Operads in Algebra, Topology and Physics, 2002 95 Seiichi Kamada, Braid and Knot Theory in Dimension Four, 2002 94 Mara D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Motivic Fundamental Group of the Punctured Projective Line
THE MOTIVIC FUNDAMENTAL GROUP OF THE PUNCTURED PROJECTIVE LINE BERTRAND J. GUILLOU Abstract. We describe a construction of an object associated to the fundamental group of P1 −{0, 1, ∞} in the Bloch-Kriz category of mixed Tate motives. This description involves Massey products of Steinberg symbols in the motivic cohomology of the ground field. Contents 1. Introduction 2 2. Motivic Cohomology 4 2.1. The conjectural picture 4 2.2. Bloch’s cycle complex 6 2.3. Friedlander-Suslin-Voevodsky variant 8 2.4. Cocycles for functions 11 3. Mixed Tate Motives 13 3.1. Mixed Tate categories 13 3.2. The approach of Bloch-Kriz 14 3.3. The homotopy category of cell modules 17 3.4. The approach of Kriz-May 19 3.5. Minimal modules 20 4. The motivic fundamental group 21 4.1. The n = 2 case 21 arXiv:0903.1705v1 [math.AG] 10 Mar 2009 4.2. Massey products 23 4.3. The n = 3 case 24 4.4. The general case 28 4.5. Trimming the fat 31 4.6. Vanishing of Massey Products 33 4.7. Bloch-Totaro cycles 35 4.8. 3-fold and 4-fold Massey products 35 References 36 Date: October 15, 2018. 1 2 BERTRAND J. GUILLOU 1. Introduction The importance of the algebraic fundamental group of P1 − {0, 1, ∞} has been known for some time: “[A. Grothendieck] m’a aussi dit, avec force, que le compl´et´e 1 profiniπ ˆ1 du groupe fondamental de X := P (C)−{0, 1, ∞}, avec son action de Gal(Q/Q) est un objet remarquable, et qu’il faudrait l’´etudier.” -[Del] Indeed, Belyi’s theorem implies that the canonical action of Gal(Q/Q) is faithful. -
Cohomological Descent on the Overconvergent Site
COHOMOLOGICAL DESCENT ON THE OVERCONVERGENT SITE DAVID ZUREICK-BROWN Abstract. We prove that cohomological descent holds for finitely presented crystals on the overconvergent site with respect to proper or fppf hypercovers. 1. Introduction Cohomological descent is a robust computational and theoretical tool, central to p-adic cohomology and its applications. On one hand, it facilitates explicit calculations (analo- gous to the computation of coherent cohomology in scheme theory via Cechˇ cohomology); on another, it allows one to deduce results about singular schemes (e.g., finiteness of the cohomology of overconvergent isocrystals on singular schemes [Ked06]) from results about smooth schemes, and, in a pinch, sometimes allows one to bootstrap global definitions from local ones (for example, for a scheme X which fails to embed into a formal scheme smooth near X, one actually defines rigid cohomology via cohomological descent; see [lS07, comment after Proposition 8.2.17]). The main result of the series of papers [CT03,Tsu03,Tsu04] is that cohomological descent for the rigid cohomology of overconvergent isocrystals holds with respect to both flat and proper hypercovers. The barrage of choices in the definition of rigid cohomology is burden- some and makes their proofs of cohomological descent very difficult, totaling to over 200 pages. Even after the main cohomological descent theorems [CT03, Theorems 7.3.1 and 7.4.1] are proved one still has to work a bit to get a spectral sequence [CT03, Theorem 11.7.1]. Actually, even to state what one means by cohomological descent (without a site) is subtle. The situation is now more favorable. -
Homological Algebra
Homological Algebra Donu Arapura April 1, 2020 Contents 1 Some module theory3 1.1 Modules................................3 1.6 Projective modules..........................5 1.12 Projective modules versus free modules..............7 1.15 Injective modules...........................8 1.21 Tensor products............................9 2 Homology 13 2.1 Simplicial complexes......................... 13 2.8 Complexes............................... 15 2.15 Homotopy............................... 18 2.23 Mapping cones............................ 19 3 Ext groups 21 3.1 Extensions............................... 21 3.11 Projective resolutions........................ 24 3.16 Higher Ext groups.......................... 26 3.22 Characterization of projectives and injectives........... 28 4 Cohomology of groups 32 4.1 Group cohomology.......................... 32 4.6 Bar resolution............................. 33 4.11 Low degree cohomology....................... 34 4.16 Applications to finite groups..................... 36 4.20 Topological interpretation...................... 38 5 Derived Functors and Tor 39 5.1 Abelian categories.......................... 39 5.13 Derived functors........................... 41 5.23 Tor functors.............................. 44 5.28 Homology of a group......................... 45 1 6 Further techniques 47 6.1 Double complexes........................... 47 6.7 Koszul complexes........................... 49 7 Applications to commutative algebra 52 7.1 Global dimensions.......................... 52 7.9 Global dimension of -
