Hossein Abbaspour William Abikoff Mohammed Abouzaid MIT Joe

Total Page:16

File Type:pdf, Size:1020Kb

Hossein Abbaspour William Abikoff Mohammed Abouzaid MIT Joe Geometric and Algebraic Structures in Mathematics Participants, page 1 Hossein Abbaspour University of Nantes, France [email protected] William Abikoff University of Connecticut [email protected] Mohammed Abouzaid MIT [email protected] Joe Adams Stony Brook University [email protected] Seyed Ali Aleyasin Stony Brook [email protected] Michael Anderson Stony Brook [email protected] Stergios Antonakoudis Harvard University [email protected] Nikos Apostolakis Bronx Community College, CUNY [email protected] Alexander Atwood SUNY SCCC [email protected] Chris Atwood Nassau Community College [email protected] Anant Atyam Stony Brook [email protected] Artur Avila CNRS/IMPA [email protected] David Ayala Harvard University [email protected] Benjamin Balsam Stony Brook University [email protected] Claude Bardos University of Paris [email protected] Ara Basmajian Graduate Center and Hunter College, [email protected] CUNY Somnath Basu Stony Brook University [email protected] Jason Behrstock Lehman College, CUNY [email protected] Charlie Beil SCGP, Stony Brook [email protected] Olivia Bellier University of Nice [email protected] James Benn University of Notre Dame [email protected] Daniel Berwick-Evans UC Berkeley [email protected] Renato Bettiol University of Notre Dame [email protected] Chris Bishop Stony Brook University [email protected] Jonathan Bloom Columbia University [email protected] Mike Bonanno SUNY SCCC [email protected] Araceli Bonifant University of Rhode Island [email protected] Mario Bonk University of California, Los Angeles [email protected] Sylvain Bonnot University of Toronto [email protected] Joshua Bowman Stony Brook University [email protected] Ken Bromberg University of Utah [email protected] Richard Canary University of Michigan [email protected] Moira Chas Stony Brook University [email protected] Jeff Cheeger Courant Institute [email protected] Leonid Chekhov Steklov Mathematical Institute, [email protected] Moscow Tao Chen Graduate Center CUNY [email protected] Xiaojun Chen University of Michigan [email protected] Geometric and Algebraic Structures in Mathematics Participants, page 2 Xuan Chen Stony Brook University [email protected] Ralph Cohen Stanford University [email protected] Braxton Collier University of Texas at Austin [email protected] Benjamin Cooper University of Virginia [email protected] Kevin Costello Northwestern University [email protected] Cameron Crowe Stony Brook University [email protected] Aliakbar Daemi Harvard University [email protected] Steve Dalton Stony Brook University [email protected] David Damanik Rice University [email protected] Tushar Das University of North Texas [email protected] Orit Davidovich University of Texas at Austin [email protected] Nikolay Dimitrov McGill University and CRM [email protected] Andrew Douglas City University of New York [email protected] Gabriel C. Drummond-Cole Northwestern [email protected] Artem Dudko University of Toronto [email protected] David G. Ebin Stony Brook [email protected] Alexander Ellis Columbia University [email protected] Ozgur Evren CUNY Graduate Center [email protected] Hershel Farkas Hebrew University of Jerusalem [email protected] Bora Ferlengez CUNY Graduate Center [email protected] Simion Filip University of Chicago [email protected] Tanya Firsova Stony Brook University [email protected] Marguerite Flexor Universite´ Paris Sud [email protected] Kaveh Fouladgar Stanford University [email protected] Kenji Fukaya Kyoto University [email protected] David Gabai Princeton [email protected] Vaibhav Gadre Harvard University [email protected] Benjamin Gaines Duke University [email protected] Peng Gao SCGP, Stony Brook [email protected] Allison Gilmore Columbia University [email protected] Eduardo Gonzalez University of Massachusetts Boston [email protected] Igors Gorbovickis Cornell University [email protected] Samuel Grushevsky Stony Brook [email protected] Xinyu Guan Stony Brook University [email protected] Hrant Hakobyan Kansas State University [email protected] Steve Halperin University of Maryland [email protected] Cheng Hao Stony Brook University [email protected] John Harper University of Western Ontario [email protected] Geometric and Algebraic Structures in Mathematics Participants, page 3 Peter Hazard Universidade de Sao˜ Paulo [email protected] Chenxu He Lehigh University [email protected] Galo Higuera Rojo University of British Columbia [email protected] C. Denson Hill Stony Brook [email protected] Joseph Hirsh CUNY Graduate Center [email protected] Zheng