6 boulevard Gabriel, 21000 Dijon, France Corresponding author: [email protected] Abstract In the current context of climate change, sea-surface temperature variation, sea level rise and latitudinal shifts of currents and hydrological fronts are expected to affect marine biodiversity of the sub-Antarctic Islands, particularly in coastal waters. Characterising the impacts of climate change on marine communities requires recording environmental modifications through the establishment of long-term monitoring. PROTEKER aims at the establishment of a submarine observatory consisting of multi-disciplinary research: oceanography, habitat mapping and species inventories, genetic, eco-physiological and trophic analyses.
    [Show full text]
  • Characterizing Atmospheric Transport Pathways to Antarctica and the Remote Southern Ocean Using Radon-222
    feart-06-00190 November 7, 2018 Time: 16:29 # 1 ORIGINAL RESEARCH published: 08 November 2018 doi: 10.3389/feart.2018.00190 Characterizing Atmospheric Transport Pathways to Antarctica and the Remote Southern Ocean Using Radon-222 Scott D. Chambers1*, Susanne Preunkert2, Rolf Weller3, Sang-Bum Hong4, Ruhi S. Humphries5,6, Laura Tositti7, Hélène Angot8, Michel Legrand2, Alastair G. Williams1, Alan D. Griffiths1, Jagoda Crawford1, Jack Simmons6, Taejin J. Choi4, Paul B. Krummel5, Suzie Molloy5, Zoë Loh5, Ian Galbally5, Stephen Wilson6, Olivier Magand2, Francesca Sprovieri9, Nicola Pirrone9 and Aurélien Dommergue2 Edited by: 1 Environmental Research, ANSTO, Sydney, NSW, Australia, 2 CNRS, IRD, IGE, University Grenoble Alpes, Grenoble, France, Pavla Dagsson-Waldhauserova, 3 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, 4 Korea Polar Research Institute, Incheon, Agricultural University of Iceland, South Korea, 5 Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC, Australia, 6 Centre for Iceland Atmospheric Chemistry, University of Wollongong, Wollongong, NSW, Australia, 7 Environmental Chemistry and Radioactivity Reviewed by: Lab, University of Bologna, Bologna, Italy, 8 Institute for Data, Systems and Society, Massachusetts Institute of Technology, Stephen Schery, Cambridge, MA, United States, 9 CNR-Institute of Atmospheric Pollution Research, Monterotondo, Italy New Mexico Institute of Mining and Technology, United States Bijoy Vengasseril Thampi, We discuss remote terrestrial influences on boundary layer air over the Southern Science Systems and Applications, Ocean and Antarctica, and the mechanisms by which they arise, using atmospheric United States radon observations as a proxy. Our primary motivation was to enhance the scientific *Correspondence: Scott D. Chambers community’s ability to understand and quantify the potential effects of pollution, nutrient [email protected] or pollen transport from distant land masses to these remote, sparsely instrumented regions.
    [Show full text]
  • Australian Antarctic Strategy and 20 Year Action Plan Australian Antarctic Strategy and 20 Year Action Plan Prime Minister’S Foreword
    Australian Antarctic Strategy and 20 Year Action Plan Australian Antarctic Strategy and 20 Year Action Plan Prime Minister’s Foreword Australia has inherited a proud legacy from Sir Douglas Significant progress has already been made by the Mawson and the generations of Australian Antarctic Government on improving aviation access to Antarctica. expeditioners who have followed in his footsteps - a We have undertaken C-17A trial flights to provide an option legacy of heroism, scientific endeavour and environmental for a new heavy-lift cargo capability. Work will continue stewardship. across Government to further build support for the Australian Antarctic programme. Mawson’s legacy has forged, for all Australians, a profound and significant connection with Antarctica. The Australian The Government’s investment in Antarctic capability, in Antarctic Territory occupies a unique place in our national support of Antarctic science, represents a step change in identity. our Antarctic programme and will equip us to be a partner of choice in East Antarctica and to work even more closely Australia’s Antarctic science programme is one of our most with other countries within the Antarctic Treaty system. iconic and enduring national endeavours. Antarctica is of great importance to Australians, and Antarctic science will A strong and effective Antarctic Treaty system is in continue to be one of our national priorities. Australia’s national interest. The Government will use our international engagement to build and maintain strong and Antarctica is an extreme and hostile environment. Modern effective relationships with other nations in support of the and effective Antarctic operations and logistics capabilities Antarctic Treaty system.
    [Show full text]