Pyelonephritis (Acute): Antimicrobial Prescribing Guideline Evidence Review

Total Page:16

File Type:pdf, Size:1020Kb

Pyelonephritis (Acute): Antimicrobial Prescribing Guideline Evidence Review National Institute for Health and Care Excellence Final Pyelonephritis (acute): antimicrobial prescribing guideline Evidence review NICE guideline 111 October 2018 Contents Disclaimer The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian. Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties. NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the Welsh Government, Scottish Government, and Northern Ireland Executive. All NICE guidance is subject to regular review and may be updated or withdrawn. Copyright © NICE 2018. All rights reserved. Subject to Notice of rights. ISBN: 978-1-4731-3124-8 Contents Contents Contents .............................................................................................................................. 4 1 Context .......................................................................................................................... 6 1.1 Background ........................................................................................................... 6 1.2 Managing infections that require antibiotics ........................................................... 7 1.2.1 Self-care .................................................................................................... 7 1.2.2 Antibiotic prescribing strategies .................................................................. 8 1.3 Safety netting advice ............................................................................................. 8 1.4 Symptoms and signs of a more serious illness or condition (red flags) .................. 9 2 Evidence selection ..................................................................................................... 10 2.1 Literature search ................................................................................................. 10 2.2 Summary of included studies............................................................................... 10 3 Clinical effectiveness ................................................................................................. 14 3.1 Non-pharmacological interventions ..................................................................... 14 3.2 Non-antimicrobial pharmacological interventions ................................................. 14 3.3 Antimicrobials in adults ........................................................................................ 14 3.3.1 Back-up antibiotics ................................................................................... 14 3.3.2 Antibiotics compared with placebo ........................................................... 14 3.3.3 Choice of antibiotic ................................................................................... 14 3.3.4 Antibiotic dosing and course length .......................................................... 18 3.3.5 Route of antibiotic administration ............................................................. 19 3.4 Antimicrobials in children ..................................................................................... 21 3.4.1 Back-up antibiotics ................................................................................... 21 3.4.2 Antibiotics compared with placebo ........................................................... 21 3.4.3 Choice of antibiotic ................................................................................... 22 3.4.4 Frequency of antibiotic dosing .................................................................. 22 3.4.5 Antibiotic course length ............................................................................ 23 3.4.6 Route of antibiotic administration ............................................................. 23 4 Safety and tolerability ................................................................................................ 26 4.1 Non-pharmacological interventions ..................................................................... 26 4.2 Non-antimicrobial pharmacological interventions ................................................. 26 4.3 Antimicrobials ...................................................................................................... 26 4.3.1 Antibiotics in adults .................................................................................. 27 4.3.2 Antibiotics in children ............................................................................... 28 5 Antimicrobial resistance ............................................................................................ 30 6 Other considerations ................................................................................................. 33 6.1 Resource impact ................................................................................................. 33 6.1.1 Antibiotics ................................................................................................ 33 6.2 Medicines adherence .......................................................................................... 33 7 Terms used in the guideline ...................................................................................... 34 4 Contents Acute pyelonephritis in the included studies ........................................................ 34 Complicated urinary tract infection in the included studies ................................... 34 Pyrexia 34 Sepsis 34 Sequential antibiotic ............................................................................................ 34 Vesicoureteral reflux ............................................................................................ 35 Appendices ........................................................................................................................ 36 Appendix A: Evidence sources .................................................................................. 