<<

-less double beta decays and Majorana

Hiro Ejiri RCNP Osaka Univ. CTU Prague

1.Majorana neutrinos and ββ Decays 2. Neutrino-less 0νββ experiments 3. Nuclear responses for ββ neutrinos 4. Concluding remarks.

From the Ejiri’s weekend house at Shounan Thank PAVI organizers 1. Majorana neutrinos and neutrino-less ββ decays 0νββ A = B + β + β Lepton number ΔL=2 beyond SM. .

Part. ν ppyhysics

Majorana ν, mν CP

0ν 0ν 0ν 2 T = G [M mν] FEMT(fm) NlNucl. m icro-lblab. Nucl. . gA Cosmology short-range & DM to selectively enhance ττσ σ correlation Leppgtogenesis . ν-exchange 1. 0νββ, processes and experiments

A. Energy spectra to select the 0νββ 2-body kinematics

B. Θ21 and E12 correlations to identify LHC/RHC

ν-mass /M/ ML/MR ΘRL W(Θ)= 1 +αcos θ α = −1, +1 C. Different isotopes and states with different M0ν to see light-ν, SUSY, and others.

R PAVI SUSY R=(-)3B+L+2S ν matrix and masses

. m3 m2 ΔmS ~9 meV m1

ΔmA ~45meV

νe νμ ντ m2 νe νμ ντ m3 m1 NH IH

Absolute mass scale

2 =|> = |Σ Ui exp(i φi)m) mi| is given by using Ui ΔmS, ΔmA given by ν oscillations D. Effective ν mass regions studied by ββ experiments

QD 100~300 meV KKDC 320meV NEMO3 CUORITINO

IH: 20-50 meV

NH: 2 - 5 meV

θ13 QD: Cosmological 200 ~ 300 meV 2 2 1/2 Phase +/- ~ 2 IH/NH ~ 10 Single β ~ mν = [Σ Ui mi ] ~ 300 meV Mass sensitivities and nuclear sensitivity -1/2 eff -1/2 1/2 = SN (N ) δ -1/2 2 -1/2 eff 0ν 1/2 SN =13 (GM /0.01 A) Ν = ε N ton y, δ ~ (BN)

Rodin RQRPA QRPA Suhonen Jastraw UNICOM )

(0ν 10 s M s tt

rix elemen 1 tt Nuclear ma Nuclear

0.1 70 80 90 100 Ge Se Mo Cd Te Xe A M0ν ~ 24 /R = 18/A 1/3 M; excited state and Nd M=M/3 Neutrino mass sensitivity and ββ detectors -1/2 0ν -1/2 1/2 meV= (SN) (ε N) δ

0ν 2 82 0ν SN = G M /0.01A/170) Se, ε = 0.3 B=1/t y(σ :1.5%) M~18/A

-1/2 0ν SN =10 meV ε ~ 0.3

100 Small N <0.5 δ = 2.3 in meV ss -1/2 N-1/2 = 45 N Larger N δ ~1.7 (BN)1/2 IH rino mas rino = 25 N-1/4 B1/4 tt D. ββ-sourcesν to be used. 10 IH: 1 t y ~ 0.5 t-2 y N-1/4 tive neu tive NH: 500 t y ~100 t-5 y cc NH Effe 1 E. ΒG. RI, 2νββ 0.01 0.1 1 10 100 1000 IH B ~ 1 /t y σ ~ 2.2 % N ton year NH B ~ 0.2 /t y σ ~ 1.5 % 2. DBD experiments

From the Ejiri’s weekday flat at Yokohama Signal of 0νββ and RI BG schematic spectra Calorimetric. Detector=Source Spectroscopic Detector ≠Source Low Q, RI-BG, sharp-peak high Q, low RI, Broad-peak

KKDC Resolution

82 Se: ΔEsum = 5.3%(FWHM) 40 2νββ: 40mg/cm2 2

) 2νββ: 20mg/cm 30 0νββ: 40mg/cm2 0νββ: 20mg/cm2

20 (

10

0 2νββ 2700 2800 2900 3000 3100 3200

E1+E2 [keV] 0νββ claim by KKDC H.