New Publications Offered by the AMS
New Publications Offered by the AMS appropriate generality waited for the seventies. These early Algebra and Algebraic occurrences were in algebraic topology in the study of (iter- ated) loop spaces and their chain algebras. In the nineties, Geometry there was a renaissance and further development of the theory inspired by the discovery of new relationships with graph cohomology, representation theory, algebraic geometry, Almost Commuting derived categories, Morse theory, symplectic and contact EMOIRS M of the geometry, combinatorics, knot theory, moduli spaces, cyclic American Mathematical Society Elements in Compact cohomology, and, not least, theoretical physics, especially Volume 157 Number 747 string field theory and deformation quantization. The general- Almost Commuting Lie Groups Elements in ization of quadratic duality (e.g., Lie algebras as dual to Compact Lie Groups Armand Borel, Institute for commutative algebras) together with the property of Koszul- Armand Borel Advanced Study, Princeton, NJ, ness in an essentially operadic context provided an additional Robert Friedman computational tool for studying homotopy properties outside John W. Morgan and Robert Friedman and THEMAT A IC M A L N A S O C I C of the topological setting. R I E E T M Y A FO 8 U 88 John W. Morgan, Columbia NDED 1 University, New York City, NY The book contains a detailed and comprehensive historical American Mathematical Society introduction describing the development of operad theory Contents: Introduction; Almost from the initial period when it was a rather specialized tool in commuting N-tuples; Some characterizations of groups of homotopy theory to the present when operads have a wide type A; c-pairs; Commuting triples; Some results on diagram range of applications in algebra, topology, and mathematical automorphisms and associated root systems; The fixed physics. -
HE WANG Abstract. a Mini-Course on Rational Homotopy Theory
RATIONAL HOMOTOPY THEORY HE WANG Abstract. A mini-course on rational homotopy theory. Contents 1. Introduction 2 2. Elementary homotopy theory 3 3. Spectral sequences 8 4. Postnikov towers and rational homotopy theory 16 5. Commutative differential graded algebras 21 6. Minimal models 25 7. Fundamental groups 34 References 36 2010 Mathematics Subject Classification. Primary 55P62 . 1 2 HE WANG 1. Introduction One of the goals of topology is to classify the topological spaces up to some equiva- lence relations, e.g., homeomorphic equivalence and homotopy equivalence (for algebraic topology). In algebraic topology, most of the time we will restrict to spaces which are homotopy equivalent to CW complexes. We have learned several algebraic invariants such as fundamental groups, homology groups, cohomology groups and cohomology rings. Using these algebraic invariants, we can seperate two non-homotopy equivalent spaces. Another powerful algebraic invariants are the higher homotopy groups. Whitehead the- orem shows that the functor of homotopy theory are power enough to determine when two CW complex are homotopy equivalent. A rational coefficient version of the homotopy theory has its own techniques and advan- tages: 1. fruitful algebraic structures. 2. easy to calculate. RATIONAL HOMOTOPY THEORY 3 2. Elementary homotopy theory 2.1. Higher homotopy groups. Let X be a connected CW-complex with a base point x0. Recall that the fundamental group π1(X; x0) = [(I;@I); (X; x0)] is the set of homotopy classes of maps from pair (I;@I) to (X; x0) with the product defined by composition of paths. Similarly, for each n ≥ 2, the higher homotopy group n n πn(X; x0) = [(I ;@I ); (X; x0)] n n is the set of homotopy classes of maps from pair (I ;@I ) to (X; x0) with the product defined by composition. -
Arxiv:Math/0401075V1 [Math.AT] 8 Jan 2004 Ojcue1.1
