Michio Kaku's Physics of the Impossible

Total Page:16

File Type:pdf, Size:1020Kb

Michio Kaku's Physics of the Impossible w U.S. $26.95/Canada $32.00 A fascinating exploration of the science of the impossible—from death rays and force fields to invisibility cloahs— reuealing to what entent such technolo­ gies might be achieuable decades or millennia into the future ne hundred years ago, scientists would have said that lasers, televisions, and the atomic O bomb were beyond the realm of physical possibility. In Physics of the Impossible, the renowned physicist Michio Kaku explores to what extent the technologies and devices of science fiction that are deemed equally impossible today might well become commonplace in the future. From teleportation to telekinesis, Kaku uses the world of science fiction to explore the fundamen­ tals—and the limits—of the laws of physics as we know them today. He ranks the impossible technolo­ gies by category—Class I, II, and III—depending on when they might be achieved, within the next cen­ tury, millennia, or perhaps never. In a compelling and thought-provoking narrative, he explains: • How the science of optics and electromagnetism may one day enable us to bend light around an object, like a stream flowing around a boulder, making the object invisible to observers "down­ stream" • How ramjet rockets, laser sails, antimatter en­ gines, and nanorockets may one day take us to the nearby stars • How telepathy and psychokinesis, once consid­ ered pseudoscience, may one day be possible using advances in MRI, computers, supercon­ ductivity, and nanotechnology • Why a time machine is apparently consistent with the known laws of quantum physics, although it would take an unbelievably advanced civiliza­ tion to actually build one (continued from front flap) Kaku uses his discussion of each technology as a jumping-off point to explain the science behind it. An extraordinary scientific adventure, Physics of the Impossible takes readers on an unforgettable, mes­ merizing journey into the world of science that both enlightens and entertains. ftllCHIO KAKU is the Henry Semat Professor of Theoretical Physics at the Graduate Center of the City University of New York. He is the cofounder of string field theory. He has written several books, including Parallel Worlds and Beyond Einstein, and his bestseller, Hyperspace, was voted one of the best sci­ ence books of the year by the New York Times and the Washington Post. He is a frequent guest on national TV, and his nationally syndicated radio program is heard in 130 cities. He lives in New York City. wuuuu.mkahu.org iAiwiAi.doubleday.com Jacket design by Annabelle Bronstein Jacket photograph by David A. Hardy/Science Photo Library Author photograph by Andrea Brizzi Printed in the U.SA. ADUANCE PRAISE FOR PHYSICS OF THE IMPOSSIBLE "A genuine tour de force, skillfully delivering cogent descriptions of everything from subatomic structure to the laws of the universe." —KIRKUS REVIEWS (starred) CRITICAL ACCLAIM FOR PARALLEL WORLDS "A wonderful tour, with an expert guide, of a cosmos whose comprehension forces us to stretch to the very limits of imagination." —Brian Greene, author of THE FABRIC OF THE COSMOS "A highly readable and exhilarating romp through the frontiers of cosmology." —Martin Rees, author of OUR COSMIC HABITAT and OUR FINAL CENTURY "A roller-coaster ride through the universe—and beyond—by one of the world's finest science writers." —Paul Davies, Australian Centre for Astrobiology, Macquarie University, Sydney, and author of HOW TO BUILD A TIME MACHINE CRITICAL ACCLAim FOR HVPERSPÛCE "One of the best popular accounts of higher physics." —Jim Holt, WALL STREET JOURNAL "Among the best of the genre to appear in recent years . What a wonderful adventure it is." —NEW YORK TIMES BOOK REVIEW "Mesmerizing . the reader exits dizzy, elated, and looking at the world in a literally revolutionary way." —WASHINGTON POST BOOK WORLD PHYSICS OF THE IMPOSSIBLE Other books by Michio Kaku PARALLEL WORLDS EINSTEIN'S COSMOS VISIONS HYPERSPACE BEYOND EINSTEIN i p /PS I IIP A SCIENTIFIC EXPLORATION INTO THE WORLD OF PHASERS, FORCE FIELDS, TELEPORTATION, AND TIME TRAVEL Doubleday NEW YORK LONDON TORONTO SYDNEY AUCKLAND PUBLISHED BY DOUBLED AY Copyright © 2008 by Michio Raku All Rights Reserved Published in the United States by Doubleday, an imprint of The Doubleday Broadway Publishing Group, a division of Random House, Inc., New York. www.doubleday.com DOUBLEDAY and the portrayal of an anchor with a dolphin are registered trademarks of Random House, Inc. Library of Congress Cataloging-in-Publication Data Raku, Michio. Physics of the impossible : a scientific exploration into the world of phasers, force fields, teleportation, and time travel / Michio Raku. -1st ed. p. cm. Includes bibliographical references and index. 1. Physics-Miscellanea. 