(12) United States Patent (10) Patent No.: US 9,045,789 B2 Nishi0 Et Al
Total Page:16
File Type:pdf, Size:1020Kb
US009045789B2 (12) United States Patent (10) Patent No.: US 9,045,789 B2 Nishi0 et al. (45) Date of Patent: Jun. 2, 2015 (54) METHOD FOR PRODUCING ATARGET CI2Y 102/01026 (2013.01); C12Y-301/01068 SUBSTANCE BY FERMENTATION (2013.01); C12Y402/01082 (2013.01); CI2P 7/58 (2013.01); C12P 13/001 (2013.01); (71) Applicant: AJINOMOTO CO., INC., Tokyo (JP) (Continued) (72) Inventors: Yousuke Nishio, Kanagawa (JP); Youko (58) Field of Classification Search Yamamoto, Kanagawa (JP); Kazuteru None Yamada, Kanagawa (JP); Kosuke See application file for complete search history. Yokota, Kanagawa (JP) (56) References Cited (73) Assignee: AJINOMOTO CO., INC., Tokyo (JP) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 5,977,331 A 11/1999 Asakura et al. patent is extended or adjusted under 35 6,197.559 B1 3/2001 Moriya et al. U.S.C. 154(b) by 0 days. (Continued) (21) Appl. No.: 13/914,872 FOREIGN PATENT DOCUMENTS (22) Filed: Jun. 11, 2013 EP 1577396 9, 2005 JP 2005-261433 9, 2005 (65) Prior Publication Data OTHER PUBLICATIONS US 2013/O295621 A1 Nov. 7, 2013 Weimberg, “Pentose oxidation by Pseudomonas fragi'. Journal of Related U.S. Application Data Biological Chemistry, vol. 236, No. 3, pp. 629-635, 1961.* (63) Continuation of application No. PCT/JP2012/078725, (Continued) filed on Nov. 6, 2012. (60) Provisional application No. 61/558,685, filed on Nov. Primary Examiner — Rebecca Prouty 11, 2011. Assistant Examiner — Richard Ekstrom (74) Attorney, Agent, or Firm — Shelly Guest Cermak; (30) Foreign Application Priority Data Cermak Nakajima & McGowan LLP Nov. 11, 2011 (JP) ................................. 2011-247031 (57) ABSTRACT A target Substance can be produced by culturing a bacterium (51) Int. C. having an ability to produce 2-ketoglutaric acidora derivative CI2PI3/4 (2006.01) thereof, and an ability to produce Xylonic acid from Xylose, CI2P 7/50 (2006.01) which is imparted with xylonate dehydratase activity, 2-keto (Continued) 3-deoxyXylonate dehydratase activity and 2-ketoglutaric semialdehyde dehydrogenase activity, or in which these (52) U.S. C. activities are enhanced, in a medium containing Xylose as a CPC, C12P 13/14 (2013.01); C12P 7/50 (2013.01); carbon Source to produce and accumulate the target Substance CI2N 15/52 (2013.01); C12N 9/0006 in the medium, and collecting the target Substance from the (2013.01); C12N 9/0008 (2013.01); C12N 9/16 medium. (2013.01); C12Y 103/05001 (2013.01); CI2N 9/88 (2013.01); CI2Y 101/01 113 (2013.01); 6 Claims, 4 Drawing Sheets (a) (b) Xylorate RSXylass) AH 30 Lu O.D. 600 "asucAMxy. A """ -o-MG1655alsucAvM119 -1sucAccrinXA513 -AdsucAMxylAlpMW119 s ... --alsucAMxylA2.pMW119 --alsucAasylA/ccrxNA2 --alsucAMylA/ccrxA4 s s s ac s : & W US 9,045,789 B2 Page 2 (51) Int. Cl. Hartman, A. L., et al., “The Complete Genome Sequence of Haloferax volcanii DS2, a Model Archaeon. PLoS ONE CI2N 15/52 (2006.01) 2010:5(3),e9605:1-20. CI2N 9/04 (2006.01) Hosoya, S., et al., “Identification and characterization of the Bacillus CI2N 9/02 (2006.01) subtilis D-glucarate?galactarate utilization operon yebCDEFGHJ.” CI2N 9/16 (2006.01) FEMS Microbiol. Lett. 2002:210:193-199. Johnsen, U., et al., “Novel Xylose Dehydrogenase in the Halophilic CI2N 9/88 (2006.01) Archaeon Haloarcula marismortui.’ J. Bacteriol. CI2P 7/58 (2006.01) 2004; 186(18):6198-6207. CI2PI3/00 (2006.01) Johnsen, U., et al., “D-Xylose Degradation Pathway in the Halophilic CI2PI3/04 (2006.01) Archaeon Haloferax volcanii.” J. Biol. Chem. 2009:284(40):27290 CI2PI3/10 (2006.01) 273O3. Kawaguchi, H., et al., “Engineering of a Xylose Metabolic Pathway CI2PI3/24 (2006.01) in Corynebacterium glutamicum.” Appl. Environmen. Microbiol. (52) U.S. Cl. 2006:72(5):3418-3428. CPC ................. CI2PI3/04 (2013.01): CI2P 13/10 Meijnen, J.-P. et al., “Establishment of Oxidative D-Xylose Metabo (2013.01); CI2P 13/24 (2013.01) lism in Pseudomonas putida S12.” Appl. Environmen. Microbiol. 2009;75(9):2784-2791. (56) References Cited Meisenzahl. A. C., et al., “Isolation and Characterization of a Xylose Dependent Promoter from Caulobacter crescentus.” J. Bacteriol. U.S. PATENT DOCUMENTS 1997; 179(3):592-600. Nichols, N. N., et al., “Use of catabolite repression mutants for 6,267,309 B1 7/2001 Chieffalo et al. fermentation of Sugar mixtures to ethanol. Appl. Microbiol. 6,331419 B1 12/2001 Moriya et al. Biotechnol. 2001:56:120-125. 6,682,912 B2 1/2004 Moriya et al. Nierman, W. C., et al., “Complete genome sequence of Caulobacter 6,962,805 B2 11/2005 Asakura et al. crescentus.” PNAS 2001:98(7):4136-4141. 7,037,690 B2 5, 2006 Hara et al. Nygård, Y, et al., “Bioconversion of D-xylose to D-xylonate with 7,090,998 B2 8/2006 Ishikawa et al. Kluyveromyces lactis.” Metabolic Engineering 2011:13:383-391. 7,205,132 B2 4/2007 Hirano et al. Sasaki, M., et al., “Engineering of pentose transport in 7,244,581 B2 * 7/2007 Sode ............................... 435/14 Corynebacterium glutamicum to improve simultaneous utilization of 7,344,874 B2 3/2008 Hara et al. mixed sugars.” Appl. Microbiol. Biotechnol. 2009:85:105-115. 7,695,946 B2 4/2010 USuda et al. Song, S., et al., “Organization and Regulation of the D-Xylose 7,696,315 B2 4/2010 USuda et al. Operons in Escherichia coli K-12: XylR Acts as a Transcriptional 7,785,845 B2 * 8/2010 Hara et al. .................... 435/110 Activator.” J. Bacteriol. 1997; 179(22):7025-7032. 7,785,858 B2 8, 2010 Kozlov et al. Stephens, C., et al., “Regulation of D-Xylose Metabolism in 7,794,989 B2 9/2010 Nakamura et al. Caulobacter crescentus by a Lacl-Type Repressor.” J. Bacteriol. 7,915,018 B2 3/2011 Rybak et al. 2007; 189(24):8828-8834. 7.923,226 B2 * 4/2011 Frost ............................. 435,158 Tao, H., et al., “Engineering a Homo-Ethanol Pathway in Escherichia 7,927,844 B2 4/2011 Nakamura et al. coli: Increased Glycolytic Flux and Levels of Expression of RE42,350 E 5, 2011 IZuiet al. Glycolytic Genes during Xylose Fermentation.” J. Bacteriol. 8,003,367 B2 8/2011 Marchenko et al. 2001; 183(10):2979-2988. 8,012,722 B2 9, 2011 Chinen et al. Toivari, M. H., et al., “Microbial D-xylonate production.” Appl. 8,058,035 B2 11/2011 Hara et al. Microbiol. Biotechnol. 2012.96:1-8. 8,129,151 B2 3/2012 Moriya et al. Toivari, M. H., et al., "Saccharomyces cerevisiae engineered to pro 8, 192,963 B2 6, 2012 Nishio et al. duce D-xylonate.” Appl. Microbiol. Biotechnol. 