Title Page Gβγ Pathways in Cell Polarity and Migration Linked To

Total Page:16

File Type:pdf, Size:1020Kb

Title Page Gβγ Pathways in Cell Polarity and Migration Linked To Molecular Pharmacology Fast Forward. Published on September 16, 2016 as DOI: 10.1124/mol.116.105338 This article has not been copyedited and formatted. The final version may differ from this version. MOL #105338 Title Page Gβγ pathways in cell polarity and migration linked to oncogenic GPCR signaling: potential relevance in tumor microenvironment Downloaded from José Vázquez-Prado, Ismael Bracho-Valdés, Rodolfo Daniel Cervantes-Villagrana, and Guadalupe Reyes-Cruz molpharm.aspetjournals.org Departments of Pharmacology (JVP, RDCV) and Cell Biology (GRC). CINVESTAV-IPN, Mexico City, MEXICO. Department of Pharmacology (IBV), School of Medicine, UABC, Mexicali, B.C., MEXICO. at ASPET Journals on September 27, 2021 1 Molecular Pharmacology Fast Forward. Published on September 16, 2016 as DOI: 10.1124/mol.116.105338 This article has not been copyedited and formatted. The final version may differ from this version. MOL #105338 Running Title Page Running title: Gβγ pathways in oncogenic GPCR signaling Address correspondence to: José Vázquez-Prado, Department of Pharmacology, CINVESTAV-IPN. Av. Instituto Politécnico Nacional 2508.Col. San Pedro Zacatenco, 14740 México, D.F., MEXICO. Tel: (52-55) 5747-3380; Fax: (52-55) 5747-3394; E-mail: [email protected] Downloaded from or Guadalupe Reyes-Cruz, Department of Cell Biology, CINVESTAV-IPN. Av. Instituto molpharm.aspetjournals.org Politécnico Nacional 2508.Col. San Pedro Zacatenco, 14740 México, D.F., MEXICO. E-mail: [email protected] Document statistics: at ASPET Journals on September 27, 2021 Text pages: 54 tables: 0 figures: 4 references:180 Number of words in: Abstract: 200 Body of manuscript: 6428 Abbreviations:bone marrow derived cells (BMDC), G protein coupled receptors (GPCRs), Calcium Sensing Receptor (CaSR) 2 Molecular Pharmacology Fast Forward. Published on September 16, 2016 as DOI: 10.1124/mol.116.105338 This article has not been copyedited and formatted. The final version may differ from this version. MOL #105338 Abstract Cancer cells and stroma cells in tumors secrete chemotactic agonists that exacerbate invasive behavior, promote tumor-induced angiogenesis, and recruit protumoral bone marrow- derived cells. In response to shallow gradients of chemotactic stimuli recognized by G protein coupled receptors (GPCRs), Gβγ-dependent signaling cascades contribute to specify the spatiotemporal assembly of cytoskeletal structures that can dynamically alter cell morphology. Downloaded from This sophisticated process is intrinsically linked to the activation of Rho GTPases and their cytoskeletal-remodeling effectors. Thus, Rho guanine nucleotide exchange factors, the activators molpharm.aspetjournals.org of these molecular switches, and their upstream signaling partners, are considered participants of tumor progression. Specifically, phosphoinositide-3 kinases (class-I PI3Ks, β and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor, are fundamental Gβγ effectors in the pathways controlling directionally persistent motility. In addition, GPCR-dependent chemotactic at ASPET Journals on September 27, 2021 responses often involve endosomal trafficking of signaling proteins, and coincidently, endosomes serve as signaling platforms for Gβγ. In preclinical murine models of cancer, inhibition of Gβγ attenuates tumor growth, whereas in cancer patients, aberrant overexpression of chemotactic Gβγ-effectors and recently-identified mutations in Gβ correlate with poor clinical outcome. Here we discuss emerging paradigms of Gβγ signaling in cancer, which are essential for chemotactic cell migration and represent novel opportunities to develop pathway-specific pharmacological treatments. 