1408353477Abstract-Book-Euroqsar- B.Gjorgjeska.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

1408353477Abstract-Book-Euroqsar- B.Gjorgjeska.Pdf Abstract-Book-EuroQSAR.indd 1 18/08/2014 11:07:44 Table of Content Plenary Lectures and Hansch Session Abstracts-------------------------------------------------------------------------3 Oral Communications Abstracts--------------------------------------------------------------------------------------------40 Posters Abstracts----------------------------------------------------------------------------------------------------------------74 List of Abstracts --------------------------------------------------------------------------------------------------------------- 232 List of Authors ----------------------------------------------------------------------------------------------------------------- 243 - 2 - Plenary Lectures and Hansch Session Abstracts - 3 - Toshio Fujita Kyoto University, Japan Education: 1948~1951: Kyoto University, Department of Agricultural Chemistry 1961~1963: Pomona College, Department of Chemistry, Postdoctoral Fellow (Professor Corwin Hansch) 1963~1964: University of Illinois, Department of Chemistry, Postdoctoral Fellow (Professor Kenneth Rinehart) Degrees: B.S. Kyoto University, March 1951 D.Sc. Kyoto University, February 1962 Professional Positions: 1951 ~ 1964: Instructor, Kyoto University 1964 ~ 1966: Lecturer, Kyoto University 1966 ~ 1981: Associate Professor, Kyoto University 1981 ~ March 1992: Professor, Kyoto University 1992 ~ 1998: Consultant, Fujitsu Kansai Systems Laboratory March 1992 to date: Professor Emeritus, Kyoto University Professional Society Memberships: Japan Society for Bioscience, Biotechnology and Agrochemistry (Formerly Agricultural Chemical Society of Japan). Chemical Society of Japan. Pharmaceutical Society of Japan. Pesticide Science Society of Japan. American Chemica1 Society. Editorial and Advisory Positions: Quantitative Structure-Activity Relationship (Wiley-VCH): 1982 ~ 2003 QSAR and Combinatorial Sciences (Wiley-VCH): 2004 to date Pesticide Biochemistry and Physiology (Academic Press): 1987 ~ 1997 Pest Management Science (Formerly Pesticide Science): 1990 to date Pharmacochemistry Library (Elsevier): 1989 ~ 2002 Professional Activities: Organizing Committee and Scientific Program Committee Member of the 5th International Congress of Pesticide Chemistry, Kyoto, 1982 Vice President, The Pesticide Science Society of Japan, 1983~1984 President, The Pesticide Science Society of Japan, 1985~1986 Chairman, The Kansai Section of the Japan Society for Bioscience, Biotechnology and Agrochemistry, 1989~1990 - 4 - PL01 (Q)SAR: THE LIFELONG LEARNING FOR MY RESEARCH CAREER Toshio Fujita Professor Emeritus at Kyoto University Bioreguration and Pesticide Chemistry #38-1 Iwakura-Miyakecho, Sakyoku (Home), 606- 0022 Kyoto, Japan As is well-known, the classical QSAR was first discovered by Professor Corwin Hansch and his group at Pomona College, Claremont, California, almost half a century ago. It was just after I joined him as a postdoctoral fellow in 1961. I was very fortunate to participate directly in this discovery. Both of us had been studying independently the structure-activity relationship of plant growth regulators of the substituted aromatic carboxylic acid type. At Pomona, variations in the growth promotion of a set of substituted phenoxyacetic acids to oat sprouts were examined in terms of the effects of substituents introduced into the unsubstituted reference. We had recognized that more than single physicochemical effect “simultaneously” participates in variations in the plant growth activity, and the first QSAR equation was formulated in the framework of so-called “linear free-energy relationships” using multiple regression analyses and such electronic parameters as the Hammett σ and a hydrophobic parameter as the π value. The latter was defined at that time from the 1-octanol/water partition coefficients. This first equation was subject to a couple of revisions because of renewed hypotheses for the electronic mechanism of substituents and a later inclusion of the bilinear model for size effect of substituents represented by STERIMOL steric parameters. Even though these correlations could be thought “original as well as fundamental”, they were only obtained under considerably restricted conditions. For instance, most compounds substituted at the ortho positions, most 3,5-disubstituted derivatives, 4-substituted analogs with substituents larger than Br as well as compounds with such hydrogen bondable/ionizable groups as OH and COOH were omitted from the analyses. After returning to Kyoto, I expanded and deepened the QSAR research mostly in major insecticidal sets of compounds in the Department of Agricultural Chemistry. The compound sets include acetylcholinesterase inhibitors, BHC and DDT types of compounds, synthetic pyrethroide analogs, and substituted benzoylphenylureas and dibenzoylhydrazines. In these research projects, we usually synthesized compounds and measured their biological activity by ourselves. These QSAR studies also came off well when compound sets are devoid of restrictive conditions as in the case of phenoxyacetic acids indicated above. Thus, we emphasized our effort also on exploring procedures to overcome restrictions and/or proving their free-energy related background. We found a procedure to analyze the “ortho-effect” by hypothesizing that their electronic and steric effects could be