36 Appendix B: Review protocol ..................................................................................... 39 Appendix C: Literature search strategy ..................................................................... 46 Appendix D: Study flow diagram ................................................................................ 58 Appendix E: Evidence prioritisation .......................................................................... 59 Appendix F: Included studies .................................................................................... 60 Appendix G: Quality assessment of included studies .............................................. 62 G.1 Antimicrobials ............................................................................................................ 62 Appendix H: GRADE profiles ...................................................................................... 65 H.1 Antimicrobials for acute pyelonephritis and complicated urinary tract infection in adults ...................................................................................................................... 65 H.2 Antimicrobials for acute pyelonephritis in children ................................................. 86 Appendix I: Studies not-prioritised ........................................................................... 97 Appendix J: Excluded studies ................................................................................... 98 5 Context 1 Context 1.1 Background Urinary tract infection (UTI) is a non‑specific term that refers to infection anywhere in the urinary tract (Frassetto 2015). This evidence review covers acute pyelonephritis and complicated urinary tract infection. Uncomplicated lower UTI, recurrent UTI and catheter-associated UTI are covered in separate evidence reviews. Pyelonephritis is an infection of the kidneys. Acute pyelonephritis may be caused by bacteria moving from the lower urinary tract or spreading via the bloodstream to the kidney. Most episodes of pyelonephritis are uncomplicated and result in no residual kidney damage. Complicated infections can result from underlying medical problems, genitourinary anatomical abnormalities, obstruction or multi-drug resistant pathogens (Frassetto 2015). Common signs and symptoms of pyelonephritis include acute-onset fever, chills, severe back or flank pain, nausea and vomiting, and costovertebral angle tenderness. The clinical knowledge summary (CKS) on pyelonephritis states that there are no clinical features or routine investigations that conclusively distinguish acute
Recommended publications
  • Medical Review(S) Clinical Review
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 200327 MEDICAL REVIEW(S) CLINICAL REVIEW Application Type NDA Application Number(s) 200327 Priority or Standard Standard Submit Date(s) December 29, 2009 Received Date(s) December 30, 2009 PDUFA Goal Date October 30, 2010 Division / Office Division of Anti-Infective and Ophthalmology Products Office of Antimicrobial Products Reviewer Name(s) Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD Review Completion October 29, 2010 Date Established Name Ceftaroline fosamil for injection (Proposed) Trade Name Teflaro Therapeutic Class Cephalosporin; ß-lactams Applicant Cerexa, Inc. Forest Laboratories, Inc. Formulation(s) 400 mg/vial and 600 mg/vial Intravenous Dosing Regimen 600 mg every 12 hours by IV infusion Indication(s) Acute Bacterial Skin and Skin Structure Infection (ABSSSI); Community-acquired Bacterial Pneumonia (CABP) Intended Population(s) Adults ≥ 18 years of age Template Version: March 6, 2009 Reference ID: 2857265 Clinical Review Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD NDA 200327: Teflaro (ceftaroline fosamil) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 9 1.1 Recommendation on Regulatory Action ........................................................... 10 1.2 Risk Benefit Assessment.................................................................................. 10 1.3 Recommendations for Postmarketing Risk Evaluation and Mitigation Strategies ........................................................................................................................
    [Show full text]
  • Orally Active Esters of Cephalosporin Antibiotics. Ii
    VOL. XXXII NO. 11 THE JOURNAL OF ANTIBIOTICS 1155 ORALLY ACTIVE ESTERS OF CEPHALOSPORIN ANTIBIOTICS. II SYNTHESIS AND BIOLOGICAL PROPERTIES OF THE ACETOXYMETHYL ESTER OF CEFAMANDOLE WALTER E. WRIGHT, WILLIAM J. WHEELER, VERLE D. LINE, JUDITH ANN FROGGE' and DON R. FINLEY Lilly Research Laboratories, Eli Lilly and Company Indianapolis, Indiana 46206, U.S.A. (Received for publication August 29, 1979) The synthesis of the acetoxymethyl (AOM) ester of cefamandole (CM) is described. The sparingly soluble ester is shown to be well absorbed orally by mice, but only when administered in solution in a partially non-aqueous vehicle, 50°o propylene glycol. Neither the ester in aqueous suspension nor the sodium salt of CM in solution is well absorbed orally. The rate of oral absorption of the ester from solution is very rapid as shown by the early peak time and shape of the plasma level curve. Oral bioavailability from solution is at least 60% and is ap- parently limited only by hydrolysis or precipitation of a variable portion of the ester dose in the intestinal lumen prior to absorption. Esterification of the carboxyl group of penicillins and cephalosporins can result in significant improvement in the oral absorption of the parent drug. Pivampicillin1), bacampicillin2) and talampicil- lin3J are examples of such successful penicillin derivatives, and the acetoxymethyl ester of cephaloglycin4 and other cephalosporin derivatives') illustrate the applicability of this pro-drug principle to cephalo- sporins. Although the intact esters are biologically inactive, they can be hydrolyzed to the active parent drug either during passage through the intestinal wall or after absorption has occurred6).