2. Science-Miscellanea. 3. Mathematical physics- Miscellanea. 4. Physics in literature. 5. Human-machine systems. I. Title. QC75.R18 2008 530-dc25 2007030290 ISBN 978-0-385-52069-0 PRINTED IN THE UNITED STATES OF AMERICA 13579 10 8642 First Edition To my loving wife, Shizue, and to Michelle and Alyson Preface ix Acknowledgments xix Port I: Class I Impossibilities 1 : Force Fields 3 2: Invisibility 16 3: Phasers and Death Stars 34 4: Teleportation 53 5: Telepathy 70 6: Psychokinesis 88 7: Robots 103 8: Extraterrestrials and UFOs 126 9: Starships 154 10: Antimatter and Anti-universes 179 Port II: Class II Impossibilities 11 : Faster Than Light 197 12: Time Travel 216 13: Parallel Universes 229 Port III: Class III Impossibilities 14: Perpetual Motion Machines 257 15: Precognition 272 Epilogue: The Future of the Impossible 284 Notes 305 Bibliography 317 Index 319 If at first an idea does not sound absurd, then there is no hope for it -ALBERT EINSTEIN One day, would it be possible to walk through walls? To build starships that can travel faster than the speed of light? To read other people's minds? To become invisible? To move objects with the power of our minds? To transport our bodies instantly through outer space? Since I was a child, I've always been fascinated by these questions. Like many physicists, when I was growing up, I was mesmerized by the possibility of time travel, ray guns, force fields, parallel universes, and the like. Magic, fantasy, science fiction were all a gigantic play­ ground for my imagination. They began my lifelong love affair with the impossible. I remember watching the old Flash Gordon reruns on TV. Every Saturday, I was glued to the TV set, marveling at the adventures of Flash, Dr. Zarkov, and Dale Arden and their dazzling array of futuris­ tic technology: the rocket ships, invisibility shields, ray guns, and cities in the sky. I never missed a week. The program opened up an entirely new world for me. I was thrilled by the thought of one day rocketing to an alien planet and exploring its strange terrain. Being pulled into the orbit of these fantastic inventions I knew that my own destiny was PREFACE somehow wrapped up with the marvels of the science that the show promised. As it turns out, I was not alone. Many highly accomplished scien­ tists originally became interested in science through exposure to sci­ ence fiction. The great astronomer Edwin Hubble was fascinated by the works of Jules Verne. As a result of reading Verne's work, Hubble abandoned a promising career in law, and, disobeying his father's wishes, set off on a career in science. He eventually became the great­ est astronomer of the twentieth century. Carl Sagan, noted astronomer and bestselling author, found his imagination set afire by reading Edgar Rice Burroughs's John Carter of Mars novels. Like John Carter, he dreamed of one day exploring the sands of Mars. I was just a child the day when Albert Einstein died, but I remem­ ber people talking about his life, and death, in hushed tones. The next day I saw in the newspapers a picture of his desk, with the unfinished manuscript of his greatest, unfinished work. I asked myself, What could be so important that the greatest scientist of our time could not finish it? The article claimed that Einstein had an impossible dream, a problem so difficult that it was not possible for a mortal to finish it. It took me years to find out what that manuscript was about: a grand, unifying "theory of everything." His dream-which consumed the last three decades of his life-helped me to focus my own imagination. I wanted, in some small way, to be part of the effort to complete Ein­ stein's work, to unify the laws of physics into a single theory. As I grew older I began to realize that although Flash Gordon was the hero and always got the girl, it was the scientist who actually made the TV series work. Without Dr. Zarkov, there would be no rocket ship, no trips to Mongo, no saving Earth. Heroics aside, without science there is no science fiction. I came to realize that these tales were simply impossible in terms of the science involved, just flights of the imagination. Growing up meant putting away such fantasy. In real life, I was told, one had to abandon the impossible and embrace the practical. However, I concluded that if I was to continue my fascination with the impossible, the key was through the realm of physics. Without a PBEFUCE XI solid background in advanced physics, I would be forever speculating about futuristic technologies without understanding whether or not they were possible. I realized I needed to immerse myself in advanced mathematics and learn theoretical physics. So that is what I did. In high school for my science fair project I assembled an atom smasher in my mom's garage. I went to the Westinghouse company and gathered 400 pounds of scrap transformer steel.