composed of ordinary and proximity components so that ortho-substituted compounds can be included on the same basis as meta- and para-substituted compounds in the QSAR analyses. We also suggested free-energy related background of STERIMOL steric parameters defined mechanistically from width and length of substituents in the unit of Å. In this lecture, I would like to show mainly examples of our physical-organic chemical studies performed to improve mechanistic understanding of the classical QSAR results in general. As a chemist starting his career from syntheses of small-molecular bioactive compounds, statistical as well as physical-organic chemical disciplines to explore QSAR were rather foreign and perseverant, but they have been continuingly fruitful and enjoyable learnings through my life of 85 years old. - 5 - Peter Ertl Novartis Institute for Biomedical Research, Switzerland eter Ertl studied organic chemistry and received his PhD at the University of Bratislava before joining Ciba-Geigy in Basel. After a merger with Sandoz to form Novartis he became Head of Pthe Cheminformatics group in Pharma Research, responsible for development of new methods for the calculation of molecular properties and cheminformatics tools. Peter is author of more than 100 publications and book chapters concerning all areas of cheminformatics and computational chemistry. In the cheminformatics community he is best known as author of the JME structure drawing applet and the fast fragment based method to calculate molecular polar surface area. http://peter-ertl.com - 6 - PL02 NAVIGATION IN CHEMICAL SPACE TOWARDS BIOLOGICAL ACTIVITY Peter Ertl Novartis Institutes of BioMedical Research, Basel, Switzerland www.peter-ertl.com One of the most common tasks that cheminformatics experts in pharmaceutical industry are facing practically daily is analysis and visualization of large collections of molecules. Typical areas, where this is needed are analysis and enhancement of company compound archive, analysis of high-throughput screening data, design of combinatorial libraries, chemogenomics analyses and many others. But also researchers in academia are facing similar challenges when analyzing large public molecular databases that become available recently or even structures generated in silico. This presentation will provide overview of various methods used to analyze and visualize chemical space with particular focus on needs of medicinal chemists. When displaying results, for chemists it is of great importance that the molecules are represented by their actual structures, or at least by their scaffolds and not only by points as it is common in other scientific fields. This particular requirement makes chemistry visualizations challenging because of necessity to squeeze a lot of information on rather limited computer screen real estate. In the presentation various chemistry visualization techniques will be discussed, starting from classical display of molecules as tables and grids, through visualization based on analysis of scaffold, up to advanced cheminformatics visualizations techniques recently developed at Novartis, such as a method for natural ordering or scaffolds or Molecule Cloud diagrams. References 1) Intuitive Ordering of Scaffolds and Scaffold Similarity Searching Using Scaffold Keys. P. Ertl, J. Chem. Inf. Model. 54, 1617 (2014) 2) The Molecule Cloud - compact visualization of large collections of molecules, P. Ertl and B. Rohde, J. Cheminf. 4:12 (2012) 3) The Scaffold Tree - Visualization of the scaffold universe by hierarchical scaffold classification. A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. Koch, H. Waldmann, J. Chem. Inf. Modelling. 47, 47-58 (2007). 4) Quest for the Rings - In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds. P. Ertl, S. Jelfs, J. Muehlbacher, A. Schuffenhauer, P. Selzer, J. Med. Chem. 49, 4568-4573 (2006). - 7 - John C. Reed F. Hofmann-La-Roche, Switzerland ohn C Reed is Global Head of Roche Pharma Research and Early Development (pRED), and Member of the Enlarged Roche Corporate Executive Committee. With his broad scientific and Jmedical background, Dr Reed is responsible for driving pRED’s strategy of
Recommended publications
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • The Limitations of DNA Interstrand Cross-Link Repair in Escherichia Coli
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 7-12-2018 The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli Jessica Michelle Cole Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Cole, Jessica Michelle, "The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli" (2018). Dissertations and Theses. Paper 4489. https://doi.org/10.15760/etd.6373 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli by Jessica Michelle Cole A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Justin Courcelle, Chair Jeffrey Singer Rahul Raghavan Portland State University 2018 i Abstract DNA interstrand cross-links are a form of genomic damage that cause a block to replication and transcription of DNA in cells and cause lethality if unrepaired. Chemical agents that induce cross-links are particularly effective at inactivating rapidly dividing cells and, because of this, have been used to treat hyperproliferative skin disorders such as psoriasis as well as a variety of cancers. However, evidence for the removal of cross- links from DNA as well as resistance to cross-link-based chemotherapy suggests the existence of a cellular repair mechanism.