    [Show full text]
  • Guidelines on Urinary and Male Genital Tract Infections
    European Association of Urology GUIDELINES ON URINARY AND MALE GENITAL TRACT INFECTIONS K.G. Naber, B. Bergman, M.C. Bishop, T.E. Bjerklund Johansen, H. Botto, B. Lobel, F. Jimenez Cruz, F.P. Selvaggi TABLE OF CONTENTS PAGE 1. INTRODUCTION 5 1.1 Classification 5 1.2 References 6 2. UNCOMPLICATED UTIS IN ADULTS 7 2.1 Summary 7 2.2 Background 8 2.3 Definition 8 2.4 Aetiological spectrum 9 2.5 Acute uncomplicated cystitis in pre-menopausal, non-pregnant women 9 2.5.1 Diagnosis 9 2.5.2 Treatment 10 2.5.3 Post-treatment follow-up 11 2.6 Acute uncomplicated pyelonephritis in pre-menopausal, non-pregnant women 11 2.6.1 Diagnosis 11 2.6.2 Treatment 12 2.6.3 Post-treatment follow-up 12 2.7 Recurrent (uncomplicated) UTIs in women 13 2.7.1 Background 13 2.7.2 Prophylactic antimicrobial regimens 13 2.7.3 Alternative prophylactic methods 14 2.8 UTIs in pregnancy 14 2.8.1 Epidemiology 14 2.8.2 Asymptomatic bacteriuria 15 2.8.3 Acute cystitis during pregnancy 15 2.8.4 Acute pyelonephritis during pregnancy 15 2.9 UTIs in post-menopausal women 15 2.10 Acute uncomplicated UTIs in young men 16 2.10.1 Pathogenesis and risk factors 16 2.10.2 Diagnosis 16 2.10.3 Treatment 16 2.11 References 16 3. UTIs IN CHILDREN 20 3.1 Summary 20 3.2 Background 20 3.3 Aetiology 20 3.4 Pathogenesis 20 3.5 Signs and symptoms 21 3.5.1 New-borns 21 3.5.2 Children < 6 months of age 21 3.5.3 Pre-school children (2-6 years of age) 21 3.5.4 School-children and adolescents 21 3.5.5 Severity of a UTI 21 3.5.6 Severe UTIs 21 3.5.7 Simple UTIs 21 3.5.8 Epididymo orchitis 22 3.6 Diagnosis 22 3.6.1 Physical examination 22 3.6.2 Laboratory tests 22 3.6.3 Imaging of the urinary tract 23 3.7 Schedule of investigation 24 3.8 Treatment 24 3.8.1 Severe UTIs 25 3.8.2 Simple UTIs 25 3.9 References 26 4.
    [Show full text]
  • Antibiotic Review
    8/28/19 Disclosure 2 E. Monee’ Carter-Griffin DNP, MA, RN, ACNP-BC Antibiotic has no financial relationships with commercial Review interests to disclose. Any unlaBeled and/or E. Monee’ Carter-Griffin, DNP, MA, RN, ACNP-BC unapproved uses of drugs or products will Be Associate Chair for Advanced Practice Nursing disclosed. University of Texas at Arlington, College of Nursing & Health Innovation Dallas Pulmonary & Critical Care, PA • Identify the general characteristics of • SusceptiBility à determine which antibiotics. antibiotics a bacteria is sensitive to • Discuss the mechanism of action, • à pharmacokinetics, and spectrum of activity MIC lowest concentration of drug that inhiBits growth of the Bacteria for the most common antiBiotic drug classes. Antibiotic Objectives • Identify commonly prescriBed antiBiotics • Trough à lowest concentration of within the drug classes including dosage Lingo drug in bloodstream range and indication for prescribing. – Collect prior to administration of • Identify special considerations for specific drug antibiotics and/or drug classes. • Peak à highest concentration of • Practice appropriate prescriBing for common drug in bloodstream bacterial infections. • Review Basic antiBiotic stewardship 3 4 principles. • Penicillins • Bactericidal or bacteriostatic • Cephalosporins • Narrow or Broad spectrum • Carbapenems General • Can elicit allergic responses Antibiotic • MonoBactam Characteristics • Affect normal Body flora Drug Classes • Macrolides • Fluoroquinolones • Sulfonamides • Tetracyclines 5 6 1 8/28/19 • Penicillins – Natural penicillins 8 – Aminopenicillins Penicillins Penicillins – Anti-staphylococcal penicillins • Mechanism of action àbactericidal à – Anti-pseudomonal penicillins interrupts cell wall synthesis 7 • Pharmacokinetics • Spectrum of Activity – Gram positive organisms Natural – Penicillin G à mostly given IM, But Natural • Streptococcus species (e.g. S. Penicillins one variation can Be given IV Penicillins pyogenes) • Poorly aBsorBed via PO • Some enterococcus species (e.g.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Ceftibuten (hydrate) Item No. 25334 NH2 S CAS Registry No.: 118081-34-8 N Formal Name: (6R,7R)-7-[[(2Z)-2-(2-amino-4-thiazolyl)-4-carboxy- 1-oxo-2-buten-1-yl]amino]-8-oxo-5-thia-1- O azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, dihydrate • 2H2O Synonym: SCH 39720 H N S MF: C15H14N4O6S2 • 2H2O HO FW: 446.5 H O Purity: ≥98% O N UV/Vis.: λmax: 218, 262 nm Supplied as: A crystalline solid -20°C O Storage: OH Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Ceftibuten (hydrate) is supplied as a crystalline solid. A stock solution may be made by dissolving the ceftibuten (hydrate) in the solvent of choice. Ceftibuten (hydrate) is soluble in organic solvents such as DMSO and dimethyl formamide, which should be purged with an inert gas. The solubility of ceftibuten (hydrate) in these solvents is approximately 5 and 2 mg/ml, respectively. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of ceftibuten (hydrate) can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of ceftibuten (hydrate) in PBS, pH 7.2, is approximately 0.1 mg/ml. We do not recommend storing the aqueous solution for more than one day.