Recommended publications
  • Belated Decision in the Hilbert-Einstein Priority Dispute
    (10). As described above, the severely opis- Dinosauria (Univ. of California Press, Berkeley, CA, However, the overall similarity of the pelvis of Archae- 1990). opteryx to those of the enantiornithine birds, espe- thopubic condition of their pelvis is consis- 10. L. Hou, L. D. Martin, Z. Zhou, A. Feduccia, Science cially the presence of the hypopubic cup, as well as tent with the notion that these birds roost- 274, 1164 (1996). the morphology of the London and Berlin Archae- ed in trees. In contrast, based primarily on 11. Q. Ji and S. Ji, Chin. Geol. 10, 30 (1996); see also V. opteryx specimens, offer support for our interpreta- disputed measurements of claw curvature, Morell, Audubon 99, 36 (1997). tion of the pelvic structure of these early birds [L. D. 12. Rather than representing primitive archosaurian Martin, in Origin of the Higher Groups of Tetrapods, Archaeopteryx has been interpreted as structures, it is probable that the hepatic-piston dia- H. P. Schultze and L. Trueb, Eds. (Cornell Univ. adapted primarily for a terrestrial rather phragm systems in crocodilians and theropods are Press, Ithaca, NY, 1991), pp. 485–540. than an arboreal existence (18). However, convergently derived. Pelvic anatomy in early “pro- 18. D. S. Peters and E. Go¨ rgner, in Proceedings of the II todinosaurs” such as Lagosuchus, as well as in all International Symposium of Avian Paleontology, K. as in the enantiornithines, the morphology ornithischian dinosaurs, shows no evidence of the Campbell, Ed. (Los Angeles Museum of Natural His- of Archaeopteryx’s pelvis is best interpreted pubis having served as a site of origin for similar tory Press, Los Angeles, CA, 1992), pp.
    [Show full text]
  • Beyond Einstein... Are We All Afraid of the Truth?
    smw-genart-02-06 Beyond Einstein ... Are we all afraid of the Truth? Sanjay M Wagh Central India Research Institute, Post Box 606, Laxminagar, Nagpur 440 022, India ∗ (Dated: March 20, 2006) Abstract The power-point presentation [1] provided herein shows exactly why Einstein’s field equations of his general relativity are based on an illogical approach to representing the observable world. Einstein had, in fact, discarded these equations way back in 1928 when he had began his solitary search for a unified field theory. However, the rest of us learned, taught, and also put too much faith for too long (for more than seventy years) in an illogical approach to representing the observable world. Consequently, we have developed great reluctance, resulting from dogmatic perceptions, prestige, reputation, ..., that is holding us back from orienting ourselves in the “right” direction to the understanding of the observable phenomena. This raises the question mentioned in the title: Are we all afraid of the Truth? Rhetorically speaking, we could then also ask: are we all afraid of Virginia Woolf? In the sequel, I also illustrate my approach to going Beyond Einstein for developing an appropriate mathematical framework for the fundamental physical ideas behind the General Principle of Relativity, for the unification of fundamental arXiv:physics/0603149v1 [physics.gen-ph] 20 Mar 2006 physical interactions and, hence, for a theory of everything. ∗Electronic address: cirinag˙[email protected] 1 The title of this article may appear only as an eye-catching one to some, repelling one to some others, a thought provoking one to few others ..
