In Search of Majorana

Total Page:16

File Type:pdf, Size:1020Kb

In Search of Majorana thesis In search of Majorana Paul Dirac’s famous equation, which he first But even if the neutrino turns out not to wrote down in January of 1928, predicted Quite a flowering be a Majorana particle, the mathematical the existence of a spin-1/2 particle and a of results has come idea still holds weight. Indeed, the corresponding antiparticle. The ensuing Majorana equation (as originally derived experimental discovery of the positron, the from Majorana’s short from the Dirac equation) arises naturally antiparticle of the electron, served to boost mathematical insight in the description of electrons in solids the theory. Dirac’s equation helped establish with superconducting order. Here, a basis for relativistic quantum field theory. into Dirac’s equation. these excitations appear as electrically But the equation had been studied for neutral quasiparticles — fermions with a full ten years before Italian physicist case, as a charge-free spin-1/2 solution no distinction between particles and Ettore Majorana noticed an interesting of Dirac’s equation. For a charged Dirac antiparticles. The ordinary superconducting special case. The equation is really four particle, the operation of charge conjugation energy gap — the energy required to coupled equations, one for each component changes a particle into its antiparticle. create such an excitation — plays the of the Dirac field. If one demands that the The same operation turns the Majorana role of the Majorana mass. In this sense, solution be real, rather than complex, the solution into itself. Majorana particles appear routinely in equation resolves itself into two independent Of the fundamental particles we know, physics laboratories. pairs of equations, each pair describing a the neutrino seems to be the best Majorana Far more interesting, as Elliott and spin-1/2 particle, but now with no charge. candidate. It’s a neutral spin-1/2 fermion. Franz describe, are some special cases of The particle is its own antiparticle; clearly Left-handed neutrinos have a very small Majorana modes that can exist in topological not like an electron or positron. mass (if any), and right-handed ones have superconductors in one or two dimensions. Nearly a century later, we’re still not never been detected, suggesting they have a These modes are localized around defects, sure that Majorana’s hypothetical particle very large mass. Simple models of particle always come in pairs (in any finite system), is definitively like any real world object. physics suggest this should actually be possess exactly zero energy and are His fermion stands as a great expectation expected if neutrinos are Majorana fermions. known as Majorana zero modes. If the and possibility. Majorana himself suggested Majorana status for neutrinos would also superconductor has the usual energy gap, that the neutrino may be such a particle, make a tidy accounting for a number of deep then such ground states have an unusual and many physicists think as much. This physics puzzles. It would help to explain ‘topological protection’ — they are robust would help unravel a number of mysteries, the great imbalance between matter and to perturbations, as the system lacks any including why there’s a vast asymmetry antimatter in the universe, as weak processes mechanism for absorbing small amounts between matter and antimatter. But, we still involving Majorana neutrinos can violate of energy. don’t know. otherwise sacrosanct conservation laws, in These states have now been observed Even so, it seems that Majorana’s particular, allowing changes in the lepton in the ends of one-dimensional mathematical idea has become more number and also in the baryon number, superconducting wires, and also in the influential than ever in the past decade, leading to an imbalance of matter and vortex cores of two-dimensional topological impacting areas across all physics. antimatter over time. Majorana status for the superconductors. Over a decade ago, As physicists Steven Elliott and neutrino could also fill out the theoretical Alexei Kitaev proposed that the protected Marcel Franz discuss in a recent review idea of supersymmetry, as well as help settle status of these states might make them (Rev. Mod. Phys. 87, 137; 2015), precise the mystery of dark matter. useful for quantum computing if qubits analogues of the Majorana fermion do exist But convenient implications aren’t the could be formed from pairs of defects. in condensed-matter physics. The inside of same as evidence. Confirming that neutrinos Logical operations could be carried out by a superconductor is, in effect, a universe of really are Majorana particles will require moving the defects around one another. its own, and one that supports quasiparticle actual detection of one or more signature That