Huang City University of New York [email protected] Mark Hughes Stony Brook University [email protected] Zair Ibragimov California State University, Fullerton [email protected] Yunping Jiang CUNY Queens College and Graduate [email protected] Center Peter Jones Yale University [email protected] Jeremy Kahn Stony Brook University [email protected] Ljudmila Kamenova Stony Brook University [email protected] Linda Keen CUNY Lehman - Grad Center [email protected] Boris Khesin University of Toronto [email protected] Myong-Hi Kim SUNY Old Westbury [email protected] Youjin Kim Stony Brook [email protected] Kyle Kinneberg University of California, Los Angeles [email protected] Rob Kirby Univ. of California, Berkeley [email protected] Alexander Kirillov Stony Brook [email protected] Bruce Kleiner Courant Institute [email protected] Victor Kleptsyn Institut de Recherche Mathematiques [email protected] de Rennes Kenneth Knox Stony Brook University [email protected] Irwin Kra Stony Brook [email protected] Aradhana Kumari CUNY, Graduate Center [email protected] Cagatay Kutluhan Columbia University [email protected] Claude LeBrun Stony Brook [email protected] Sam Lewallen Princeton University [email protected] Stephanie Lewkiewicz University of California, Los Angeles [email protected] Jinsong Liu Institute of Mathematics, AMSS, Chi- [email protected] nese Academy of Sciences Andrew Lobb Stony Brook [email protected] Robert Lowry SUNY SCCC [email protected] Feng Luo Rutgers University [email protected] Misha Lyubich Stony Brook University [email protected] Ib Madsen University of Copenhagen [email protected] Eric Malm Stony Brook University [email protected] Sara Maloni University of Warwick [email protected] Geometric and Algebraic Structures in Mathematics Participants, page 4 Johanna Mangahas Brown University [email protected] Marco Martens Stony Brook University [email protected] Mikhail Mazin Stony Brook [email protected] Zachary McGuirk CUNY Graduate Center [email protected] Andrew McHugh Mitchell College mchugh [email protected] Curtis McMullen Harvard University [email protected] Anibal Medina Stony Brook University [email protected] Claudio Meneses Stony Brook University [email protected] Sergiy Merenkov University of Illinois at Urbana- [email protected] Champaign Brett Milburn University of Texas at Austin [email protected] Micah Miller Graduate Center at CUNY [email protected] Joan Milles` Max Planck Institute Bonn [email protected] John Milnor Stony Brook University [email protected] Tom Milnor University of British Columbia [email protected] Yair Minsky Yale University [email protected] Gerard Misiolek Notre Dame [email protected] Sudeb Mitra CUNY-Graduate Center and CUNY- [email protected] Queens College John Morgan Stony Brook University [email protected] Martin Moskowitz CUNY Graduate Center [email protected] Michael Movshev SUNY at Stony Brook [email protected] Ronen Mukamel MIT, Department of Mathematics [email protected] Sam Nariman Stanford [email protected] Sheldon Newhouse Michigan State University [email protected] Neil Ni CUNY [email protected] Yi Ni Caltech [email protected] Jasmine Nirody New York Medical [email protected] Jingchen Niu Stony Brook University [email protected] Alexander Odesskii Brock University [email protected] Matthew Pancia University of Texas at Austin [email protected] Byung Do Park CUNY Graduate Center [email protected] Arthur Parzygnat CUNY Graduate Center [email protected] Dmitri Pavlov University of California, Berkeley [email protected] Raquel Perales Stony Brook University [email protected] Han Peters University of Amsterdam [email protected] Tony Phillips Stony Brook University [email protected] Alberto Pinto University of Porto [email protected] Kate Poirier University of California, Berkeley [email protected] Geometric and Algebraic Structures in Mathematics Participants, page 5 Amanda Posey University of New Mexico [email protected] Stephen Preston University of Colorado [email protected] You Qi Columbia University [email protected] Remus Radu Cornell University [email protected] Alexander Retakh USMMA [email protected] Manuel Rivera CUNY Graduate Center [email protected] Martin Rocek Stony Brook [email protected] Roland Roeder Indiana University Purdue Univer- [email protected] sity Indianapolis Nathaniel Rounds Purdue University [email protected]
Recommended publications
  • CMI Summer Schools