    [Show full text]
  • III. Discussion Questions A. Individual Stories Nathaniel Hawthorne
    III. Discussion Questions a. Individual Stories Nathaniel Hawthorne, “Rappaccini’s Daughter” (1844) 1. As an early sf tale, this story makes important contributions to the sf megatext. What images, situations, plots, characters, settings, and themes do you recognize in Hawthorne’s story that recur in contemporary sf works in various media? 2. In Hawthorne’s The Scarlet Letter, the worst sin is to violate, “in cold blood, the sanctity of the human heart.” In what ways do the male characters of “Rappaccini’s Daughter” commit this sin? 3. In what ways can Beatrice be seen as a pawn of the men, as a strong and intelligent woman, as an alien being? How do these different views interact with one another? 4. Many descriptions in the story lead us to question what is “Actual” and what is “Imaginary”? How do these descriptions function to work both symbolically and literally in the story? 5. What is the attitude toward science in the story? How can it be compared to the attitude toward science in other stories from the anthology? Jules Verne, excerpt from Journey to the Center of the Earth (1864) 1. Who is narrator of this tale? In your opinion, why would Verne choose this particular character to be the narrator? Describe his relationship with the other members of this subterranean expedition. Many of Verne’s early novels feature a trio of protagonists who symbolize the “head,” the “heart,” and the “hand.” Why? How does this notion apply to the protagonists in Verne’s Journey to the Center of the Earth? 2.
    [Show full text]
  • Genesis Cosmology* Genesis Cosmology Is the Cosmology Model in Agreement with the Interpretive Description of the First Three Da
    Genesis Cosmology* Genesis Cosmology is the cosmology model in agreement with the interpretive description of the first three days in Genesis. Genesis Cosmology is derived from the unified theory that unifies various phenomena in our universe. In Genesis, the first day involves the emergence of the separation of light and darkness from the formless, empty, and dark pre-universe, corresponding to the emergence of the current asymmetrical dual universe of the light universe with light and the dark universe without light from the simple and dark pre-universe in Genesis Cosmology. The light universe is the current observable universe, while the dark universe coexisting with the light universe is first separated from the light universe and later connected with the light universe as dark energy. In Genesis, the second day involves the separation of waters from above and below the expanse, corresponding to the separation of dark matter and baryonic matter from above and below the interface between dark matter and baryonic matter for the formation of galaxies in Genesis Cosmology. In Genesis, the third day involves the separation of sea and land where organisms appeared, corresponding to the separation of interstellar medium and star with planet where organisms were developed in Genesis Cosmology. The unified theory for Genesis Cosmology unifies various phenomena in our observable universe and other universes. In terms of cosmology, our universe starts with the 11-dimensional membrane universe followed by the 10-dimensional string universe and then by the 10-dimensional particle universe, and ends with the asymmetrical dual universe with variable dimensional particle and 4-dimensional particles.
    [Show full text]
  • Hugo Award -- Britannica Online Encyclopedia
    10/10/2017 Hugo Award -- Britannica Online Encyclopedia Hugo Award Hugo Award, any of several annual awards presented by the World Science Fiction Society (WSFS). The awards are granted for notable achievement in science �ction or science fantasy. Established in 1953, the Hugo Awards were named in honour of Hugo Gernsback, founder of Amazing Stories, the �rst magazine exclusively for science �ction. Hugo Award. This particular award was given at MidAmeriCon II, in Kansas City, Missouri, on August … Michi Trota Pin, in the form of the rocket on the Hugo Award, that is given to the finalists. Michi Trota Hugo Awards https://www.britannica.com/print/article/1055018 1/10 10/10/2017 Hugo Award -- Britannica Online Encyclopedia year category* title author 1946 novel The Mule Isaac Asimov (awarded in 1996) novella "Animal Farm" George Orwell novelette "First Contact" Murray Leinster short story "Uncommon Sense" Hal Clement 1951 novel Farmer in the Sky Robert A. Heinlein (awarded in 2001) novella "The Man Who Sold the Moon" Robert A. Heinlein novelette "The Little Black Bag" C.M. Kornbluth short story "To Serve Man" Damon Knight 1953 novel The Demolished Man Alfred Bester 1954 novel Fahrenheit 451 Ray Bradbury (awarded in 2004) novella "A Case of Conscience" James Blish novelette "Earthman, Come Home" James Blish short story "The Nine Billion Names of God" Arthur C. Clarke 1955 novel They’d Rather Be Right Mark Clifton and Frank Riley novelette "The Darfsteller" Walter M. Miller, Jr. short story "Allamagoosa" Eric Frank Russell 1956 novel Double Star Robert A. Heinlein novelette "Exploration Team" Murray Leinster short story "The Star" Arthur C.
