Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

Neutrino-less double beta decays and Majorana neutrinos Hiro Ejiri RCNP Osaka Univ. CTU Prague 1.Majorana neutrinos and ββ Decays 2. Neutrino-less 0νββ experiments 3. Nuclear responses for ββ neutrinos 4. Concluding remarks. From the Ejiri’s weekend house at Shounan Thank PAVI organizers 1. Majorana neutrinos and neutrino-less ββ decays 0νββ A = B + β + β Lepton number ΔL=2 beyond SM. Part. ν ppyhysics Majorana ν, mν CP 0ν 0ν 0ν 2 T = G [M mν] FEMT(fm) NlNucl. m icro-lblab. Nucl. physics. gA Cosmology short-range & DM to selectively enhance ττσ σ correlation Leppgtogenesis . ν-exchange 1. 0νββ, processes and experiments A. Energy spectra to select the 0νββ 2-body kinematics B. Θ21 and E12 correlations to identify LHC/RHC ν-mass /M/ ML/MR ΘRL W(Θ)= 1 +αcos θ α = −1, +1 C. Different isotopes and states with different M0ν to see light-ν, SUSY, and others. R PAVI SUSY R=(-)3B+L+2S ν matrix and masses . m3 m2 ΔmS ~9 meV m1 ΔmA ~45meV νe νμ ντ m2 νe νμ ντ m3 m1 NH IH Absolute mass scale 2 <m< mν>=|> = |Σ Ui exp(i φi)m) mi| is given by using Ui ΔmS, ΔmA given by ν oscillations D. Effective ν mass regions studied by ββ experiments QD 100~300 meV KKDC 320meV NEMO3 CUORITINO IH: 20-50 meV NH: 2 - 5 meV θ13 QD: Cosmological 200 ~ 300 meV 2 2 1/2 Phase +/- ~ 2 IH/NH ~ 10 Single β ~ mν = [Σ Ui mi ] ~ 300 meV Mass sensitivities and nuclear sensitivity -1/2 eff -1/2 1/2 <mν> = SN (N ) δ -1/2 2 -1/2 eff 0ν 1/2 SN =13 (GM /0.01 A) Ν = ε N ton y, δ ~ (BN) Rodin RQRPA QRPA Suhonen Jastraw UNICOM ) (0ν 10 s M s tt rix elemen 1 tt Nuclear ma Nuclear 0.1 70 80 90 100 Ge Se Mo Cd Te Xe A M0ν ~ 24 /R = 18/A1/3 M; excited state and Nd M=M/3 Neutrino mass sensitivity and ββ detectors -1/2 0ν -1/2 1/2 <mn> meV= (SN) (ε N) δ 0ν 2 82 0ν SN = G M /0.01A/170) Se, ε = 0.3 B=1/t y(σ :1.5%) M~18/A -1/2 0ν SN =10 meV ε ~ 0.3 100 Small N <0.5 δ = 2.3 in meV ss -1/2 N-1/2 <mν> = 45 N Larger N δ ~1.7 (BN)1/2 IH rino mas rino <m > = 25 N-1/4 B1/4 tt D. ββ-sourcesν to be used. 10 IH: 1 t y ~ 0.5 t-2 y N-1/4 tive neu tive NH: 500 t y ~100 t-5 y cc NH Effe 1 E. ΒG. RI, 2νββ 0.01 0.1 1 10 100 1000 IH B ~ 1 /t y σ ~ 2.2 % N ton year NH B ~ 0.2 /t y σ ~ 1.5 % 2. DBD experiments From the Ejiri’s weekday flat at Yokohama Signal of 0νββ and RI BG schematic spectra Calorimetric. Detector=Source Spectroscopic Detector ≠Source Low Q, RI-BG, sharp-peak high Q, low RI, Broad-peak KKDC Resolution 82 Se: ΔEsum = 5.3%(FWHM) 40 2νββ: 40mg/cm2 2 ) 2νββ: 20mg/cm 30 0νββ: 40mg/cm2 0νββ: 20mg/cm2 20 ( 10 0 2νββ 2700 2800 2900 3000 3100 3200 E1+E2 [keV] 0νββ claim by KKDC H. 1. PRL 83 ’99 > 5.7 10 25 y 90% < 0.19 eV 2Ph2. Phys. J. 01 >19> 1.9 90 < <033 0.33 eV 3. Mod. Phys. 01 0.8—18.3 95 0.11—0.56 eV * 4. KKDC PLB 586 198 04 5. New analysis Phys. Scr T127 2006 40 2.23 1025 y 0.32± 0.03 eV Large dependence on the analysis method. Large inconsistency among the publications on the same data and among the group. NEMO 3: Neutrino Ettore Majorana Observatory 100Mo ββ(2ν) 100Mo Multi-source detector εον = 8%, σ =3.4% T2ν for 82Se, 100Mo, 116Cd, 150Nd To be used for check M0ν 100 23 Mo T1/2 >58> 5.8 × 10 y eV (1.3 – 0.8) > ۄmνۃ E2 CUORICINO PRC 78035502 2008 c. Arnabolid et al., 40.7gr 62Xal M0ν by Rodin 11kgy >3 10 24 y <046eV< 0.46 eV Present limits on 0νββ rates and the ν masses 23 0.32 HM 0580.58 080.8 – 131.3 0.3 0.46 Future projects -1/2 -1/4 <mν>S> ~ SN [Nββ/BG] 0ν 2 A. Select isotopes with large SN = G(M ) and B. Detectors with Nββ, ~0.1 ~1 t , B ~ 1 / t y SNO+ SNO+ Spectroscopic experiments GERDA GERDA • ‘Bare’ enrGe array in liquid argon • Shield: high-purity liquid A rgon / H 2O • Phase I (late 2009): ~18 kg (HdM/IGEX diodes) • Phase II Add ~20 kg new detectors - Total ~40 kg Joint Cooperative Agreement: • Open exchange of knowledge & technologies (e.g. MaGe, R&D) • Intention is to merggpe for 1 ton exp. Select best techniq ues developed and tested in GERDA and MAJORANA The MAJORANA Goal of IH 25 meV with 1 t BG=1/t/y DEMONSTRATOR Module 0.06 t Ge –30-kg of 86% enriched 76Ge crystals for science goal; 60-kg for BG –ultra-clean, electroformed Cu Cryostats 4850’ level at Sanford Lab Start 2015 to get 140 meV by 3 y 0. 