Majorana neutrinos and other Majorana particles: Theory and experiment Evgeny Kh. Akhmedov∗† Max-Planck-Institut f¨ur Kernphysik, Saupfercheckweg 1 D-69117 Heidelberg, Germany Abstract This is a somewhat modified version of Chapter 15 of the book “The Physics of Ettore Majorana”, by Salvatore Esposito with contributions by Evgeny Akhmedov (Ch. 15) and Frank Wilczek (Ch. 14), Cambridge University Press, 2014. arXiv:1412.3320v1 [hep-ph] 10 Dec 2014 ∗Also at the National Research Centre Kurchatov Institute, Moscow, Russia †email:
[email protected] What are Majorana particles? These are massive fermions that are their own antipar- ticles. In this chapter we will concentrate on spin-1/2 Majorana particles, though fermions of higher spin can also be of Majorana nature. Obviously, Majorana particles must be genuinely neutral, i.e. they cannot possess any conserved charge-like quantum number that would allow one to discriminate between the particle and its antiparticle. In particular, they must be electrically neutral. Among the known spin-1/2 particles, only neutrinos can be of Majorana nature. Another known quasi-stable neutral fermion, the neutron, has non-zero magnetic moment which disqualifies it for being a Majorana particle: the antineutron exists, and its magnetic moment is negative of that of the neutron1. Neutrinos are exactly massless in the original version of the standard model of elec- troweak interaction, and are massive Majorana particles in most its extensions. Although massive Dirac neutrinos is also a possibility, most economical and natural models of neutrino mass lead to Majorana neutrinos. Since only massive neutrinos can oscillate, the interest to the possibility of neutrinos being Majorana particles rose significantly after the first hints of neutrino oscillations obtained in the solar and atmospheric neutrino experiments.