    CMI Summer Schools 2007 Homogeneous flows, moduli spaces, and arithmetic De Giorgi Center, Pisa 2006 Arithmetic Geometry The Clay Mathematics Institute has Mathematisches Institut, conducted a program of research summer schools Georg-August-Universität, Göttingen since 2000. Designed for graduate students and PhDs within five years of their degree, the aim of 2005 Ricci Flow, 3-manifolds, and Geometry the summer schools is to furnish a new generation MSRI, Berkeley of mathematicians with the knowledge and tools needed to work successfully in an active research CMI summer schools 2004 area. Three introductory courses, each three weeks Floer Homology, Gauge Theory, and in duration, make up the core of a typical summer Low-dimensional Topology school. These are followed by one week of more Rényi Institute, Budapest advanced minicourses and individual talks. Size is limited to roughly 100 participants in order to 2003 Harmonic Analysis, Trace Formula, promote interaction and contact. Venues change and Shimura Varieties from year to year, and have ranged from Cambridge, Fields Institute, Toronto Massachusetts to Pisa, Italy. The lectures from each school are published in the CMI–AMS proceedings 2002 Geometry and String Theory series, usually within two years’ time. Newton Institute, Cambridge UK Summer Schools 2001 www.claymath.org/programs/summer_school Minimal surfaces MSRI, Berkeley Summer School Proceedings www.claymath.org/publications 2000 Mirror Symmetry Pine Manor College, Boston 2006 Arithmetic Geometry Summer School in Göttingen techniques are drawn from the theory of elliptic The 2006 summer school program will introduce curves, including modular curves and their para- participants to modern techniques and outstanding metrizations, Heegner points, and heights.
    [Show full text]
  • Kähler-Einstein Metrics on Fano Manifolds. I
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 28, Number 1, January 2015, Pages 183–197 S 0894-0347(2014)00799-2 Article electronically published on March 28, 2014 KAHLER-EINSTEIN¨ METRICS ON FANO MANIFOLDS. I: APPROXIMATION OF METRICS WITH CONE SINGULARITIES XIUXIONG CHEN, SIMON DONALDSON, AND SONG SUN 1. Introduction This is the first of a series of three articles which provide proofs of results an- nounced in [9]. Let X be a Fano manifold of complex dimension n.Letλ>0bean integer and D be a smooth divisor in the linear system |−λKX |.Forβ ∈ (0, 1) there is now a well-established notion of a K¨ahler-Einstein metric with a cone singularity of cone angle 2πβ along D. (It is often called an “edge-cone” singularity). For brevity, we will just say that ω has cone angle 2πβ along D. The Ricci curvature of such a metric ω is (1−λ(1−β))ω. Our primary concern is the case of positive Ricci −1 curvature, so we suppose throughout most of the article that β ≥ β0 > 1 − λ . However our arguments also apply to the case of non-positive Ricci curvature: see Remark 3.10. Theorem 1.1. If ω is a K¨ahler-Einstein metric with cone angle 2πβ along D with β ≥ β0,then(X, ω) is the Gromov-Hausdorff limit of a sequence of smooth K¨ahler metrics with positive Ricci curvature and with diameter bounded by a fixed number depending only on β0,λ. This suffices for most of our applications but we also prove a sharper statement.
    [Show full text]
  • 2019 AMS Prize Announcements
    FROM THE AMS SECRETARY 2019 Leroy P. Steele Prizes The 2019 Leroy P. Steele Prizes were presented at the 125th Annual Meeting of the AMS in Baltimore, Maryland, in January 2019. The Steele Prizes were awarded to HARUZO HIDA for Seminal Contribution to Research, to PHILIppE FLAJOLET and ROBERT SEDGEWICK for Mathematical Exposition, and to JEFF CHEEGER for Lifetime Achievement. Haruzo Hida Philippe Flajolet Robert Sedgewick Jeff Cheeger Citation for Seminal Contribution to Research: Hamadera (presently, Sakai West-ward), Japan, he received Haruzo Hida an MA (1977) and Doctor of Science (1980) from Kyoto The 2019 Leroy P. Steele Prize for Seminal Contribution to University. He did not have a thesis advisor. He held po- Research is awarded to Haruzo Hida of the University of sitions at Hokkaido University (Japan) from 1977–1987 California, Los Angeles, for his highly original paper “Ga- up to an associate professorship. He visited the Institute for Advanced Study for two years (1979–1981), though he lois representations into GL2(Zp[[X ]]) attached to ordinary cusp forms,” published in 1986 in Inventiones Mathematicae. did not have a doctoral degree in the first year there, and In this paper, Hida made the fundamental discovery the Institut des Hautes Études Scientifiques and Université that ordinary cusp forms occur in p-adic analytic families. de Paris Sud from 1984–1986. Since 1987, he has held a J.-P. Serre had observed this for Eisenstein series, but there full professorship at UCLA (and was promoted to Distin- the situation is completely explicit. The methods and per- guished Professor in 1998).