    [Show full text]
  • Consideration of Antibacterial Medicines As Part Of
    Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1.
    [Show full text]
  • Antibiotic Temocillin Be A
    P0840 Could the ‘old’ antibiotic temocillin be a ‘new’ treatment for acute bacterial cholangitis? A retrospective study of 156 cases Sylvain Chawki1, Marion Duprilot1, Gary Taieb1, Veronique Leflon1, Marie-Hélène Nicolas-Chanoine1, Bruno Fantin1, Victoire De Lastours*1 1 Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Clichy, France Background: Acute cholangitis is a potentially severe infection requiring rapid active antimicrobial therapy. Thus, emergence of multidrug resistant strains of Enterobacteriaceae is a rising global public-health issue. To spare carbapenems, alternative therapies are needed. Temocillin is a narrow-spectrum betalactam targeting almost specifically Enterobacteriaceae, including most isolates resistant to third generation cephalosporin (3GC) and some carbapenemase-producers. Temocillin biliary concentrations may reach several times the blood concentrations. We assessed whether temocillin may represent an alternative treatment for bacterial cholangitis. Materials/methods: In this retrospective monocentric study, all patients from November 2015 to December 2017 admitted for acute cholangitis with a positive culture (blood or bile) were included. Demographic characteristics, severity, treatment and outcome of each episode were collected. Susceptibility to antibiotics, including temocillin, was determined phenotypically. Episodes of cholangitis were considered susceptible to temocillin if all pathogens found were temocillin-susceptible. Results: 137 patients (77/137 male; 56%; median age 67 [60-75]) who suffered 156 episodes of bacterial cholangitis were included (19 patients had 2 separate episodes during the study period). The median Charlson score was 4 [2-8]; 66/137 (48%) were immunocompromised, 54/137 (39%) had a history episode of acute cholangitis. 118/156 (75.6%) episodes were healthcare-associated, 28/156 (18%) required intensive care and 12 (7.7%) were fatal.
    [Show full text]
  • Computational Antibiotics Book
    Andrew V DeLong, Jared C Harris, Brittany S Larcart, Chandler B Massey, Chelsie D Northcutt, Somuayiro N Nwokike, Oscar A Otieno, Harsh M Patel, Mehulkumar P Patel, Pratik Pravin Patel, Eugene I Rowell, Brandon M Rush, Marc-Edwin G Saint-Louis, Amy M Vardeman, Felicia N Woods, Giso Abadi, Thomas J. Manning Computational Antibiotics Valdosta State University is located in South Georgia. Computational Antibiotics Index • Computational Details and Website Access (p. 8) • Acknowledgements (p. 9) • Dedications (p. 11) • Antibiotic Historical Introduction (p. 13) Introduction to Antibiotic groups • Penicillin’s (p. 21) • Carbapenems (p. 22) • Oxazolidines (p. 23) • Rifamycin (p. 24) • Lincosamides (p. 25) • Quinolones (p. 26) • Polypeptides antibiotics (p. 27) • Glycopeptide Antibiotics (p. 28) • Sulfonamides (p. 29) • Lipoglycopeptides (p. 30) • First Generation Cephalosporins (p. 31) • Cephalosporin Third Generation (p. 32) • Fourth-Generation Cephalosporins (p. 33) • Fifth Generation Cephalosporin’s (p. 34) • Tetracycline antibiotics (p. 35) Computational Antibiotics Antibiotics Covered (in alphabetical order) Amikacin (p. 36) Cefempidone (p. 98) Ceftizoxime (p. 159) Amoxicillin (p. 38) Cefepime (p. 100) Ceftobiprole (p. 161) Ampicillin (p. 40) Cefetamet (p. 102) Ceftoxide (p. 163) Arsphenamine (p. 42) Cefetrizole (p. 104) Ceftriaxone (p. 165) Azithromycin (p.44) Cefivitril (p. 106) Cefuracetime (p. 167) Aziocillin (p. 46) Cefixime (p. 108) Cefuroxime (p. 169) Aztreonam (p.48) Cefmatilen ( p. 110) Cefuzonam (p. 171) Bacampicillin (p. 50) Cefmetazole (p. 112) Cefalexin (p. 173) Bacitracin (p. 52) Cefodizime (p. 114) Chloramphenicol (p.175) Balofloxacin (p. 54) Cefonicid (p. 116) Cilastatin (p. 177) Carbenicillin (p. 56) Cefoperazone (p. 118) Ciprofloxacin (p. 179) Cefacetrile (p. 58) Cefoselis (p. 120) Clarithromycin (p. 181) Cefaclor (p.