    [Show full text]
  • Unification of the Maxwell- Einstein-Dirac Correspondence
    Unification of the Maxwell- Einstein-Dirac Correspondence The Origin of Mass, Electric Charge and Magnetic Spin Author: Wim Vegt Country: The Netherlands Website: http://wimvegt.topworld.center Email: [email protected] Calculations: All Calculations in Mathematica 11.0 have been printed in a PDF File Index 1 “Unified 4-Dimensional Hyperspace 5 Equilibrium” beyond Einstein 4-Dimensional, Kaluza-Klein 5-Dimensional and Superstring 10- and 11 Dimensional Curved Hyperspaces 1.2 The 4th term in the Unified 4-Dimensional 12 Hyperspace Equilibrium Equation 1.3 The Impact of Gravity on Light 15 2.1 EM Radiation within a Cartesian Coordinate 23 System in the absence of Gravity 2.1.1 Laser Beam with a Gaussian division in the x-y 25 plane within a Cartesian Coordinate System in the absence of Gravity 2.2 EM Radiation within a Cartesian Coordinate 27 System under the influence of a Longitudinal Gravitational Field g 2.3 The Real Light Intensity of the Sun, measured in 31 our Solar System, including Electromagnetic Gravitational Conversion (EMGC) 2.4 The Boundaries of our Universe 35 2.5 The Origin of Dark Matter 37 3 Electromagnetic Radiation within a Spherical 40 Coordinate System 4 Confined Electromagnetic Radiation within a 42 Spherical Coordinate System through Electromagnetic-Gravitational Interaction 5 The fundamental conflict between Causality and 48 Probability 6 Confined Electromagnetic Radiation within a 51 Toroidal Coordinate System 7 Confined Electromagnetic Radiation within a 54 Toroidal Coordinate System through Electromagnetic-Gravitational
    [Show full text]
  • Einstein's Life and Legacy
    Reflections Einstein's Life and Legacy Introduction Albert Einstein is the most luminous scientist of the past century, and ranks with Isaac Newton as one among the greatest physicists of all time. There is an enormous amount of material to choose from in talking about Einstein. He is without doubt also the most written about scientist of the past century, may be of all time. The Einstein Archives contain about 43,000 documents, and so far as I know the "Collected Papers of Albert Einstein" have only come upto 1917 with Volume 8 in English translation; another 32 volumes remain to be produced. In the face of all this, this account must be severely selective, and coherent as well. Einstein's life was incredibly rich and intense in the intellectual sense. This will become clear as I go along. In any case let me begin by presenting in Box 1 a brieflisting of a few important dates in his life, howsoever inadequate it may be. He was scientifically active essentially from 1902 upto 1935 at the highest imaginable levels, thus for more than three decades. The Miraculous Year Now let us turn to technical matters. First, a brief mention of his creative outburst of 1905, whose centenary we are celebrating this year. There were four fundamental papers, and the doctoral thesis, all in the six months from March to September. The first paper on the light quantum concept and explanation of the photo electric effect was submitted to Annalen der Physik in March; the second on Brownian Motion in May; and the third setting out the Special Theory of Relativity in June.