03 t Majorana S. Elliott 16 1.EXO200 200 kg 136Xe both scintillation and EXO 136Xe ionization to get σ~1.5%. WIPP, start in 2009 Gratta ν08 2νββ and 0νββ 0.3 eV 2.Ba tagging & GXe R&D to identify 0νββ 2008 Xal production 2012 Data taking M=203 kg B = 200 –20 / t y 24~120 – 14~66 meV Possible SuperNEMO design Planar and modular design: ~ 100 kg of enriched isotopes (20 modules × 5 kg) 1 module: Source (40 mg/cm2) 4 x 3 m2 Tracking : drift chamber ~3000 cells in Geiger mode Calorimeter: scintillators + PM 1 000 PM if scint. blocs ~ 100 PM if scint. bars 1 m 5 m Top view 150Nd (SNO+ ) Q = 3.368 100 - 40meV natural – enriched Nd 1k ton detector with 0.1% of Nd, i.e. 56 – 500 kg 150Nd MOON Detector for IH and NH 0νββ Multilayyper modules, expansion of 2-layy(er ELEGANT V(1990-) A. Energy spectrum PL scintillation B. E-Θ β1, β2 C. Different isotopes Detector ≠ββ source D. Signal N~1-10 ton Multi-layer PL E. BG 2νββ 4.2 ε2ν/10−7 PL σ∼2.2 – 1.5 % BG RI Qββ > 3 MeV Vertex Realistic volume PL V =0.4 K m3/ton H. Ejiri et al., Phys. Rev. Lett. 85 (2000) 2917-2920 . H. Ejjyiri, J. Phys. Soc. Jap an, Invited Review, 74 ()(2005) 2101. H. Ejiri, Mod. Phys. Lett. A, Vol. 22, No. 18 (2007) pp. 1277-1291. H. Ejiri1, et al., European Physics Journal, 162 (2008) 239-250 1 module 16 units NaI PMT 1 unit X&Y fiber planes PL plate PL plate PMT PMT ββ source film MOON 1 prototype detector PL 6 layers, 53x53x1 cc BC408. equ.100Mo, 142g 40mg, 3 layers ELEGANT V 1990 PL Mass sensitivity σ=2.2 % , 1.7 % 1.3 % 1000 B C D QD 100 IH 10 1 0.01 0.1 1 10 100 1000 Run N t y (ton year) Phase I NT ~0. 06 t y =0. 03 ton 2 y σ~2. 2 % QD ~ 120 meV Phase II NT ~0.36 t y =0.12 ton 3 y σ~2.2 % QD/IH ~ 70 meV Phase III NT~ 2 t y =0.48 ton 4 y σ~1.7% IH ~30 meV 3. Neutrino nuclear responses From the Ejiri ’s weekday flat at Yokohama Nuclear τσ responses for ν in β &ββ Nuclear weak responses ββ−ν, solar-ν, supernova ν Fermi- Isospin τ GT Spin Ispspin τσ τ,, τσ ν e e e p,3He n,t W γ π,ρ n p n n n p β-decay, e capture γ-capture, e scattering CER 3He,t t,3He d,2He ν-probe from J-PARC γ from Spring-8, HIGS N RCNP, MSU, KVI Charge exchange reaction at RCNP Osaka ΔE /E~ 7 10-5 3 Mi = 0.59 ( He, t) Frekers Ejiri et al , |GTR> ΔE /E~ 7 10-5 |k ββ Mf = 0.55 β M1 = 0.11 ,,g agree with M2ν = 0.12 (EL V, NEMO) Photon γ 1N1. Neu tra l curren t responses 2. Isospin rotation for charged current responses via IAS 1/2 <f |g Mβ| i> = g/e (2T) <f | emγ | I> Spring-8 E1 and M1 γ P (L) azymuthal distribution γ Τ,Tz-1 Τ− =ΙΑΙΑS γ Β Τ,Τz=5,5 T,Tz=6,6 β ββ Τ,Τ,,Τ,Τz=6z=5,6,5 Α Τ,Τz-1 H. Ejiri PRL 21 ’68, H. Ejiri PR 38 ‘78 Low energy Neutrinos H. Ejiri NIM. 503 (2003) 276 – 278. p + Hg Æ n π+ + + + + π Æ μ +νμ μ Æe + νe + anti- νμ 3 GeV 50 GeV Ep Gev Np /sec Nn/sec 15 15 SNS 1 6 10 1 10 J-PARC J-PARC 312103 1.2 1015 5105 1014 FSQP: Fermi Surface Quasi Particle Model 2νββ matrix elements 1 |GTR> M) SS (F 0.1 2ν M |k XP), EE ( ββ 2ν 0.01 M M2ββ2νββ = Σ g 2 Mβ Mb /Δ k A k k k 0.001 70 80 90 100 110 120 130 140 Mass number A (102: 100Mo excited state) H.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    36 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us