    [Show full text]
  • Treating Genitourinary and Pharyngeal Gonorrhoea with Single Dose Ceftriaxone
    Genitourin Med: first published as 10.1136/sti.65.1.14 on 1 January 1989. Downloaded from Genitourin Med 1989;65:14-17 Treating genitourinary and pharyngeal gonorrhoea with single dose ceftriaxone J CHRISTOPHERSEN,* A C BOLLERUP,t E FROM,$ J 0 R0NNE-RASMUSSEN,§ K QUITZAUII From the *Department ofDermatovenereology, Gentofte Hospital, Hellerup; the tNeisseria Department, Statens Seruminstitut, Copenhagen; the tDepartment ofDermatovenereology, Marselisborg Hospital, Aarhus; the §Department ofDermatovenereology, Bispebjerg Hospital, Copenhagen; and the IlDepartment ofClinical Research, Roche, Denmark suMMARY The efficacy of ceftriaxone 250 mg given as a single intramuscular dose to treat genitourinary and pharyngeal gonorrhoea is compared with the outcome of the Danish standard treatment for uncomplicated genitourinary gonorrhoea, pivampicillin 1-4 g and probenecid 1 g, both given by mouth. The study comprised 327 patients for whom the diagnosis ofgonorrhoea was made by microscopy of a methylene blue stained smear at their first visit to the clinic and for whom the diagnosis was later confirmed by culture of Neisseria gonorrhoeae. One hundred and seventy patients with genitourinary gonorrhoea (18 with and 152 without concomitant pharyngeal infection) were treated with ceftriaxone. One hundred and fifty seven (17 with and 140 without concomitant pharyngeal infection) were treated with pivampicillin. One week after treatment N gonorrhoeae was isolated from none of 18, 1/152, (1%), 11/17 (65%), and 6/140 (4%) patients, respectively. At a second attendance two weeks after treatment no further treatment failure was found. During the study period, a further 52 patients with pharyngeal infection (with or without concomitant genitourinary infection) that was shown by culture only were treated with a single http://sti.bmj.com/ intramuscular injection of 250 mg ceftriaxone.
    [Show full text]
  • Cephalosporins Can Be Prescribed Safely for Penicillin-Allergic Patients ▲
    JFP_0206_AE_Pichichero.Final 1/23/06 1:26 PM Page 106 APPLIED EVIDENCE New research findings that are changing clinical practice Michael E. Pichichero, MD University of Rochester Cephalosporins can be Medical Center, Rochester, NY prescribed safely for penicillin-allergic patients Practice recommendations an allergic reaction to cephalosporins, ■ The widely quoted cross-allergy risk compared with the incidence of a primary of 10% between penicillin and (and unrelated) cephalosporin allergy. cephalosporins is a myth (A). Most people produce IgG and IgM antibodies in response to exposure to ■ Cephalothin, cephalexin, cefadroxil, penicillin1 that may cross-react with and cefazolin confer an increased risk cephalosporin antigens.2 The presence of of allergic reaction among patients these antibodies does not predict allergic, with penicillin allergy (B). IgE cross-sensitivity to a cephalosporin. ■ Cefprozil, cefuroxime, cefpodoxime, Even penicillin skin testing is generally not ceftazidime, and ceftriaxone do not predictive of cephalosporin allergy.3 increase risk of an allergic reaction (B). Reliably predicting cross-reactivity ndoubtedly you have patients who A comprehensive review of the evidence say they are allergic to penicillin shows that the attributable risk of a cross- U but have difficulty recalling details reactive allergic reaction varies and is of the reactions they experienced. To be strongest when the chemical side chain of safe, we often label these patients as peni- the specific cephalosporin is similar to that cillin-allergic without further questioning of penicillin or amoxicillin. and withhold not only penicillins but Administration of cephalothin, cepha- cephalosporins due to concerns about lexin, cefadroxil, and cefazolin in penicillin- potential cross-reactivity and resultant IgE- allergic patients is associated with a mediated, type I reactions.