    [Show full text]
  • And Citrus Fruits
    Journal of the Science of Food and Agriculture J Sci Food Agric 87:2152–2163 (2007) Analysis of furanocoumarins in vegetables (Apiaceae) and citrus fruits (Rutaceae) Radek Peroutka, Veraˇ Schulzova,´ ∗ Petr Botek and Jana Hajslovˇ a´ Institute of Chemical Technology, Department of Food Chemistry and Analysis, Technicka´ 3, 166 28 Prague 6, Czech Republic Abstract: Several alternative approaches applicable for the analysis of furanocoumarins, toxic components occurring in some fruits and vegetables representing both Apiaceae and Rutaceae families, were tested in our study. Limits of detection (LODs) for angelicin, psoralen, bergapten, xanthotoxin, trioxsalen, isopimpinellin, sphondin, pimpinellin and isobergapten obtained by GC/MS (SIM) were in the range 0.01–0.08 µgg−1.Slightly higher LODs (0.02–0.20 µgg−1) were achieved by LC/MS–MS. The latter is the only alternative for analysis of bergamottin (LOD = 0.01 µgg−1) in citrus fruits because this furanocoumarin is unstable under GC conditions. Regardless of the determination step used, the repeatability of the measurements (expressed as RSD) did not exceed 10%. As shown in our study the levels of furanocoumarins in celery, celeriac, parsnip, carrot, lemon and other foods obtained at a retail market varied over a wide range; the highest contents were determined in parsnip, while the levels of these toxins in carrots and citrus pulps were relatively low. 2007 Society of Chemical Industry Keywords: furanocoumarins; GC/MS; LC/MS–MS; fruits; vegetables INTRODUCTION and fruit of some of these, e.g. figs, representing the Furanocoumarins are toxic secondary metabolites that last family, is also used for human consumption.
    [Show full text]
  • An Isolated Phytomolecule
    Medical Botany 5: Active compounds in plants- cont. Alkaloids • • Nitrogenous bases which are found in plants and which are commonly found in plants and which can form salts with acids. • They are present as primary, secondary, tertiary, quaternary ammonium hydrates. • Alkaloid name is given because of similarity of alkalinity. • It is usually found in plants at 0.1-10%. O In the context of an alkaloid-bearing plant, the term usually means> 0.01% alkaloid. • Alkaloid morphine first isolated from the environment (Derosne and Seguin 1803-1804, Serturner 1805) O First synthesized cone (Ladenburg 1886) O The first used striknin (Magendie 1821) • Plants often have multiple alkaloids in different amounts in similar structures. • An alkaloide can be found in more than one plant family, as well as a single plant species. • Alkaloids are usually found in plants in their own water, in the form of their salts (salts with acids such as malic acid, tartaric acid, oxalic acid, tannic acid, citric acid). • They are found in almost all parts of plants (root, crust, leaf, seed etc.) but in different amounts. This does not mean that an alkaloid will be found in all parts of a plant. Some fruits only fruit (morphine, etc., while there are poppy seeds, not in the seed), Some of them are found in leaves and flowers (not found in the seeds of nicotine tobacco plant). • Nicotine, cones, other than those without oxygen in the constructions are usually white, crystallized dust; The above two substances are liquid. • Alkaloids are almost insoluble in water as free base (atropine, morphine); Some effects of alkaloids • Alkaloids have a wide variety of effects; Some alkaloids for some effects are as follows.