1. PRL 83 ’99 > 5.7 10 25 y 90% < 0.19 eV

2Ph2. Phys. J . 01 >19> 1.9 90 < <033 0.33 eV

3. Mod. Phys. 01 0.8—18.3 95 0.11—0.56 eV *

4. KKDC PLB 586 198 04

5. New analysis Phys. Scr T127 2006 40 2.23 1025 y 0.32± 0.03 eV

Large dependence on the analysis method. Large inconsistency among the publications on the same data and among the group. NEMO 3: Neutrino Ettore Majorana Observatory

100Mo ββ(2ν)

100Mo

Multi-source detector

εον = 8%, σ =3.4% T2ν for 82Se, 100Mo, 116Cd, 150Nd To be used for check M0ν

100 23 Mo T1/2 >58> 5.8 × 10 y eV (1.3 – 0.8) > ۄmνۃ

E2 CUORICINO

PRC 78035502 2008 c. Arnabolid et al., 40.7gr 62Xal M0ν by Rodin 11kgy >3 10 24 y <046eV< 0.46 eV Present limits on 0νββ rates and the ν masses

23 0.32 HM

0580.58 080.8 – 131.3

0.3 0.46 Future projects

-1/2 -1/4 S> ~ SN [Nββ/BG] 0ν 2 A. Select isotopes with large SN = G(M ) and B. Detectors with Nββ, ~0.1 ~1 t , B ~ 1 / t y

SNO+ SNO+ Spectroscopic experiments GERDA

GERDA • ‘Bare’ enrGe array in liquid argon • Shield: high-purity

liquid A rgon / H 2O • Phase I (late 2009): ~18 kg (HdM/IGEX diodes) • Phase II Add ~20 kg new detectors - Total ~40 kg

Joint Cooperative Agreement: • Open exchange of knowledge & technologies (e.g. MaGe, R&D) • Intention is to merggpe for 1 ton exp. Select best techniq ues developed and tested in GERDA and MAJORANA The MAJORANA Goal of IH 25 meV with 1 t BG=1/t/y DEMONSTRATOR Module 0.06 t Ge –30-kg of 86% enriched 76Ge crystals for science goal; 60-kg for BG –ultra-clean, electroformed Cu Cryostats 4850’ level at Sanford Lab Start 2015 to get 140 meV by 3 y 0. 03 t

Majorana S. Elliott 16 1.EXO200 200 kg 136Xe both scintillation and EXO 136Xe ionization to get σ~1.5%. WIPP, start in 2009 Gratta ν08 2νββ and 0νββ 0.3 eV 2.Ba tagging & GXe R&D to identify 0νββ 2008 Xal production 2012 Data taking

M=203 kg B = 200 –20 / t y 24~120 – 14~66 meV Possible SuperNEMO design Planar and modular design: ~ 100 kg of enriched isotopes (20 modules × 5 kg)

1 module:

Source (40 mg/cm2) 4 x 3 m2 Tracking : drift chamber ~3000 cells in Geiger mode

Calorimeter: scintillators + PM 1 000 PM if scint. blocs ~ 100 PM if scint. bars

1 m

5 m Top view 150Nd (SNO+ ) Q = 3.368 100 - 40meV natural – enriched Nd 1k ton detector with 0.1% of Nd, i.e. 56 – 500 kg 150Nd MOON Detector for IH and NH 0νββ Multilayyper modules, expansion of 2-layy(er ELEGANT V(1990-)

A. Energy spectrum PL scintillation

B. E-Θ β1, β2 C. Different isotopes Detector ≠ββ source D. Signal N~1-10 ton Multi-layer PL E. BG 2νββ 4.2 ε2ν/10−7 PL σ∼2.2 – 1.5 %

BG RI Qββ > 3 MeV Vertex

Realistic volume PL V =0.4 K m3/ton

H. Ejiri et al., Phys. Rev. Lett. 85 (2000) 2917-2920 . H. Ejjyiri, J. Phys. Soc. Jap an, Invited Review, 74 ()(2005) 2101. H. Ejiri, Mod. Phys. Lett. A, Vol. 22, No. 18 (2007) pp. 1277-1291. H. Ejiri1, et al., European Physics Journal, 162 (2008) 239-250 1 module 16 units NaI

PMT

1 unit

X&Y fiber planes

PL plate PL plate PMT PMT ββ source film MOON 1 prototype detector

PL 6 layers, 53x53x1 cc BC408. equ.100Mo, 142g 40mg, 3 layers

ELEGANT V 1990 PL Mass sensitivity σ=2.2 % , 1.7 % 1.3 % 1000 B C D QD 100

IH

10

1 0.01 0.1 1 10 100 1000 Run N t y (ton year)

Phase I NT ~0. 06 t y =0. 03 ton 2 y σ~2. 2 % QD ~ 120 meV Phase II NT ~0.36 t y =0.12 ton 3 y σ~2.2 % QD/IH ~ 70 meV Phase III NT~ 2 t y =0.48 ton 4 y σ~1.7% IH ~30 meV 3. Neutrino nuclear responses