CONFIGURATION SPACES ARE NOT HOMOTOPY INVARIANT RICCARDO LONGONI AND PAOLO SALVATORE Abstract. We present a counterexample to the conjecture on the homotopy invariance of configuration spaces. More precisely, we consider the lens spaces L7,1 and L7,2, and prove that their configuration spaces are not homotopy equivalent by showing that their universal coverings have different Massey products. 1. Introduction The configuration space Fn(M) of pairwise distinct n-tuples of points in a man- ifold M has been much studied in the literature. Levitt reported in [4] as “long- standing” the following Conjecture 1.1. The homotopy type of Fn(M), for M a closed compact smooth manifold, depends only on the homotopy type of M. There was some evidence in favor: Levitt proved that the loop space ΩFn(M) is a homotopy invariant of M. Recently Aouina and Klein [1] have proved that a suitable iterated suspension of Fn(M) is a homotopy invariant. For example the double suspension of F2(M) is a homotopy invariant. Moreover F2(M) is a homotopy invariant when M is 2-connected (see [4]). A rational homotopy theoretic version of this fact appears in [3]. On the other hand there is a similar situation n suggesting that the conjecture might fail: the Euclidean configuration space F3(R ) has the homotopy type of a bundle over Sn−1 with fiber Sn−1 ∨ Sn−1 but it does n not split as a product in general [6]. However the loop spaces of F3(R ) and of the product Sn−1 × (Sn−1 ∨ Sn−1) are homotopy equivalent and also the suspensions of the two spaces are homotopic. -
Lecture 15. De Rham Cohomology
Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial. -
Algebra + Homotopy = Operad
Symplectic, Poisson and Noncommutative Geometry MSRI Publications Volume 62, 2014 Algebra + homotopy = operad BRUNO VALLETTE “If I could only understand the beautiful consequences following from the concise proposition d 2 0.” —Henri Cartan D This survey provides an elementary introduction to operads and to their ap- plications in homotopical algebra. The aim is to explain how the notion of an operad was prompted by the necessity to have an algebraic object which encodes higher homotopies. We try to show how universal this theory is by giving many applications in algebra, geometry, topology, and mathematical physics. (This text is accessible to any student knowing what tensor products, chain complexes, and categories are.) Introduction 229 1. When algebra meets homotopy 230 2. Operads 239 3. Operadic syzygies 253 4. Homotopy transfer theorem 272 Conclusion 283 Acknowledgements 284 References 284 Introduction Galois explained to us that operations acting on the solutions of algebraic equa- tions are mathematical objects as well. The notion of an operad was created in order to have a well defined mathematical object which encodes “operations”. Its name is a portemanteau word, coming from the contraction of the words “operations” and “monad”, because an operad can be defined as a monad encoding operations. The introduction of this notion was prompted in the 60’s, by the necessity of working with higher operations made up of higher homotopies appearing in algebraic topology. Algebra is the study of algebraic structures with respect to isomorphisms. Given two isomorphic vector spaces and one algebra structure on one of them, 229 230 BRUNO VALLETTE one can always define, by means of transfer, an algebra structure on the other space such that these two algebra structures become isomorphic. -
Around Hochschild (Co)Homology Higher Structures in Deformation Quantization, Lie Theory and Algebraic Geometry
Universite´ Claude Bernard Lyon 1 M´emoire pr´esent´epour obtenir le diplˆome d’habilitation `adiriger des recherches de l’Universit´eClaude Bernard Lyon 1 Sp´ecialit´e: Math´ematiques par Damien CALAQUE Around Hochschild (co)homology Higher structures in deformation quantization, Lie theory and algebraic geometry Rapporteurs : Mikhai lKAPRANOV, Bernhard KELLER, Gabrie le VEZZOSI Soutenu le 26 mars 2013 devant le jury compos´ede : M. Giovanni FELDER M. Dmitry KALEDIN M. Bernhard KELLER M. Bertrand REMY´ M. Gabrie le VEZZOSI Introduction non math´ematique Remerciements Mes premi`eres pens´ees vont `aLaure, Manon et No´emie, qui ne liront pas ce m´emoire (pour des raisons vari´ees). Sa r´edaction m’a contraint `aleur consacrer moins d’attention qu’`al’habitude, et elles ont fait preuve de beaucoup de patience (surtout Laure). Je le leur d´edie. Je souhaite ensuite et avant tout remercier Michel Van den Bergh et Carlo Rossi. C’est avec eux que j’ai obtenu certains de mes plus beaux r´esultats, mais aussi les moins douloureux dans le sens o`unotre collaboration m’a parue facile et agr´eable (peut-ˆetre est-ce parce que ce sont toujours eux qui v´erifiaient les signes). Je veux ´egalement remercier Giovanni Felder, non seulement pour avoir accept´ede participer `amon jury mais aussi pour tout le reste: son amiti´es, sa gentillesse, ses questions et remarques toujours per- tinentes, ses r´eponses patientes et bienveillantes `ames questions r´ecurrentes (et un peu obsessionnelles) sur la renormalisation des models de r´eseaux. Il y a ensuite Andrei C˘ald˘araru et Junwu Tu. -
Algebraic Topology
Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology . -
Bordism and Cobordism
[ 200 ] BORDISM AND COBORDISM BY M. F. ATIYAH Received 28 March 1960 Introduction. In (10), (11) Wall determined the structure of the cobordism ring introduced by Thorn in (9). Among Wall's results is a certain exact sequence relating the oriented and unoriented cobordism groups. There is also another exact sequence, due to Rohlin(5), (6) and Dold(3) which is closely connected with that of Wall. These exact sequences are established by ad hoc methods. The purpose of this paper is to show that both these sequences are ' cohomology-type' exact sequences arising in the well-known way from mappings into a universal space. The appropriate ' cohomology' theory is constructed by taking as universal space the Thom complex MS0(n), for n large. This gives rise to (oriented) cobordism groups MS0*(X) of a space X. We consider also a 'singular homology' theory based on differentiable manifolds, and we define in this way the (oriented) bordism groups MS0*{X) of a space X. The justification for these definitions is that the main theorem of Thom (9) then gives a 'Poincare duality' isomorphism MS0*(X) ~ MSO^(X) for a compact oriented differentiable manifold X. The usual generalizations to manifolds which are open and not necessarily orientable also hold (Theorem (3-6)). The unoriented corbordism group jV'k of Thom enters the picture via the iso- k morphism (4-1) jrk ~ MS0*n- (P2n) (n large), where P2n is real projective 2%-space. The exact sequence of Wall is then just the cobordism sequence for the triad P2n, P2»-i> ^2n-2> while the exact sequence of Rohlin- Dold is essentially the corbordism sequence of the pair P2n, P2n_2. -
Homotopy Algebra of Open–Closed Strings 1 Introduction
eometry & opology onographs 13 (2008) 229–259 229 G T M arXiv version: fonts, pagination and layout may vary from GTM published version Homotopy algebra of open–closed strings HIROSHIGE KAJIURA JIM STASHEFF This paper is a survey of our previous works on open–closed homotopy algebras, together with geometrical background, especially in terms of compactifications of configuration spaces (one of Fred’s specialities) of Riemann surfaces, structures on loop spaces, etc. We newly present Merkulov’s geometric A1 –structure [49] as a special example of an OCHA. We also recall the relation of open–closed homotopy algebras to various aspects of deformation theory. 18G55; 81T18 Dedicated to Fred Cohen in honor of his 60th birthday 1 Introduction Open–closed homotopy algebras (OCHAs) (Kajiura and Stasheff [37]) are inspired by Zwiebach’s open–closed string field theory [62], which is presented in terms of decompositions of moduli spaces of the corresponding Riemann surfaces. The Riemann surfaces are (respectively) spheres with (closed string) punctures and disks with (open string) punctures on the boundaries. That is, from the viewpoint of conformal field theory, classical closed string field theory is related to the conformal plane C with punctures and classical open string field theory is related to the upper half plane H with punctures on the boundary. Thus classical closed string field theory has an L1 –structure (Zwiebach [61], Stasheff [57], Kimura, Stasheff and Voronov [40]) and classical open string field theory has an A1 –structure (Gaberdiel and Zwiebach [13], Zwiebach [62], Nakatsu [51] and Kajiura [35]). The algebraic structure, we call it an OCHA, that the classical open–closed string field theory has is similarly interesting since it is related to the upper half plane H with punctures both in the bulk and on the boundary.