goal still seems a long way away, but excitations of exactly the Majorana form. events. Any observation of a decaying these Majorana states do possess intrinsically In one- or two-dimensional systems, proton would suffice, as would any process promising properties. Majorana-like modes can take on unusual in which the lepton number changes by two. All in all, quite a flowering of results properties, and might even be useful in There are ongoing searches in accelerator from Majorana’s short mathematical insight quantum computing. Weirdly, Majorana’s experiments, but no evidence yet. Another into Dirac’s equation. He studied under idea may find fruitful use in technology even signature would be the observation of so- Enrico Fermi in Rome, later worked for a before true Majorana particles are discovered called neutrino-less double beta decay — a time with Heisenberg, and published nine anywhere in the universe. decay in which a nucleus emits two electrons papers. He then disappeared mysteriously To a theoretical physicist, ‘particle’ is a and no neutrinos. This has also never been while travelling on a boat from Palermo versatile term. It can mean the real physical seen, but the rate of such decays is expected to Naples in 1938. No one knows what thing, carrying mass, charge and other to be small, as it should be proportional happened; some reports suggest he was properties. Or, it can be a possibility — a to the neutrino mass. Ever more precise later seen in Venezuela after the war. His specific way for energy and momentum to experiments have now bounded the neutrino fate remains as enigmatic as the Majorana exist as an elementary excitation in a system mass to be no more than about 200 meV; neutrino itself. ❐ described by a particular set of equations. experiments underway will be sensitive The Majorana fermion falls into the latter down to 50 meV. MARK BUCHANAN 206 NATURE PHYSICS | VOL 11 | MARCH 2015 | www.nature.com/naturephysics © 2015 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Majorana Fermions in Condensed Matter Physics: the 1D Nanowire Case
    Majorana Fermions in Condensed Matter Physics: The 1D Nanowire Case Philip Haupt, Hirsh Kamakari, Edward Thoeng, Aswin Vishnuradhan Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada (Dated: November 24, 2018) Majorana fermions are fermions that are their own antiparticles. Although they remain elusive as elementary particles (how they were originally proposed), they have rapidly gained interest in condensed matter physics as emergent quasiparticles in certain systems like topological supercon- ductors. In this article, we briefly review the necessary theory and discuss the \recipe" to create Majorana particles. We then consider existing experimental realisations and their methodologies. I. MOTIVATION A). Kitaev used a simplified quantum wire model to show Ettore Majorana, in 1937, postulated the existence of how Majorana modes might manifest as an emergent an elementary particle which is its own antiparticle, so phenomena, which we will now discuss. Consider 1- called Majorana fermions [1]. It is predicted that the neu- dimensional tight binding chain with spinless fermions trinos are one such elementary particle, which is yet to and p-orbital hopping. The use of unphysical spinless be detected via extremely rare neutrino-less double beta- fermions calls into question the validity of the model, decay. The research on Majorana fermions in the past but, as has been subsequently realised, in the presence few years, however, have gained momentum in the com- of strong spin orbit coupling it is possible for electrons pletely different field of condensed matter physics. Arti- to be approximated as spinless in the presence of spin- ficially engineered low-dimensional nanostructures which orbit coupling as well as a Zeeman field [9].
    [Show full text]
  • $ Z $ Boson Mediated Dark Matter Beyond the Effective Theory
    MCTP-16-27 FERMILAB-PUB-16-534-T Z boson mediated dark matter beyond the effective theory John Kearney Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510 USA Nicholas Orlofsky and Aaron Pierce Michigan Center for Theoretical Physics (MCTP) Department of Physics, University of Michigan, Ann Arbor, MI 48109 (Dated: April 11, 2017) Direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter|a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Z boson, but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z-mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches. I. INTRODUCTION Z, and their spin-dependent (SD) couplings, which at tree level arise from exchange of the Z. The latest bounds on SI scattering arise from PandaX Weakly interacting massive particles (WIMPs) re- [1] and LUX [2]. DM that interacts with the Z main an attractive thermal dark matter (DM) can- boson via vectorial couplings, g (¯χγ χ)Zµ, is very didate.