    [Show full text]
  • Newtonian Wormholes
    Newtonian wormholes José P. S. Lemos∗ and Paulo Luz† Centro Multidisciplinar de Astrofísica - CENTRA, Departamento de Física, Instituto Superior Técnico - IST, Universidade de Lisboa - UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal Abstract A wormhole solution in Newtonian gravitation, enhanced through an equation relating the Ricci scalar to the mass density, is presented. The wormhole inhabits a spherically symmetric curved space, with one throat and two asymptotically flat regions. Particle dynamics in this geometry is studied, and the three distinct dynamical radii, namely, the geodesic, circumferential, and curvature radii, appear naturally in the study of circular motion. Generic motion is also analysed. A limiting case, although inconclusive, suggests the possibility of having a Newtonian black hole in a region of finite (nonzero) size. arXiv:1409.3231v1 [gr-qc] 10 Sep 2014 ∗ [email protected][email protected] 1 I. INTRODUCTION When many alternative theories to general relativity are being suggested, and the grav- itational field is being theoretically and experimentally put to test, it is interesting to try an alternative to Newton’s gravitation through an unexpected but simple modification of it. The idea is to have Newtonian gravitation, not in flat space, as we are used to, but in curved space. This intriguing possibility has been suggested by Abramowicz [1]. It was noted that Newtonian gravitation in curved space, and the corresponding Newtonian dy- namics in a circle, distinguishes three radii, namely, the geodesic radius (which gives the distance from the center to its perimeter), the circumferential radius (which is given by the perimeter divided by 2π), and the curvature radius (which is Frenet’s radius of curvature of a curve, in this case a circle).
    [Show full text]
  • Booklet 2008-09.Indd
    The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have achieved distinguished and significant advances, who have made outstanding contributions in culture and the arts, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference will be given to individuals whose significant work was recently achieved. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, is a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. In the 1950s he founded the film company Shaw Brothers (Hong Kong) Limited in Hong Kong. He has been Executive Chairman of Television Broadcasts Limited in Hong Kong since the 1970s. Mr Shaw has also founded two charities, The Sir Run Run Shaw Charitable Trust and The Shaw Foundation Hong Kong, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I am delighted to congratulate the six distinguished scientists who receive this year’s Shaw Prize. Their accomplishments enrich human knowledge and have a profound impact on the advancement of science. This year, the Shaw Prize recognises remarkable achievements in the areas of astronomy, life science and medicine, and mathematical sciences. The exemplary work and dedication of this year’s recipients vividly demonstrate that constant drive for excellence will eventually bear fruit.
    [Show full text]
  • 18Th International Conference on General
    18TH INTERNATIONAL CONFERENCE ON GENERAL RELATIVITY AND GRAVITATION (GRG18) 8 – 13 July 2007 7TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI7) www.grg18.com 8 – 14 July 2007 www.Amaldi7.com Sydney Convention & Exhibition Centre • Darling Harbour • Sydney Australia INSPIRALLING BLACK HOLES RAPID EPANSION OF AN UNSTABLE NEUTRON STAR Credit: Seidel (LSU/AEI) / Kaehler (ZIB) Credit: Rezzolla (AEI) / Benger (ZIB) GRAZING COLLISION OF TWO BLACK HOLES VISUALISATION OF A GRAVITATIONAL WAVE HAVING Credit: Seidel (AEI) / Benger (ZIB) TEUKOLSKY'S SOLUTION AS INITIAL DATA Credit: Seidel (AEI) / Benger (ZIB) ROLLER COASTER DISTORTED BY SPECIAL RELATIVISTIC EFFECTS Credit: Michael Hush, Department of Physics, The Australian National University The program for GRG18 will incorporate all areas of General Relativity and Gravitation including Classical General Relativity; Numerical Relativity; Relativistic Astrophysics and Cosmology; Experimental Work on Gravity and Quantum Issues in Gravitation. The program for Amaldi7 will cover all aspects of Gravitational Wave Physics and Detection. PLENARY LECTURES Peter Schneider (Bonn) Donald Marolf USA Bernard Schutz Germany Bernd Bruegman (Friedrich-Schiller-University Jena) Gravitational lensing David McClelland Australia Robin Stebbins United States Numerical relativity Daniel Shaddock (JPL California Institute of Technology) Jorge Pullin USA Kimio Tsubono Japan Daniel Eisenstein (University of Arizona) Gravitational wave detection from space: technology challenges Norna Robertson USA Stefano Vitale Italy Dark energy Stan Whitcomb (California Institute of Technology) Misao Sasaki Japan Clifford Will United States Ground-based gravitational wave detection: now and future Bernard F Schutz Germany Francis Everitt (Stanford University) Susan M. Scott Australia LOCAL ORGANISING COMMITTEE Gravity Probe B and precision tests of General Relativity Chair: Susan M.