    [Show full text]
  • Uniqueness of Ricci Flow Solution on Non-Compact Manifolds and Integral Scalar Curvature Bound
    Uniqueness of Ricci Flow Solution on Non-compact Manifolds and Integral Scalar Curvature Bound A Dissertation Presented by Xiaojie Wang to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics Stony Brook University August 2014 Stony Brook University The Graduate School Xiaojie Wang We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Xiuxiong Chen – Dissertation Advisor Professor, Mathematics Department Michael Anderson – Chairperson of Defense Professor, Mathematics Department Marcus Khuri Professor, Mathematics Department Xianfeng David Gu Professor, Department of Computer Science This dissertation is accepted by the Graduate School. Charles Taber Dean of the Graduate School ii Abstract of the Dissertation Uniqueness of Ricci Flow Solution on Non-compact Manifolds and Integral Scalar Curvature Bound by Xiaojie Wang Doctor of Philosophy in Mathematics Stony Brook University 2014 In this dissertation, we prove two results. The first is about the uniqueness of Ricci flow solution. B.-L. Chen and X.-P. Zhu first proved the uniqueness of Ricci flow solution to the initial value problem by assuming bilaterally bounded curvature over the space-time. Here we show that, when the initial data has bounded curvature and is non-collapsing, the complex sectional curvature bounded from below over the space-time guarantees the short-time uniqueness of solution. The second is about the integral scalar curvature bound. A. Petrunin proved that for any complete boundary free Rieman- nian manifold, if the sectional curvature is bounded from below by negative one, then the integral of the scalar curvature over any unit ball is bounded from above by a constant depending only on the dimension.
    [Show full text]
  • Homotopy Algebra of Open–Closed Strings 1 Introduction
    eometry & opology onographs 13 (2008) 229–259 229 G T M arXiv version: fonts, pagination and layout may vary from GTM published version Homotopy algebra of open–closed strings HIROSHIGE KAJIURA JIM STASHEFF This paper is a survey of our previous works on open–closed homotopy algebras, together with geometrical background, especially in terms of compactifications of configuration spaces (one of Fred’s specialities) of Riemann surfaces, structures on loop spaces, etc. We newly present Merkulov’s geometric A1 –structure [49] as a special example of an OCHA. We also recall the relation of open–closed homotopy algebras to various aspects of deformation theory. 18G55; 81T18 Dedicated to Fred Cohen in honor of his 60th birthday 1 Introduction Open–closed homotopy algebras (OCHAs) (Kajiura and Stasheff [37]) are inspired by Zwiebach’s open–closed string field theory [62], which is presented in terms of decompositions of moduli spaces of the corresponding Riemann surfaces. The Riemann surfaces are (respectively) spheres with (closed string) punctures and disks with (open string) punctures on the boundaries. That is, from the viewpoint of conformal field theory, classical closed string field theory is related to the conformal plane C with punctures and classical open string field theory is related to the upper half plane H with punctures on the boundary. Thus classical closed string field theory has an L1 –structure (Zwiebach [61], Stasheff [57], Kimura, Stasheff and Voronov [40]) and classical open string field theory has an A1 –structure (Gaberdiel and Zwiebach [13], Zwiebach [62], Nakatsu [51] and Kajiura [35]). The algebraic structure, we call it an OCHA, that the classical open–closed string field theory has is similarly interesting since it is related to the upper half plane H with punctures both in the bulk and on the boundary.