    [Show full text]
  • Ettore Majorana: Genius and Mystery
    «ETTORE MAJORANA» FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE TO PAY A PERMANENT TRIBUTE TO GALILEO GALILEI, FOUNDER OF MODERN SCIENCE AND TO ENRICO FERMI, THE "ITALIAN NAVIGATOR", FATHER OF THE WEAK FORCES ETTORE MAJORANA CENTENARY ETTORE MAJORANA: GENIUS AND MYSTERY Antonino Zichichi ETTORE MAJORANA: GENIUS AND MYSTERY Antonino Zichichi ABSTRACT The geniality of Ettore Majorana is discussed in the framework of the crucial problems being investigated at the time of his activity. These problems are projected to our present days, where the number of space-time dimensions is no longer four and where the unification of the fundamental forces needs the Majorana particle: neutral, with spin ½ and identical to its antiparticle. The mystery of the way Majorana disappeared is restricted to few testimonies, while his geniality is open to all eminent physicists of the XXth century, who had the privilege of knowing him, directly or indirectly. 3 44444444444444444444444444444444444 ETTORE MAJORANA: GENIUS AND MYSTERY Antonino Zichichi CONTENTS 1 LEONARDO SCIASCIA’S IDEA 5 2 ENRICO FERMI: FEW OTHERS IN THE WORLD COULD MATCH MAJORANA’S DEEP UNDERSTANDING OF THE PHYSICS OF THE TIME 7 3 RECOLLECTIONS BY ROBERT OPPENHEIMER 19 4 THE DISCOVERY OF THE NEUTRON – RECOLLECTIONS BY EMILIO SEGRÉ AND GIANCARLO WICK 21 5 THE MAJORANA ‘NEUTRINOS’ – RECOLLECTIONS BY BRUNO PONTECORVO – THE MAJORANA DISCOVERY ON THE DIRAC γ- MATRICES 23 6 THE FIRST COURSE OF THE SUBNUCLEAR PHYSICS SCHOOL (1963): JOHN BELL ON THE DIRAC AND MAJORANA NEUTRINOS 45 7 THE FIRST STEP TO RELATIVISTICALLY DESCRIBE PARTICLES WITH ARBITRARY SPIN 47 8 THE CENTENNIAL OF THE BIRTH OF A GENIUS – A HOMAGE BY THE INTERNATIONAL SCIENTIFIC COMMUNITY 53 REFERENCES 61 4 44444444444444444444444444444444444 Ettore Majorana’s photograph taken from his university card dated 3rd November 1923.
    [Show full text]
  • On Wave Equations for the Majorana Particle in (3+1) and (1+1) Dimensions
    On wave equations for the Majorana particle in (3+1) and (1+1) dimensions Salvatore De Vincenzo1, ∗ 1Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, A.P. 47145, Caracas 1041-A, Venezuela.y (Dated: January 19, 2021) In general, the relativistic wave equation considered to mathematically describe the so-called Majorana particle is the Dirac equation with a real Lorentz scalar potential plus the so-called Majorana condition. Certainly, depending on the representation that one uses, the resulting dierential equation changes. It could be a real or a complex system of coupled equations, or it could even be a single complex equation for a single component of the entire wave function. Any of these equations or sys- tems of equations could be referred to as a Majorana equation or Majorana system of equations because it can be used to describe the Majorana particle. For example, in the Weyl representation, in (3+1) dimensions, we can have two non-equivalent explicitly covariant complex rst-order equations; in contrast, in (1+1) dimensions, we have a complex system of coupled equations. In any case, whichever equation or system of equations is used, the wave function that describes the Majorana particle in (3+1) or (1+1) dimensions is determined by four or two real quantities. The aim of this paper is to study and discuss all these issues from an algebraic point of view, highlighting the similarities and dierences that arise between these equations in the cases of (3+1) and (1+1) dimensions in the Dirac, Weyl, and Majorana represen- tations.
    [Show full text]
  • Electrical Probes of the Non-Abelian Spin Liquid in Kitaev Materials
    PHYSICAL REVIEW X 10, 031014 (2020) Electrical Probes of the Non-Abelian Spin Liquid in Kitaev Materials David Aasen,1,2 Roger S. K. Mong,3,4 Benjamin M. Hunt,5,4 David Mandrus ,6,7 and Jason Alicea 8,9 1Microsoft Quantum, Microsoft Station Q, University of California, Santa Barbara, California 93106-6105 USA 2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA 3Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA 4Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, USA 5Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 6Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA 7Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 8Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA 9Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 5 March 2020; revised 12 May 2020; accepted 19 May 2020; published 17 July 2020) Recent thermal-conductivity measurements evidence a magnetic-field-induced non-Abelian spin-liquid phase in the Kitaev material α-RuCl3. Although the platform is a good Mott insulator, we propose experiments that electrically probe the spin liquid’s hallmark chiral Majorana edge state and bulk anyons, including their exotic exchange statistics. We specifically introduce circuits that exploit interfaces between electrically active systems and Kitaev materials to “perfectly” convert electrons from the former into emergent fermions in the latter—thereby enabling variations of transport probes invented for topological superconductors and fractional quantum-Hall states.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • Majorana Neutrinos