From the Ejiri ’s weekday flat at Yokohama Nuclear τσ responses for ν in β &ββ

Nuclear weak responses ββ−ν, solar-ν, supernova ν Fermi- Isospin τ GT Spin Ispspin τσ τ,, τσ ν e e e p,3He n,t W γ π,ρ n p n n n p

β-decay, e capture γ-capture, e scattering CER 3He,t t, 3He d,2He ν-probe from J-PARC γ from Spring-8, HIGS N RCNP, MSU, KVI Charge exchange reaction at RCNP Osaka ΔE /E~ 7 10-5 3 Mi = 0.59 ( He, t) Frekers Ejiri et al ,

|GTR > ΔE /E~ 7 10-5

|k

ββ

Mf = 0.55 β

M1 = 0.11 ,,g agree with M2ν = 0.12 (EL V, NEMO) Photon γ 1N1. Neu tra l current responses 2. Isospin rotation for charged current responses via IAS 1/2 = g/e (2T) Spring-8 E1 and M1 γ P (L) azymuthal distribution γ Τ,Tz-1

Τ− =ΙΑΙΑS

γ

Β Τ,Τz=5,5 T,Tz=6,6 β ββ Τ,Τ,,Τ,Τz=6z=5,6,5 Α Τ,Τz-1

H. Ejiri PRL 21 ’68, H. Ejiri PR 38 ‘78 Low energy Neutrinos H. Ejiri NIM. 503 (2003) 276 – 278.

p + Hg Æ n π+ + + + + π Æ μ +νμ μ Æe + νe + anti- νμ 3 GeV 50 GeV Ep Gev Np /sec Nn/sec 15 15 SNS 1 6 10 1 10 J-PARC J-PARC 312103 1.2 1015 5105 1014 FSQP: Fermi Surface Quasi Particle Model

2νββ matrix elements 1

|GTR > M) SS

(F 0.1 2ν M

|k XP), EE (

ββ 2ν 0.01

M

M2ββ2νββ = Σ g 2 Mβ Mb /Δ k A k k k 0.001 70 80 90 100 110 120 130 140 Mass number A (102: 100Mo excited state)

H. Ejiri, Phys. Report 338 (2000) 265. H. Ejiri and H. Toki, (1996) J. Phys. Soc. Japan Lett. 65 (1996) 7. Η. Ejiri J. Phys. Soc. Japan, 78 (2009) No 7. 4. Concluding remarks

1. Nuclei are excellent FEMT labs for studying fundamental interactions, symmetries, neutrinos, , and others. 2. Double beta decayy(s (DBD ) are sensitive and realistic probes for Majorana neutrinos, neutrino masses and the spectrum. 3. DBD experiments with different isotopes and different methods are iiindispensable. Caroli metri iGc GERDA/MAJORANA, CUORE,EXO etc, and spectroscopic experiments of MOON S- NEMO ets access the QQgypD/IH mass regions by 0.1/1 ton isotopes. 4. Neutrino nuclear responses are crucial for studying ν’s. Charggge exchange reactions ()(CER) with RCNP 3He and MSU t probes, the NewSUBARU/HIGS γ probes and the J- PARC ν probes in future are used for studying ν responses. 5Th25. The 2νββ matrilix elements are reprod uced dbFSQM by FSQM. Extension to the 0νββ matrix elements is of great interest. Thank you for your attention

From the Ejiri’s weekend house at Shounan Energy resolution

Cs 625 σ= 4.73 ±0.04 % Bi 976 σ= 3.84 ±0.06 % ββ 3.000 σ= 2.1±0.1 %

Ensure search for IH (25-50 meV) mass with large scale PL plates.

BG origin Case A BG(A)/t y Case B BG(B)/t y 2νββ σ=2.2 % 414.1 σ=1.7 % 151.5 208Tl 60 mBq/t 0.3 20 mBq 0.1 214Bi 300mBq/t 0010.01 100mBq 0. 003 Cosmic n 2000 m w.e 0.01 2450 m w.e 0.007 COBRA K. Zuber CdTe Semiconductors with good E- resolution to study 116Cd 0νββ and others at Gran sasso

DCBA-T3 (under construction)

3 (d,2He) Freckers ( He,t)

Ex (MeV) B(GT+) = 0.3 B(GT-) = 0.18 Fascination: With this 1 level only:

calc.19 T1/ 2 (()(2νββββ)(=±⋅2.2 0.3 )y) 10 years exp. 19 T1/2 (2νββ =±⋅ (2.2 0.4) 10 years (NEMO3-result)