    [Show full text]
  • Assessment of the Palatability of Antibiotic Oral Suspensions: a Literature Review S
    Assessment of the palatability of antibiotic oral suspensions: a literature review S. ROBERT1, Y-E NISSE1, B. DEMORE1,2 4CPS-205 1 Pharmacie, CHRU Nancy, Nancy, France ; 2 APEMAC, Université de Lorraine, Nancy, France Corresponding author: [email protected] Background Non adherence to a full course of antibiotic occurs in approximately one-quarter of paediatric patients. The child’s refusal to take the drug is the second most common reason for non-adherence. Palatability is the third most important antibiotic feature for parents after effectiveness and safety Objective Review the literature for assessments of the palatability of antibiotic oral suspensions to inform physicians in their daily practice and consequently improve adherence Materials & methods Research date Inclusion criteria Results reporting august 2019 study reporting an assessment of palatability lowest score = poor palatability of one or more antibiotic suspensions highest score = excellent palatability Database with any assessment scale pubMed Database Data extracted all results are expressed on a 10-point scale for comparison purposes Population study characteristics population demographics separate averages were calculated for adults and/or children palatability assessments adults and children Results Palatability of antibiotic oral suspensions in children and adults Study characteristics Adults Children 9 9 studies identified 8 8 only blind studies 7 7 9/10 with healthy volunteers 6 6 5 5 4 4 3 3 2 adults only children only 2 1 1 SU RIF CLI FA LEX SXT CLR CEC ERY CTB CPR LZD CPD LOR DCX CFM LEX OXA CLR CXM ERY AMP CPR AMX AZM AMC CPD DCX CDR CFM CXM AMX AZM AMC PEN V PEN VK ERY/SU ERY/SU For a given antibiotic, each bar represents a study.
    [Show full text]
  • Clinical Pharmacology of Ampicillin in Infants and Children
    Central Journal of Drug Design and Research Bringing Excellence in Open Access Review Article *Corresponding author Gian Maria Pacifici,Associate professorof Pharmacology,via Sant’Andrea 32,56127 Pisa,Italy. Clinical Pharmacology of Email: [email protected] Submitted: 19 April 2021 Accepted: 25 April 2021 Ampicillin in Infants and Published: 27 April 2021 ISSN: 2379-089X Children Copyright © 2021 Pacifici GM Gian Maria Pacifici* OPEN ACCESS Associate professorof Pharmacology, Italy Keywords Abstract • Ampicillin • Dosing Ampicillin is an aminopenicillin and is more active than penicillin G. Ampicillin is destroyed by β-lactamase • Treatment and is co-formulated with sulbactam an inhibitor of β-lactamase. Ampicillin is bactericidal and it is active • Trials against meningococci, Listeria monocytogenes, enterococci, and the co-administration with sulbactam markedly • Placental-transfer expands the spectrum of activity against Haemophilus influenzae, Escherichia coli, Proteus, and Bacillus fragilis. • Breast-milk Ampicillin may be administered intravenously and orally and the intravenous dose is 50 mg twice-daily and • Meningitis thrice-daily in preterm and term infants, respectively. The oral dose in children ranges from 125 to 500 mg 4 times-daily and increases with the chid age. Ampicillin has been found efficacy and safe in infants and children but may cause adverse-effects. In infants, the ampicillin elimination half-life ranges between 2.4 to 5.0 hours and decreases with infant maturation and in children it is about 0.8 hours. Ampicillin interacts with drugs, the treatment and the trials with ampicillin have been extensively studied in infants and children. This antibiotic freely crosses the human placenta but poorly migrates into the breast-milk.
    [Show full text]