3 Molecular Pharmacology Fast Forward. Published on September 16, 2016 as DOI: 10.1124/mol.116.105338 This article has not been copyedited and formatted. The final version may differ from this version. MOL #105338 Introduction In tumor microenvironments, cells adjust their shape and move in response to multiple factors secreted by cancer cells and stromal cells (Friedl and Alexander, 2011; Roussos et al., 2011). Inherent intracellular forces are generated by actin polymerization and ATPase activity of myosin motors, and these mechanical responses are tightly controlled by receptor-dependent signaling mechanisms that define the precise spatiotemporal reorganization of the actin Downloaded from cytoskeleton (Alexander and Friedl, 2012; Devreotes and Horwitz, 2015). In particular, chemotactic G protein-coupled receptors (GPCRs) elicit G protein-dependent signaling pathways molpharm.aspetjournals.org linked to metastatic dissemination of cancer cells, formation of new blood vessels, and recruitment of proangiogenic cells from the bone marrow, all of which are critical to maintain cancer progression (Figure 1) (Dorsam and Gutkind, 2007; Lappano and Maggiolini, 2011). Current models of GPCR-dependent chemotactic cell migration have evolved from at ASPET Journals on September 27, 2021 studies on fast-moving cells that migrate individually, such as Dictyostelium amoebae and neutrophils. These generic pathways mediating migration suggest the involvement of Gβγ- dependent effectors, particularly PI3Ks and phosphatidylinositol (3,4,5)-trisphosphate-dependent effectors, including guanine nucleotide exchange factors for Rho GTPases. Cytoskeletal reorganization is launched by actin nucleation sites generated by effectors of GTP-bound Rho GTPases; RhoA, Rac1 and Cdc42 are the best characterized members of this family of molecular switches (Figure 2). These Rho-GTPase-dependent downstream mechanisms will not be discussed here, but readers are encouraged to consult excellent reviews covering these topics (Burridge and Wennerberg, 2004; Charest and Firtel, 2007; Rickert et al., 2000; Ridley, 2015; Ridley et al., 2003; Van Haastert and Devreotes, 2004). General mechanisms of directional cell migration provide a basis to explore GPCR-dependent cell migration linked to cancer 4 Molecular Pharmacology Fast Forward. Published on September 16, 2016 as DOI: 10.1124/mol.116.105338 This article has not been copyedited and formatted. The final version may differ from this version. MOL #105338 progression. However, in cancer settings, this process is further complicated by the influence of a plethora of stimuli in the microenvironment. Moreover, oncogenic pathways participating in chemotactic migration are affected by mutational changes, overexpression and differential repertoire of signaling systems which, among many other factors, eventually are integrated to facilitate individual and collective migration of cancer and protumoral cells (Figure 1). βγ We focus this review on the role of G signaling in cancer. Emphasis is given to Downloaded from upstream effectors leading to the activation of Rho GTPases in the pathways that control chemotactic cell migration. In this window of molecular interactions, the participation of class-I molpharm.aspetjournals.org PI3Ks (β and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor is considered critical. We highlight the properties of P-Rex1, known to be activated in concert by Gβγ and phosphatidylinositol (3,4,5)-trisphosphate (Welch, 2015; Welch et al., 2002), as a putative scaffold of chemotactic signaling. The proposed role of this multidomain effector is based on its at ASPET Journals on September 27, 2021 reported interactions with sphingosine-1-phosphate receptors and the serine/threonine kinases mTOR and type I PKA (Chavez-Vargas et al., 2016; Hernandez-Negrete et al., 2007; Ledezma- Sanchez et al., 2010). Overall, the proven relevance of multiple chemokines in oncogenic settings has pointed to GPCRs and their signaling effectors as possible pharmacological targets in cancer research. Protumoral chemotactic agonists Multiple agonists play a driving role in cancer progression. Oncogenic chemokines attract and consequently diversify the repertoire of cells associated with proliferating tumoral cells. Once incorporated as cellular components of the tumor stroma, fibroblasts, endothelial and immune cells also contribute to increase the variety of secreted chemokines that not only 5 Molecular Pharmacology Fast Forward. Published on September 16, 2016 as DOI: 10.1124/mol.116.105338 This article has not been copyedited and formatted. The final version may differ from this version. MOL #105338 stimulate the surrounding tissues, but also have a systemic effect: attracting cells from the bone marrow (Figure 1) (Kojima et al., 2010; Orimo et al., 2005; Scherz-Shouval et al., 2014; Wels et al., 2008). Tumor-associated bone marrow derived cells (BMDC) further support cancer progression via their ability to secrete