2010;88:751-760. 8,206,954 B2 6/2012 Takikawa et al. Watanabe, S., et al., “Enzyme Catalysis and Regulation: 8,222,007 B2 7, 2012 Hara et al. O-Ketoglutaric Semialdehyde Dehydrogenase Isozymes Involved in 8,278,074 B2 10/2012 Nakamura et al. Metabolic Pathways of D-Glucarate, D-Galactarate, and Hydroxy 2005/0214913 A1 9, 2005 Marchenko et al. L-proline: Molecular and Metabolic Convergent Evolution.” J. Biol. 2005/0233308 A1 10, 2005 Nishio et al. Chem. 2007:282:6685-6695. 2007,0004014 A1 1/2007 Tsuji et al. Thanbichler, M., et al., “A comprehensive set of plasmids for vanil 2009/0286290 A1* 11/2009 Hara et al. .................... 435/107 late- and xylose-inducible gene expression in Caulobacter 2010, O190217 A1 7, 2010 Doi et al. crescentus.” Nucl. Acids Res. 2007:35(20),e 137: 1-16. 2011/0076730 A1 3f2011 Frost et al. .................... 435/106 Aghaie, A., et al., “Metabolism and Bioenergetics: New Insights into 2012/0129233 A1 5/2012 Tajima et al. the Alternative d-Glucarate Degradation Pathway,” J. Biol. Chem. 2013/0217078 A1* 8/2013 Tang et al. ...................... 435/99 2008:283(23): 15638-15646. 2013/0260423 A1* 10, 2013 Knudsen et al. ................ 435/99 Watanabe, S., et al., “Enzyme Catalysis and Regulation: Identifica tion and Characterization of I-Arabonate Dehydratase, I-2-Keto-3- OTHER PUBLICATIONS deoxyarabonate Dehydratase, and I-Arabinolactonase Involved in an Alternative Pathway of I-Arabinose Metabolism: Novel Evolution Berghall, S., et al., “Identification in the mould Hypocreajecorina of ary Insight Into Sugar Metabolism.” J. Biol. Chem. a gene encoding an NADP+:D-xylose dehydrogenase.” FEMS 2006:281 (44):33521-33536. Microbiol. Lett., 2007:277:249-253. Gopinath, V., et al., “Amino acid production from rice Straw and Brouns, S. J. J., et al., “Identification of the Missing Links in wheat bran hydrolysates by recombinant pentose-utilizing Prokaryotic Pentose Oxidation Pathways: Evidence for Enzyme Corynebacterium glutamicum.” Appl. Microbiol. Biotechnol. Recruitment. J. Bio. Chem. 2006:281:27378-27388. 2011;92:985-996. Dahms, A. S., et al., “D-xylose Dehydrogenase.” Methods in Enzy Liu, H., et al., “High yield production of D-xylonic acid from mology 1982;89:226-228. D-xylose using engineered Escherichia coli,” Bioresource Technol. Ely, B., “Genetics of Caulobacter crescentus.” Methods in Enzymol 2012; 115:244-248. ogy 1991:204:372-384. Stephens, C., et al., “Genetic Analysis of a Novel Pathway for Fernandes, S., et al., “Xylose reductase from the thermophilic fungus D-Xylose Metabolism in Caulobacter crescentus.” J. Bacteriol. Talaromyces emersonii: cloning and heterologous expression of the 2007; 189(5): 218 1-2185. native gene (Texr) and a double mutant (TexrK271 R+N273DI) with International Search Report for PCT Patent App. No. PCT/JP2012/ altered coenzyme specificity.” J. Biosci. 2009:34(6):881-890. 078725 (Jan. 22, 2013). Gonzalez, R., et al., “Global Gene Expression Differences Associ International Preliminary Report on Patentability for PCT Patent ated with Changes in Glycolytic Flux and Growth Rate in App. No. PCT/JP2012/078725 (May 22, 2014). Escherichia coli during the Fermentation of Glucose and Xylose.” Biotechnol.