    Lecture III: Majorana neutrinos Petr Vogel, Caltech NLDBD school, October 31, 2017 Whatever processes cause 0νββ, its observation would imply the existence of a Majorana mass term and thus would represent ``New Physics’’: Schechter and Valle,82 – – (ν) e e R 0νββ νL W u d d u W By adding only Standard model interactions we obtain (ν)R → (ν)L Majorana mass term Hence observing the 0νββ decay guaranties that ν are massive Majorana particles. But the relation between the decay rate and neutrino mass might be complicated, not just as in the see-saw type I. The Black Box in the multiloop graph is an effective operator for neutrinoless double beta decay which arises from some underlying New Physics. It implies that neutrinoless double beta decay induces a non-zero effective Majorana mass for the electron neutrino, no matter which is the mechanism of the decay. However, the diagram is almost certainly not the only one that generates a non-zero effective Majorana mass for the electron neutrino. Duerr, Lindner and Merle in arXiv:1105.0901 have shown that 25 evaluation of the graph, using T1/2 > 10 years implies that -28 δmν = 5x10 eV. This is clearly much too small given what we know from oscillation data. Therefore, other operators must give leading contribution to the neutrino masses. Petr Vogel: QM of Majorana particles Weyl, Dirac and Majorana relativistic equations: µ Free fermions obey the Dirac equation: (γ pµ m) =0 − µ 01 0 ~ 10 Lets use the following(γ p representationµ γm0 =) 0 =01 of~ the= 0γ matrices:− 1 γ5 = 0 1 − B 10C B ~ 0 C B 0 1 C B C B C B C µ @ A @ A @ − A 01(γ pµ m0) =0~ 10 γ0 = 0 1 ~ −= 0 − 1 γ5 = 0 1 B 10C B ~ 0 C B 0 1 C B C B C B C 01 @ A 0 @ ~ A 10@ − A γ0 = 0 The 1Dirac~ equations= 0 − can 1be thenγ5 rewritten= 0 as 1two coupled B 10C B ~ 0 C B 0 1 C B two-componentC B equationsC B C @ A @ A @ − A m +(E ~p ~ ) + =0 − − − (E + ~p ~ ) m + =0 − − Here ψ- = (1 - γ5)/2 Ψ = ψL, and ψ+ = (1 + γ5)/2 Ψ = ψR are the chiral projections.
    [Show full text]
  • Majorana Equation and Its Consequences in Physics
    Majorana equation and its consequences in physics and philosophy Daniel Parrochia Abstract There will be nothing in this text about Majorana’s famous disappear- ance or about the romantic mythology that surrounds him (see [13]). No more on the sociological considerations of the author (see [22]) or on its presumed "transverse" epistemology (see [30]). We focus here on the work of the physicist, and more partic- ularly on his 1937 article on the symmetrical theory of the electron and the positron, probably one of the most important theory for contemporary thought. We recall the context of this article (Dirac’s relativistic electron wave equation) and analyze how Majorana deduces his own equation from a very general variational principle. After having rewritten Majorana’s equation in a more contemporary language, we study its implications in condensed matter physics and their possible applications in quantum computing. Finally, we describe some of the consequences of Majorana’s approach to philosophy. Physics and Astonomy Classification Scheme (2010): 01.65.+g, 01.70.+w. key-words Dirac, Majorana, neutrinos, quasi-particules, supraconduction, quantum computer. 1 Introduction arXiv:1907.11169v1 [physics.hist-ph] 20 Jun 2019 One of the most beautiful jewels in theoretical physics is the Dirac relativistic electron wave equation (see [3] and [4]), at the origin of the notion of antimatter in the end of the 1920s. This discovery has no doubt been often commented upon and the Dirac 1 equation itself has been the subject of a large literature in the scientific field (see [?]). However, as we know, there is another deduction of this equation presented by the Italian physicist Ettore Majorana in 1937, that has the distinction of leading to purely real solutions where the particles are their own symmetrical.
    [Show full text]
  • Toward (Finally!) Ruling out Z and Higgs Mediated Dark Matter Models
    IFIC/16-66 FERMILAB-PUB-16-370-A Prepared for submission to JCAP Toward (Finally!) Ruling Out Z and Higgs Mediated Dark Matter Models Miguel Escudero,a;b Asher Berlin,c Dan Hooperb;d;e and Meng-Xiang Lind aInstituto de F´ısicaCorpuscular (IFIC); CSIC-Universitat de Val`encia; Apartado de Correos 22085; E-46071 Valencia; Spain bFermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510 cUniversity of Chicago, Department of Physics, Chicago, IL 60637 dUniversity of Chicago, Department of Astronomy and Astrophysics, Chicago, IL 60637 eUniversity of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL 60637 E-mail: miguel.escudero@ific.uv.es, [email protected], [email protected], [email protected] Abstract. In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Z mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (mDM m =2) or ' Z greater than 200 GeV, or with a vector coupling and with mDM > 6 TeV.