chemokines, cytokines, growth factors, and proteins of the extracellular matrix (Gao et al., 2008; Nolan et al., 2007; Sekiguchi et al., 2011). Among BMDC’s protumoral effects, preparing the ground where metastatic niches are eventually Downloaded from established is particularly significant (Gao et al., 2008; Kaplan et al., 2005; Lyden et al., 2001; Peinado et al., 2012; Psaila and Lyden, 2009; Qian et al., 2011). molpharm.aspetjournals.org Examples of protumoral GPCR agonists with chemotactic properties include CCL2/5/22/25, CXCL1/2/5/8(IL-8)/12(SDF-1), and CX3CL1 (Bronte and Bria, 2016; Roussos et al., 2011; Ugel et al., 2015). In addition, bioactive lipids such as sphingosine-1-phosphate (Liang et al., 2013) and LPA (Jonkers and Moolenaar, 2009; Liu et al., 2009) also stimulate pro- at ASPET Journals on September 27, 2021 oncogenic migratory pathways. CXCL12
Recommended publications
  • The Rac Gtpase in Cancer: from Old Concepts to New Paradigms Marcelo G
    Published OnlineFirst August 14, 2017; DOI: 10.1158/0008-5472.CAN-17-1456 Cancer Review Research The Rac GTPase in Cancer: From Old Concepts to New Paradigms Marcelo G. Kazanietz1 and Maria J. Caloca2 Abstract Rho family GTPases are critical regulators of cellular func- mislocalization of Rac signaling components. The unexpected tions that play important roles in cancer progression. Aberrant pro-oncogenic functions of Rac GTPase-activating proteins also activity of Rho small G-proteins, particularly Rac1 and their challenged the dogma that these negative Rac regulators solely regulators, is a hallmark of cancer and contributes to the act as tumor suppressors. The potential contribution of Rac tumorigenic and metastatic phenotypes of cancer cells. This hyperactivation to resistance to anticancer agents, including review examines the multiple mechanisms leading to Rac1 targeted therapies, as well as to the suppression of antitumor hyperactivation, particularly focusing on emerging paradigms immune response, highlights the critical need to develop ther- that involve gain-of-function mutations in Rac and guanine apeutic strategies to target the Rac pathway in a clinical setting. nucleotide exchange factors, defects in Rac1 degradation, and Cancer Res; 77(20); 5445–51. Ó2017 AACR. Introduction directed toward targeting Rho-regulated pathways for battling cancer. Exactly 25 years ago, two seminal papers by Alan Hall and Nearly all Rho GTPases act as molecular switches that cycle colleagues illuminated us with one of the most influential dis- between GDP-bound (inactive) and GTP-bound (active) forms. coveries in cancer signaling: the association of Ras-related small Activation is promoted by guanine nucleotide exchange factors GTPases of the Rho family with actin cytoskeleton reorganization (GEF) responsible for GDP dissociation, a process that normally (1, 2).
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases
    International Journal of Molecular Sciences Review P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases Derek Strassheim 1, Alexander Verin 2, Robert Batori 2 , Hala Nijmeh 3, Nana Burns 1, Anita Kovacs-Kasa 2, Nagavedi S. Umapathy 4, Janavi Kotamarthi 5, Yash S. Gokhale 5, Vijaya Karoor 1, Kurt R. Stenmark 1,3 and Evgenia Gerasimovskaya 1,3,* 1 The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; [email protected] (D.S.); [email protected] (N.B.); [email protected] (V.K.); [email protected] (K.R.S.) 2 Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; [email protected] (A.V.); [email protected] (R.B.); [email protected] (A.K.-K.) 3 The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; [email protected] 4 Center for Blood Disorders, Augusta University, Augusta, GA 30912, USA; [email protected] 5 The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; [email protected] (J.K.); [email protected] (Y.S.G.) * Correspondence: [email protected]; Tel.: +1-303-724-5614 Received: 25 August 2020; Accepted: 15 September 2020; Published: 18 September 2020 Abstract: Purinergic G-protein-coupled receptors are ancient and the most abundant group of G-protein-coupled receptors (GPCRs). The wide distribution of purinergic receptors in the cardiovascular system, together with the expression of multiple receptor subtypes in endothelial cells (ECs) and other vascular cells demonstrates the physiological importance of the purinergic signaling system in the regulation of the cardiovascular system.