    [Show full text]
  • View This Volume's Front and Back Matter
    CONTEMPORARY MATHEMATICS 227 Higher Homotopy Structures in Topology and Mathematical Physics Proceedings of an International Conference June 13-15, 1996 at Vassar College, Poughkeepsie, New York, to honor the sixtieth birthday of Jim Stasheff John McCleary Editor http://dx.doi.org/10.1090/conm/227 Selected Titles in This Series 227 John McCleary, Editor, Higher homotopy structures in topology and mathematical physics, 1999 226 Luis A. Caffarelli and Mario Milman, Editors, Monge Ampere equation: Applications to geometry and optimization, 1999 225 Ronald C. Mullin and Gary L. Mullen, Editors, Finite fields: Theory, applications, and algorithms, 1999 224 Sang Geun Hahn, Hyo Chul Myung, and Efim Zelmanov, Editors, Recent progress in algebra, 1999 223 Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, Editors, Advances in discrete and computational geometry, 1999 222 Kang-Tae Kim and Steven G. Krantz, Editors, Complex geometric analysis in Pohang, 1999 221 J. Robert Dorroh, Gisele Ruiz Goldstein, Jerome A. Goldstein, and Michael Mudi Tom, Editors, Applied analysis, 1999 220 Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic geometry and group representations, 1998 219 Marc Henneaux, Joseph Krasil'shchik, and Alexandre Vinogradov, Editors, Secondary calculus and cohomological physics, 1998 218 Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain decomposition methods 10, 1998 217 Eric Carlen, Evans M. Harrell, and Michael Loss, Editors, Advances in differential equations and mathematical physics, 1998 216 Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their applications, 1998 215 M. G. Nerurkar, D. P. Dokken, and D. B. Ellis, Editors, Topological dynamics and applications, 1998 214 Lewis A.
    [Show full text]
  • Jeff Cheeger
    Progress in Mathematics Volume 297 Series Editors Hyman Bass Joseph Oesterlé Yuri Tschinkel Alan Weinstein Xianzhe Dai • Xiaochun Rong Editors Metric and Differential Geometry The Jeff Cheeger Anniversary Volume Editors Xianzhe Dai Xiaochun Rong Department of Mathematics Department of Mathematics University of California Rutgers University Santa Barbara, New Jersey Piscataway, New Jersey USA USA ISBN 978-3-0348-0256-7 ISBN 978-3-0348-0257-4 (eBook) DOI 10.1007/978-3-0348-0257-4 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012939848 © Springer Basel 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • An Interview with Martin Davis
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required.
    [Show full text]
  • Welcome to Mathematical Methods and Modeling of Biophysical
    Welcome to the • From Copacabana: You can use the bus line 125 (Jardim Botânico) from Avenida Princesa International Symposium on Isabel or Rua Barata Ribeiro and get off at the final stop. You should Differential Geometry then walk uphill to Estrada Dona Castorina; IMPA is on the right hand side. In honor of Marcos Dajczer on his 60th birthday Since the 125 bus is somewhat infrequent, it is usually faster to follow a IMPA, Rio de Janeiro, August 17 – 21, 2009 different route. Take the 572 or 584 bus and get off on Rua Jardim Botânico at the stop near ABBR and the “Pão de Açúcar” supermarket. The symposium, promoted by IMPA and the Millennium Institute, will Then, walk to Rua Lopes Quintas (which crosses Rua Jardim Botânico), be held at IMPA, Rio de Janeiro, during the week August 17-21, 2009. go to the bus stop near the newsstand, take a 409 or 125 bus and get off All lectures will be delivered by speakers invited by the Scientific at the final stop. From then on, follow the instructions at the end of the Committee. Some areas in Differential Geometry focused by the previous paragraph. conference will be Lie groups and algebras and their representations, minimal and CMC surfaces, geodesic flows, isometric and conformal • From Ipanema and Leblon immersions, symmetric spaces, compact manifolds with positive You can use the bus line 125 (to Jardim Botânico) from Rua Prudente de sectional curvature and Morse theory. Moraes (Ipanema), Avenida General San Martin (Leblon), or Avenida Bartolomeu Mitre (Leblon) and get off at the final stop.