    [Show full text]
  • Tolerance and Metabolism of Furanocoumarins by the Phytopathogenic Fungus Gibberella Pulicaris (Fusarium Sambucinum)
    Phytochemistry, Vol. 28, No. II, pp. 2963-2969,1989. 0031-9422/89 S3.00 +0.00 Printed in Great Britain. © 1989 Pergamon Press pic TOLERANCE AND METABOLISM OF FURANOCOUMARINS BY THE PHYTOPATHOGENIC FUNGUS GIBBERELLA PULICARIS (FUSARIUM SAMBUCINUM) ANNE E. DESJARDINS,* GAYLAND F. SPENCER and RONALD D. PLATTNER U.S. Department of Agriculture, Agricultural Research Service, Northern Regional Research Center, 1815 North University Street, Peoria, IL 61604, U.S.A. (Received in revised form 3 April 1989) Key Word Index-Pastinaca sativa; Umbellifereae; parsnip; Gibberella pulicaris (Fusarium sambucinum); phyto­ alexin metabolism; furanocoumarins. Abstract-Sixty-two strains of Gibberella pulicaris (anamorph: Fusarium sambucinum) from diseased plants and from soil were tested for tolerance of the furanocoumarin xanthotoxin in vitro. Twenty-one (88%) of the plant-derived strains and two (5%) ofthe soil-derived strains were highly tolerant ofxanthotoxin. Sixteen selected strains were tested further against 16 furanocoumarins or furanocoumarin precursors. All plant-derived strains tested were highly tolerant of and, in most cases, able to completely metabolize all 16 compounds. Most soil-derived strains tested were tolerant of furanocoumarin precursors but sensitive to certain furanocoumarins. Linear compounds methoxylated at C-8 appeared more toxic than both those unsubstituted and those with longer-chain ethers. Tolerance of angelicin, xanthotoxin, pimpinellin and isopimpinellin correlated in large part with their metabolism. All strains that were
    [Show full text]
  • Furocoumarins in Sun Protection and Bronzing Products
    SCCNFP/0765/03 OPINION OF THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS CONCERNING FUROCOUMARINS IN SUN PROTECTION AND BRONZING PRODUCTS adopted by the SCCNFP during the 26th plenary meeting of of 9 December 2003 SCCNFP/0765/03 Evaluation and opinion on Furocoumarins in sun protection and bronzing products ____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The adaptation to technical progress of the Annexes to Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products. Commission Directive 95/34/DC of 10 July 1995 amended Annex II, reference number 358 as follows: “Furocoumarines (e.g. trioxysalan, 8-methoxypsoralen, 5-methoxypsoralen) except for normal content in natural essences used. In sun protection and in bronzing products, furocoumarines shall be below 1 mg/kg.” The technical adaptation was based on an opinion adopted by the Scientific Committee on Cosmetology (SCC) in 1990. Furocoumarines are recognized to photomutagenic and photocarcinogenic. The SCC had not been able to conclude from the available scientific, technical and epidemiological data at that time that the association of protective filters with furocoumarines would guarantee the safety of sun protection and bronzing products containing furocoumarines above a minimum level. Therefore, in order to protect public health, furocoumarines were limited to less than 1 mg/kg (1 ppm) in these products. The European Commission received in July 2003 a letter from Jean-Jacques Goupil indicating that new documents on the safety and efficacy of sun protection and bronzing products with an efficient dose of 15 to 60 ppm 5-methoxypsoralen had been transmitted to Health and Consumer Protection DG.
    [Show full text]
  • Differential Effects of Angelicin Analogues on NF-Κb Activity and IL-8 Gene Expression in Cystic Fibrosis IB3-1 Cells
    Hindawi Mediators of Inflammation Volume 2017, Article ID 2389487, 11 pages https://doi.org/10.1155/2017/2389487 Research Article Differential Effects of Angelicin Analogues on NF-κB Activity and IL-8 Gene Expression in Cystic Fibrosis IB3-1 Cells 1 1 1 1 Ilaria Lampronti, Maria Giulia Manzione, Gianni Sacchetti, Davide Ferrari, 1 2 1 1 Susanna Spisani, Valentino Bezzerri, Alessia Finotti, Monica Borgatti, 3 3 4 3 Maria Cristina Dechecchi, Giorgia Miolo, Giovanni Marzaro, Giulio Cabrini, 1,5 4 Roberto Gambari, and Adriana Chilin 1Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, Ferrara, Italy 2Department of Medicine, University of Verona, Strada le Grazie 8, Verona, Italy 3Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital of Verona, Verona, Italy 4Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, Padova, Italy 5Center of Biotechnology, University of Ferrara, Via Fossato di Mortara 64/b, Ferrara, Italy Correspondence should be addressed to Ilaria Lampronti; [email protected] and Roberto Gambari; [email protected] Received 16 March 2017; Revised 14 July 2017; Accepted 6 August 2017; Published 27 September 2017 Academic Editor: Maria Rosaria Catania Copyright © 2017 Ilaria Lampronti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The angelicin analogue 4,6,4′-trimethylangelicin (TMA) was recently reported as a strong inhibitor of nuclear factor-κB (NF-κB) activity and of the expression of the interleukin-8 (IL-8) gene in bronchial epithelial cells in which the inflammatory response has been challenged with P.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Jaundice