    [Show full text]
  • ERK Interaction Induces Proliferative Activities of Cementifying Fibroma
    Laboratory Investigation (2011) 91, 379–391 & 2011 USCAP, Inc All rights reserved 0023-6837/11 $32.00 RHAMM/ERK interaction induces proliferative activities of cementifying fibroma cells through a mechanism based on the CD44–EGFR Hiroko Hatano1, Hideo Shigeishi1, Yasusei Kudo2, Koichiro Higashikawa1, Kei Tobiume1, Takashi Takata2 and Nobuyuki Kamata1 We have previously established immortalized cells (HCF) from cementifying fibroma of the jaw bone. Here, we found that the receptor for hyaluronan (HA)-mediated motility (RHAMM) and epiregulin, a ligand for the epidermal growth factor receptor (EGFR), were highly expressed in HCF cells in comparison with osteoblasts by conducting a microarray analysis. The cell growth of HCF cells was significantly decreased by the knockdown of RHAMM using small interfering RNA (siRNA). RHAMM was associated with extracellular signal-regulated kinase (ERK) and essential for ERK phosphorylation. HCF cells had characteristic growth mechanisms in which epiregulin functions in an extracellular autocrine loop. Inter- estingly, exogenous HA induced the phosphorylation of EGFR, which was mainly dependent on CD44. The results raise the novel idea that the EGFR may activate Raf–MEK–ERK signaling in response to the binding of HA to CD44. Moreover, RHAMM was able to associate with TPX2 in the nucleus and was required for HA-induced activation of the Aurora A kinase. The results suggest that RHAMM has a predominant role in the cell cycle in HCF. Here, we report the new machinery by which RHAMM/ERK interaction induces
    [Show full text]
  • The Ras-Related Gtpase Rac1 Regulates a Proliferative Pathway Selectively Utilized by G-Protein Coupled Receptors
    Oncogene (1998) 17, 1617 ± 1623 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc The ras-related GTPase rac1 regulates a proliferative pathway selectively utilized by G-protein coupled receptors Ethan S Burstein1, Diane J Hesterberg1, J Silvio Gutkind2, Mark R Brann1, Erika A Currier1 and Terri L Messier1 1ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Blvd., San Diego, California 92121; 2Molecular Signaling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892-4330, USA Ras and rac are each members of the superfamily of GTPases can be constitutively activated by mutations monomeric GTPases and both function as molecular which impair GTPase activity (Bourne et al., 1991; switches to link cell-surface signals to intracellular Lowy and Willumsen, 1993; Barbacid, 1987), while responses. Using a novel assay of cellular proliferation dominant negative alleles can be created by mutations called R-SATTM (Receptor Selection and Ampli®cation that render these proteins unable to bind GTP (Feig Technology), we examined the roles of ras and rac in and Cooper, 1988). The ras proteins regulate a wide mediating the proliferative responses to a variety of cell- variety of cellular processes including growth and surface receptors. Activated, wild-type and dominant- dierentiation, and constitutively activated ras is negative mutants of rac and ras were tested for their oncogenic. The rac proteins control cytoskeletal eects on cellular proliferation either alone or in assembly (Tapon and Hall, 1997) and the exchange combination with receptors. Activated rac (rac Q61L, factors that activate rac are also oncogenic (Hart et al., henceforth rac*) and ras (ras G12V, henceforth ras*) 1994; Horii et al., 1994; Cerione and Zheng 1996) each induced strong proliferative responses.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • New Breast Cancer Risk Variant Discovered at 10Q25 in East Asian Women
    Published OnlineFirst May 15, 2013; DOI: 10.1158/1055-9965.EPI-12-1393 Cancer Epidemiology, Research Article Biomarkers & Prevention New Breast Cancer Risk Variant Discovered at 10q25 in East Asian Women Jiajun Shi1, Hyuna Sung2, Ben Zhang1, Wei Lu9, Ji-Yeob Choi2,5, Yong-Bing Xiang10, Mi Kyung Kim8,11, Motoki Iwasaki12, Jirong Long1, Bu-Tian Ji13, Sue K. Park2,3,5, Ying Zheng9, Shoichiro Tsugane12, Keun-Young Yoo3, Wenjing Wang9, Dong-Young Noh4,5, Wonshik Han4,5, Sung-Won Kim6, Min Hyuk Lee7, Jong Won Lee8, Jong-Young Lee14, Chen-Yang Shen15,16, Keitaro Matsuo17, Sei-Hyun Ahn8,11, Yu-Tang Gao10, Xiao Ou Shu1, Qiuyin Cai1, Daehee Kang2,3,5, and Wei Zheng1 Abstract Background: Recently, 41 new genetic susceptibility loci for breast cancer risk were identified in a genome- wide association study (GWAS) conducted in European descendants. Most of these risk variants have not been directly replicated in Asian populations. Methods: We evaluated nine of those nonreplication loci in East Asians to identify new risk variants for breast cancer in these regions. First, we analyzed single-nucleotide polymorphisms (SNP) in these regions using data from two GWAS conducted among Chinese and Korean women, including 5,083 cases and 4,376 controls (stage 1). In each region, we selected an SNP showing the strongest association with breast cancer risk for replication in an independent set of 7,294 cases and 9,404 controls of East Asian descents (stage 2). Logistic regression models were used to calculate adjusted ORs and 95% confidence intervals (CI) as a measure of the association of breast cancer risk and genetic variants.