    [Show full text]
  • L-Infinity and A-Infinity Structures
    Invited Contribution, Higher Structures 3(1):292{326, 2019. IGHER HSTRUCTURES L-infinity and A-infinity structures Jim Stasheffa aMathematics Department, University of Pennsylvania, USA Abstract Looking back over 55 years of higher homotopy structures, I reminisce as I recall the early days and ponder how they developed and how I now see them. From the history of A1-structures and later of L1-structures and their progeny, I hope to highlight some old results which seem not to have garnered the attention they deserve as well as some tantalizing new connections. Received: 4th October, 2018. Accepted: 13th October, 2018. MSC: 01A65; 18G55; 13D10; 17B60; 18D50. Keywords: homotopy-associativity, deformation theory, L-infinity, A-infinity. Dedicated to the memory of Masahiro Sugawara and John Coleman Moore 1. Introduction Since 1931 (Dirac's magnetic monopole), but especially in the last six decades, there has been in- creased use of cohomological and even homotopy theoretical techniques in mathematical physics. It all began with Gauss in 1833, if not sooner with Kirchof's laws. The cohomology referred to in Gauss was that of differential forms, div, grad, curl and especially Stokes Theorem (the de Rham complex). I'll mention some of the more `sophisticated' tools now being used. As I tried to being this survey reasonably up to date, one thing led to another, reinforcing my earlier image not of a tree but of a spider web. I finally had to quit pursuit before I became trapped! My apologies if your favorite strand is not mentioned. I have included bits of history with dates which are often for the published work, not for the earlier arXiv post or samizdat.
    [Show full text]
  • IAS Letter Spring 2004
    THE I NSTITUTE L E T T E R INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY · SPRING 2004 J. ROBERT OPPENHEIMER CENTENNIAL (1904–1967) uch has been written about J. Robert Oppen- tions. His younger brother, Frank, would also become a Hans Bethe, who would Mheimer. The substance of his life, his intellect, his physicist. later work with Oppen- patrician manner, his leadership of the Los Alamos In 1921, Oppenheimer graduated from the Ethical heimer at Los Alamos: National Laboratory, his political affiliations and post- Culture School of New York at the top of his class. At “In addition to a superb war military/security entanglements, and his early death Harvard, Oppenheimer studied mathematics and sci- literary style, he brought from cancer, are all components of his compelling story. ence, philosophy and Eastern religion, French and Eng- to them a degree of lish literature. He graduated summa cum laude in 1925 sophistication in physics and afterwards went to Cambridge University’s previously unknown in Cavendish Laboratory as research assistant to J. J. the United States. Here Thomson. Bored with routine laboratory work, he went was a man who obviously to the University of Göttingen, in Germany. understood all the deep Göttingen was the place for quantum physics. Oppen- secrets of quantum heimer met and studied with some of the day’s most mechanics, and yet made prominent figures, Max Born and Niels Bohr among it clear that the most them. In 1927, Oppenheimer received his doctorate. In important questions were the same year, he worked with Born on the structure of unanswered.
    [Show full text]
  • January 2001 Prizes and Awards
    January 2001 Prizes and Awards 4:25 p.m., Thursday, January 11, 2001 PROGRAM OPENING REMARKS Thomas F. Banchoff, President Mathematical Association of America LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION American Mathematical Society DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS Mathematical Association of America RUTH LYTTLE SATTER PRIZE American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT American Mathematical Society Mathematical Association of America Society for Industrial and Applied Mathematics CHAUVENET PRIZE Mathematical Association of America LEVI L. CONANT PRIZE American Mathematical Society ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN Association for Women in Mathematics LEROY P. S TEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH American Mathematical Society LEONARD M. AND ELEANOR B. BLUMENTHAL AWARD FOR THE ADVANCEMENT OF RESEARCH IN PURE MATHEMATICS Leonard M. and Eleanor B. Blumenthal Trust for the Advancement of Mathematics COMMUNICATIONS AWARD Joint Policy Board for Mathematics ALBERT LEON WHITEMAN MEMORIAL PRIZE American Mathematical Society CERTIFICATES OF MERITORIOUS SERVICE Mathematical Association of America LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION Association for Women in Mathematics OSWALD VEBLEN PRIZE IN GEOMETRY American Mathematical Society YUEH-GIN GUNG AND DR. CHARLES Y. H U AWARD FOR DISTINGUISHED SERVICE TO MATHEMATICS Mathematical Association of America LEROY P. S TEELE PRIZE FOR LIFETIME ACHIEVEMENT American Mathematical Society CLOSING REMARKS Felix E. Browder, President American Mathematical Society M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N ΕΙΣΙΤΩ S A O C C I I R E E T ΑΓΕΩΜΕ Y M A F O 8 U 88 AMERICAN MATHEMATICAL SOCIETY NDED 1 LEROY P.
    [Show full text]