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Jaundice Chemical Activity Count (+)-ALPHA-VINIFERIN 2 (+)-CAMPHOR 1 (+)-CATECHIN 2 (+)-CATECHIN-7-O-GALLATE 1 (+)-CATECHOL 1 (+)-CYANIDANOL-3 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-HERNANDEZINE 1 (+)-PSEUDOEPHEDRINE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-EPICATECHIN 3 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 3 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 2 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,3,4,6-PENTA-O-GALLOYL-GLUCOSE 1 1,4-DICAFFEOYLQUINIC-ACID 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 3 1-O-GALLOYL-PEDUNCULAGIN 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-DEHYDROGINGERDIONE 2 Chemical Activity Count 10-GINGERDIONE 1 10-GINGEROL 1 10-METHOXYCAMPTOTHECIN 1 11-DEHYDROPAPYRIOGENIN 1 11-DEOXYGLYCYRRHETINIC-ACID 1 13',II8-BIAPIGENIN 2 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPISAIKOGENIN-C 1 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2,7-DIHYDROXYCADALENE 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLTRICOSANE-8-ONE-23-OL 1 2-O-CAFFEOYL-(+)-ALLOHYDROXYCITRIC-ACID 1 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 1 3,3'-DIMETHYLELLAGIC-ACID 1 3,3'-DIMETHYLQUERCETIN 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 1 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 1 3,7'-DIMETHYLQUERCETIN 1 3-ACETYLACONITINE 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F
    [Show full text]
  • Oncologic 9.0
    OncoLogic 9.0 OncoLogic 9 User Manual Table of Contents OncoLogic 9 User Manual 6 1. OncoLogic 8.0 Recollection 6 2. OncoLogic 9.0 standalone application 8 3. Target chemical classes 9 3.1 Acylating agents 9 3.1.1 Acyl and Benzoyl Halides 10 3.1.2 Anhydrides 11 3.1.3 Carbamyl Halides 12 3.1.4 Phosgene-type Compounds 13 3.2 Aromatic amines 14 3.2.1 5-membered or 7-membered heterocyclic rings 15 3.2.2 Acenaphthene-type compounds 18 3.2.3 Anthracene-type compounds 20 3.2.4 Fluorene-type compounds 22 3.2.5 Four, five and six membered non-linear fused aromatic systems (-type 24 compound) 3.2.6 Naphthacene-, pentacene- and hexacene-type compounds 28 3.2.7 One 6-membered ring with 1 to 3 nitrogen heteroatoms 31 3.2.8 One benzene ring and one amino group 33 3.2.9 One benzene ring and two amino groups 35 3.2.10 One benzene ring with more than two amino groups 37 3.2.11 Pair of fused or linked 6 and(or) 5-membered heterocyclics 39 3.2.12 Phenanthrene-type compounds 42 3.2.13 Phenyl-naphthyl-type 44 3.2.14 Terphenyl-type compounds 47 3.2.15 Triphenylmethane-type compounds 50 3.2.16 Two 6-membered fused or linked homocyclic rings 52 3.3 Carbamates and thiocarbamates 55 3.3.1 Carbamates 56 3.3.2 Thiocarbamates 59 3.4 Coumarins and Furocoumarins 61 3.4.1 Coumarins and Furocoumarins 62 3.5 Diazene and Triazene Compounds 64 3.5.1 Aliphatic Azo and Azoxy Compounds 65 3.5.2 Triazenes 67 3.6 Direct-Acting Alkylating Agents 69 3.6.1 Acrylates, acrylamides and related compounds 70 3.6.2 Aldehydes 72 3.6.3 Alkanesulfonoxy Esters 73 3.6.4 Alkyl Sulfates and
    [Show full text]
  • Interstrand Crosslinks -Induction and Repair
    Interstrand Crosslinks -Induction and repair Interstrand Crosslinks -Induction and repair Daniel Vare ©Daniel Vare, Stockholm 2012 ISBN 978-91-7447-546-3 (pages 1-90) Printed in Sweden by Universitetsservice US-AB, Stockholm 2012 Distributor: Department of Genetics, Microbiology and Toxicology The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' (I've found it!), but 'That's fun- ny...' -Isaac Asimov Abstract DNA crosslinking agents exhibit a variety of DNA lesions, such as monoad- ducts, DNA-DNA interstrand or intrastrand crosslinks or DNA-protein cross- links. Agents that produce interstrand crosslinks (ICLs) exist naturally and are widely used in chemotherapy. Therefore, it is important to understand how the lesions induced by these agents are repaired. In bacteria, the repair is mainly dependent on nucleotide excision repair (NER) together with homol- ogous recombination (HR) or translesion synthesis (TLS). In human cells, it is not clear how these lesions are repaired, and it is believed to be a more complicated process in which NER does not play as important a role as in prokaryotes. Here, we investigated the repair mechanisms mainly after treat- ment with psoralen but also with acetaldehyde, cisplatin and mitomycin C in some studies. As expected from studies on plasmids and in bacteria, we used new techniques to confirm that various ICL-inducing agents block replication fork elongation in mammalian cells. We also found that the replication fork was unable to bypass these lesions. We confirmed that ERCC1/XPF and the HR proteins BRCA2 and XRCC2/3 are vital for protection against ICL treatments.