    [Show full text]
  • Arxiv:1003.1912V2 [Hep-Ph] 30 Jun 2010 Fermion and Complex Vector Boson Dark Matter Are Also Disfavored, Except for Very Specific Choices of Quantum Numbers
    Preprint typeset in JHEP style - HYPER VERSION UMD-PP-10-004 RUNHETC-2010-07 A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter Prateek Agrawal Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 Zackaria Chacko Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 Can Kilic Department of Physics and Astronomy, Rutgers University, Piscataway NJ 08854 Rashmish K. Mishra Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 Abstract: We perform a model-independent classification of Weakly Interacting Massive Particle (WIMP) dark matter candidates that have the property that their scattering off nucleons is dominated by spin-dependent interactions. We study renormalizable theories where the scattering of dark matter is elastic and arises at tree-level. We show that if the WIMP-nucleon cross section is dominated by spin-dependent interactions the natural dark matter candidates are either Majorana fermions or real vector bosons, so that the dark matter particle is its own anti-particle. In such a scenario, scalar dark matter is disfavored. Dirac arXiv:1003.1912v2 [hep-ph] 30 Jun 2010 fermion and complex vector boson dark matter are also disfavored, except for very specific choices of quantum numbers. We further establish that any such theory must contain either new particles close to the weak scale with Standard Model quantum numbers, or alternatively, a Z0 gauge boson with mass at or below the TeV scale. In the region of parameter space that is of interest to current direct detection experiments, these particles naturally lie in a mass range that is kinematically accessible to the Large Hadron Collider (LHC).
    [Show full text]
  • Jhep04(2019)150
    Published for SISSA by Springer Received: January 21, 2019 Revised: March 15, 2019 Accepted: April 16, 2019 Published: April 24, 2019 Variational analysis of low-lying states in supersymmetric Yang-Mills theory JHEP04(2019)150 Sajid Ali,a;b Georg Bergner,c;a Henning Gerber,a Simon Kuberski,a Istvan Montvay,d Gernot M¨unster,a Stefano Piemontee and Philipp Sciorf aInstitute for Theoretical Physics, University of M¨unster, Wilhelm-Klemm-Str. 9, D-48149 M¨unster,Germany bDepartment of Physics, Government College University Lahore, Lahore 54000, Pakistan cInstitute for Theoretical Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena, Germany dDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany eInstitute for Theoretical Physics, University of Regensburg, Universit¨atsstr.31, D-93040 Regensburg, Germany f Faculty of Physics, University of Bielefeld, Universit¨atsstr.25, D-33615 Bielefeld, Germany E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: We have calculated the masses of bound states numerically in N = 1 su- persymmetric Yang-Mills theory with gauge group SU(2). Using the suitably optimised variational method with an operator basis consisting of smeared Wilson loops and mesonic operators, we are able to obtain the masses of the ground states and first excited states in the scalar, pseudoscalar and spin-½ sectors. Extrapolated to the continuum limit, the corresponding particles appear to be approximately mass degenerate and to fit into the predicted chiral supermultiplets.
    [Show full text]
  • On Relativistic Quantum Mechanics of the Majorana Particle
    On Relativistic Quantum Mechanics of the Majorana Particle H. Arod´z Institute of Theoretical Physics, Jagiellonian University∗ Institute of Nuclear Physics Cracow, May 14th, 2020 PLAN 1. Introduction 2. New observable: the axial momentum 3. The general solution of the Dirac equation 4. The relativistic invariance 5. Summary 1. Introduction 1a. The original motivation: how to construct a quantum theory of non-Grassmannian Majorana field? In particular, what is the Lagrangian for this field? The relativistic quantum mechanics of the single Majorana particle is a step in that direction. It has turned out that it is rather interesting on its own right, because of significant differences with the standard examples of relativistic quantum mechanics. 1b. The Dirac particle: 0 1 1 2 B C α µ (x) = B 3 C ; (x) 2 C; iγ @µ (x) − m (x) = 0: @ A 4 R 3 y Scalar product: h 1j 2i = d x 1(x; t) 2(x; t) with arbitrary t. The Schroedinger form of the Dirac eq.: ^ ^ 0 k 0 y i@t = H ; H = −iγ γ @k + mγ = H : 1. Introduction General complex solution of the Dirac equation: 1 Z (x; t) = d 3p eipx e−iEpt v (+)(p) + eiEpt v (−)(p) ; (1) (2π)3=2 where p denotes eigenvalues of the momentum operator p^ = −ir, and 0 l l 0 (±) (±) p 2 2 (γ γ p + mγ )v (p) = ±Epv (p); Ep = + m + p : (1) is important as the starting point for QFT of the Dirac field. Two views on (1): expansion in the basis of common eigenvectors of commuting observables p^ = −ir and H^ (physics); or merely the Fourier transformation (mathematics).
    [Show full text]