    [Show full text]
  • Arxiv:1310.7985V1 [Gr-Qc] 29 Oct 2013 Life Inside the Bubble Is Colourful and Sexy and Fun
    Traversable Achronal Retrograde Domains In Spacetime Doctor Benjamin K. Tippett Gallifrey Polytechnic Institute Doctor David Tsang Gallifrey Institute of Technology (GalTech) (Dated: October 31, 2013) There are many spacetime geometries in general relativity which contain closed timelike curves. A layperson might say that retrograde time travel is possible in such spacetimes. To date no one has discovered a spacetime geometry which emulates what a layperson would describe as a time machine. The purpose of this paper is to propose such a space-time geometry. In our geometry, a bubble of curvature travels along a closed trajectory. The inside of the bubble is Rindler spacetime, and the exterior is Minkowski spacetime. Accelerating observers inside of the bubble travel along closed timelike curves. The walls of the bubble are generated with matter which violates the classical energy conditions. We refer to such a bubble as a Traversable Achronal Retrograde Domain In Spacetime. I. INTRODUCTION t A. Exotic spacetimes x How would one go about building a time machine? Let us begin with considering exactly what one might mean by “time machine?” H.G. Wells (and his successors) might de- scribe an apparatus which could convey people “backwards in time”. That is to say, convey them from their current location in spacetime to a point within their own causal past. If we de- scribe spacetime as a river-bed, and the passage of time as our unrelenting flow along our collective worldlines towards our B future; a time machine would carry us back up-stream. Let us A describe such motion as retrograde time travel.
    [Show full text]
  • Gravity Beyond Einstein
    Thierry De Mees Gravito- magnetism including an introduction to the Coriolis Gravity Theory Gravity Beyond Einstein Second Edition - 2011 Gravito-magnetism including an introduction to the Coriolis Gravity Theory Gravity Beyond Einstein Second Edition - 2011 INDEX Index i Introduction 1 Chapter 1 Successes of a Novel Gravity Interpretation 7 The great Michelson & Morley, Lorentz and Einstein trap 9 1. The Michelson & Morley experiment, the Lorentz and the Einstein interpretation. 9 2. A null result means : a null result. 10 3. Conclusion. 11 4. References and interesting literature. 12 A coherent dual vector field theory for gravitation 13 1. Introduction : the Maxwell analogy for gravitation: a short history. 14 2. Law of gravitational motion transfer. 14 3. Gyrotation of a moving mass in an external gravitational field. 15 4. Gyrotation of rotating bodies in a gravitational field. 16 5. Angular collapse into prograde orbits. Precession of orbital spinning objects. 16 6. Structure and formation of prograde disc Galaxies. 18 7. Unlimited maximum spin velocity of compact stars. 20 8. Origin of the shape of mass losses in supernovae. 21 9. Dynamo motion of the sun. 22 10. Binary stars with accretion disc. 22 11. Repulsion by moving masses. 24 12. Chaos explained by gyrotation. 24 13. The link between Relativity Theory and Gyrotation Theory. 25 14. Discussion : implications of the relationship between Relativity and Gyrotation 26 15. Conclusion 26 16. References 26 Lectures on “A coherent dual vector field theory for gravitation”. 27 Lecture A: a word on the Maxwell analogy 27 Lecture B: a word on the flux theory approach 27 Lecture C: a word on the application of the Stokes theorem and on loop integrals 28 Lecture D: a word on the planetary systems 29 Lecture E : a word on the formation of disk galaxies 31 Discussion: the Dual Gravitation Field versus the Relativity Theory 33 What is the extend of the Dual Gravitation Field Theory (Gravitomagnetism)? 33 The centenary of the relativity theory.
    [Show full text]