    [Show full text]
  • Proteomic Identification of Potential Cancer Markers in Human Urine Using Subtractive Analysis
    INTERNATIONAL JOURNAL OF ONCOLOGY 48: 1921-1932, 2016 Proteomic identification of potential cancer markers in human urine using subtractive analysis HOLGER HUSI1, RICHARD J.E. SKipworth2, ANDREW Cronshaw3, KENNETH C.H. FEARON2* and JAMES A. ROSS2* 1Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ; 2School of Clinical Sciences, 3School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK Received November 21, 2015; Accepted December 27, 2015 DOI: 10.3892/ijo.2016.3424 Abstract. Urine is an ideal medium in which to focus diag- Introduction nostic cancer research due to the non-invasive nature and ease of sampling. Many large-scale proteomic studies have Screening of human tissues for cancer biomarkers is an impor- shown that urine is unexpectedly complex. We hypothesised tant task in cancer diagnosis and treatment, which is hindered that novel diagnostic cancer biomarkers could be discovered by the complexity of the sample systems studied. A less using a comparative proteomic analysis of pre-existing data. complex system such as urine is a preferred medium to screen We assembled a database of 100 published datasets of 5,620 for protein or peptide biomarkers due to the non-invasive urinary proteins, as well as 46 datasets of 8,620 non-redundant sampling of patients, ease of sampling and the unrestricted proteins derived from kidney and blood proteome analyses. quantities obtainable. Urine is relatively stable in terms of The data were then used to either subtract or compare mole- protein/peptide composition and fragmentation compared cules from a novel urinary proteome profiling dataset that we with other bodily fluids such as serum, where proteolytic generated.
    [Show full text]
  • Based on Network Pharmacology and RNA Sequencing Techniques to Explore the Molecular Mechanism of Huatan Jiangzhuo Decoction for Treating Hyperlipidemia
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 9863714, 16 pages https://doi.org/10.1155/2021/9863714 Research Article Based on Network Pharmacology and RNA Sequencing Techniques to Explore the Molecular Mechanism of Huatan Jiangzhuo Decoction for Treating Hyperlipidemia XiaowenZhou ,1 ZhenqianYan ,1 YaxinWang ,1 QiRen ,1 XiaoqiLiu ,2 GeFang ,3 Bin Wang ,4 and Xiantao Li 1 1Laboratory of TCM Syndrome Essence and Objectification, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China 2Guangzhou Sagene Tech Co., Ltd., Guangzhou 510006, China 3College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China 4Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, China Correspondence should be addressed to Xiantao Li; [email protected] Received 22 May 2020; Revised 12 March 2021; Accepted 18 March 2021; Published 12 April 2021 Academic Editor: Jianbo Wan Copyright © 2021 Xiaowen Zhou et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Hyperlipidemia, due to the practice of unhealthy lifestyles of modern people, has been a disturbance to a large portion of population worldwide. Recently, several scholars have turned their attention to Chinese medicine (CM) to seek out a lipid-lowering approach with high efficiency and low toxicity. +is study aimed to explore the mechanism of Huatan Jiangzhuo decoction (HTJZD, a prescription of CM) in the treatment of hyperlipidemia and to determine the major regulation pathways and potential key targets involved in the treatment process.
    [Show full text]
  • Transcriptional Fates of Human-Specific Segmental Duplications in Brain
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Method Transcriptional fates of human-specific segmental duplications in brain Max L. Dougherty,1,7 Jason G. Underwood,1,2,7 Bradley J. Nelson,1 Elizabeth Tseng,2 Katherine M. Munson,1 Osnat Penn,1 Tomasz J. Nowakowski,3,4 Alex A. Pollen,5 and Evan E. Eichler1,6 1Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA; 2Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, California 94025, USA; 3Department of Anatomy, 4Department of Psychiatry, 5Department of Neurology, University of California, San Francisco, San Francisco, California 94158, USA; 6Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, in- correct, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then am- plified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distin- guish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth–death process of duplicate genes and particularly how the process leads to gene innovation.
    [Show full text]