    [Show full text]
  • Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest
    molecules Review Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest Renato Bruni 1 , Davide Barreca 2 , Michele Protti 3 , Virginia Brighenti 4, Laura Righetti 1 , Lisa Anceschi 4, Laura Mercolini 3 , Stefania Benvenuti 4, Giuseppe Gattuso 2 and Federica Pellati 4,* 1 Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; [email protected] (R.B.); [email protected] (L.R.) 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; [email protected] (D.B.); [email protected] (G.G.) 3 Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; [email protected] (M.P.); [email protected] (L.M.) 4 Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; [email protected] (V.B.); [email protected] (L.A.); [email protected] (S.B.) * Correspondence: [email protected]; Tel.: +39-059-205-8565 Received: 11 May 2019; Accepted: 6 June 2019; Published: 8 June 2019 Abstract: The aim of this work is to provide a critical review of plant furanocoumarins from different points of view, including their chemistry and biosynthetic pathways to their extraction, analysis, and synthesis, to the main biological activities found for these active compounds, in order to highlight their potential within pharmaceutical science. The limits and the possible improvements needed for research involving these molecules are also highlighted and discussed.
    [Show full text]
  • Methoxsalen Plus Ultraviolet a Radiation
    METHOXSALEN PLUS ULTRAVIOLET A RADIATION Methoxsalen plus ultraviolet A radiation was considered by previous IARC Working Groups in 1980 and 1987 (IARC, 1980, 1987a). Since that time, new data have become available, these have been incorporated into the Monograph, and taken into consideration in the present evaluation. 1. Exposure Data 1.1.1 Structural and molecular formulae, and relative molecular mass 1.1 Identification of the agent OCH3 Chem. Abstr. Serv. Reg. No.: 298-81-7 O O O Chem. Abstr. Name: 9-Methoxy-7H- furo[3,2-g][1]benzopyran-7-one IUPAC Systematic Name: 9-Methoxyfuro[3,2-g]chromen-7-one C12H8O4 Synonyms: 5-Benzofuranacrylic acid, Relative molecular mass: 216.19 6-hydroxy-7-methoxy-, δ-lactone; Mela- dinine; 8-methoxy-6,7-furanocoumarin; 1.2 Use of the agent 8-methoxypsoralen; 8-methoxy[furano- Information for Section 1.2 is taken from 3′,2′:6,7-coumarin]; 8-MOP; 8-MP; Oxso- McEvoy (2007), Thomson Healthcare (2007), ralen; Puvasoralen; Uvadex and Sweetman (2008) Description: Silky needles or long rhombic Methoxsalen is a psoralen produced naturally prisms; odourless with a bitter taste fol- by various plants (e.g. celery, parsnips, limes, figs, lowed by a tingling sensation (O’Neil, 2006) and others) found in both temperate and trop- ical regions (Ashwood-Smith et al., 1985; NTP, 2005). It is also a constituent of the seeds of the Ammi majus plant, and of the roots of Heracleum candicans. It is a photosensitizer, which mark- edly increases skin reactivity to long wavelength ultraviolet radiation (UVA: 320–400 nm), an effect used in photochemotherapy or PUVA 363 IARC MONOGRAPHS – 100A [psoralen (P) and high-intensity long wavelength 1.2.2 Dosage (UVA) irradiation].
    [Show full text]