Observations of Active Galactic Nuclei from Radio to Gamma-Rays

Total Page:16

File Type:pdf, Size:1020Kb

Observations of Active Galactic Nuclei from Radio to Gamma-Rays a Observations of Active Galactic Nuclei from Radio to Gamma-rays Right Ascension Right Ascension 20s 10s 2h 41m 00s 50s 10s 05s 2h 41m 00s DSS (optical) 5kpc Chandra (0.1–9 keV) -8◦ 12’ -8◦ 14’ -8◦ 13’ -8◦ 14’ -8◦ 15’ Declination -8◦ 15’ -8◦ 16’ Declination -8◦ 16’ -8◦ 17’ -8◦ 18’ 10 kpc -8◦ 19’ -8◦ 17’ ◦ 10 -8◦ 15’ 00” 1kpc MERLIN2 (1.42 GHz) ◦ 5 10” Declination 0◦ 20” -5◦ 30” -10◦ 40” Declination -15◦ VLBA (15.4GHz) 4 Relative DEC [mas] 2 -20◦ Fermi/LAT 2Mpc (0.1-100 GeV) 0 -25◦ -2 4h 00m 3h 30m 3h 00m 2h 30m 2h 00m 1h 30m 0.3 pc Right Ascension -4 10 5 0 -5 -10 Relative RA [mas] Moritz B¨ock Supervisors: Prof. Dr. J¨ornWilms and Prof. Dr. Matthias Kadler performed at: Dr. Karl Remeis-Sternwarte Bamberg Erlangen Centre for Astroparticle Physics The cover picture shows images of the Active Galactic Nucleus NGC 1052 in different energy ranges and with different angular resolution. The scale bar indicates the projected length in the distance of the source. A high-energy (0.1{100 GeV) image in the bottom left has been obtained with Fermi/LAT (integrated exposure of years). An optical image is shown in the top left and a soft X-ray image obtained with Chandra in the top right. An overlay of this image with radio emission (contour lines) seen with MERLIN has been created (middle right). In the bottom right a VLBA radio image with high angular resolution is shown. More information on this source and the used observation techniques are provided within this thesis. Observations of Active Galactic Nuclei from Radio to Gamma-rays Beobachtungen aktiver galaktischer Kerne von Radiowellen bis zu Gammastrahlen Der Naturwissenschaftlichen Fakult¨atder Friedrich-Alexander-Universit¨atErlangen-N¨urnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Moritz B¨ock aus Regensburg Als Dissertation genehmigt von der Naturwissenschaftlichen Fakult¨at der Friedrich-Alexander-Universit¨atErlangen-N¨urnberg Tag der m¨undlichen Pr¨ufung: September 2012 Vorsitzender der Promotionskommission: Erstberichterstatter: Prof. Dr. J¨ornWilms Zweitberichterstatter: Prof. Dr. Matthias Kadler Erweiterte deutsche Zusammenfassung In dieser Arbeit werden aktive galaktische Kerne { die hellsten Objekte mit dauerhafter Emission im Universum { behandelt. Nach aktuellem Wissensstand bestehen sie aus mehreren Komponenten. Das zentrale Objekt solcher Systeme ist ein supermassives schwarzes Loch, das sich im Zentrum einer Galaxie befindet. Absch¨atzungen der Masse von schwarzen L¨ochern dieser Art liegen im Be- reich von Millionen bis zu mehreren Milliarden von Sonnenmassen. Es wird heute vermutet, dass jede gr¨oßere Galaxie ein zentrales schwarzes Loch beherbergt. Per Definition ist es selbst nicht direkt sichtbar, kann aber aufgrund des Einflusses auf seine Umgebung nachgewiesen werden. Der Unterschied zwischen einem supermassiven schwarzen Loch als nahezu unsichtbares oder als eines der hellsten Objekte im Universum beruht somit auf dessen Umgebung. Das enorme Gravitations- feld eines schwarzen Lochs wirkt auf Material in seiner N¨ahe. Derartiges Material, beispielsweise Gaswolken, Staubpartikel und Sternwinde, stellt gewissermaßen den Treibstoff des aktiven galakti- schen Kerns dar. Aufgrund der Drehimpulserhaltung wird das Material auf Umlaufbahnen um das schwarze Loch gezwungen und eine Akkretionsscheibe kann sich bilden. Reibung und Turbulenzen fuhren¨ zu einer Drehimpulsubertragung¨ und damit dazu, dass sich das Material dem schwarzen Loch n¨ahert und Energie abstrahlt. Der Akkretionsprozess ist ¨außerst effizient und erkl¨art teilweise die extremen Leuchtkr¨afte aktiver galaktischer Kerne. Die erwartete thermische Emission einer Ak- kretionsscheibe reicht jedoch nicht aus, um die komplette Strahlung aktiver galaktischer Kerne zu erkl¨aren. Beobachtungen zeigen, dass manche dieser Objekte im kompletten elektromagnetischen Spektrum sichtbar sind. Der Ursprung der Emission im Radio- sowie vermutlich auch im Hochener- giebereich scheinen Jets zu sein. Im Gegensatz zu Material, das vom schwarzen Loch eingesaugt wird, handelt es sich dabei um gebundelte¨ Teilchenstrahlen, die sich von diesem mit nahezu Licht- geschwindigkeit entfernen. Aktive galaktische Kerne sind noch nicht komplett verstanden. Es gibt noch zahlreiche offene Fragen, wie zum Beispiel die exakte Akkretionsgeometrie, die Entstehung und Zusammensetzung der relativistischen Jets, die Wechselwirkungen zwischen den Bestandteilen dieser Systeme, sowie die genauen Ursprungsorte und die zugrundeliegenden physikalischen Prozes- se der Emission in verschiedenen Energiebereichen. Um diese Fragen zu adressieren wird in dieser Arbeit eine Multiwellenl¨angenanalyse aktiver galaktischer Kerne durchgefuhrt.¨ Die unterschiedli- chen Energiebereiche und Beobachtungesmethoden erlauben Einblicke in verschiedene Prozesse und Eigenschaften dieser Objekte. Eine Studie des Zusammenhangs zwischen Akkretion und Eigenschaften des Jets erfolgt anhand des Objekts NGC 1052 unter Verwendung von Radio- und R¨ontgenbeobachtungen. Es handelt sich dabei um eine Galaxie mit einem aktiven Kern. Im Radiobreich zeigt sich ein doppelseitiger Jet mit einer projizierten L¨ange von mehreren kpc. Zus¨atzlich befindet sich im Zentrum von NGC 1052 eine deutliche R¨ontgenquelle. Der umfangreiche Datensatz besteht aus zahlreichen Beobachtungen mit verschiedenen Instrumenten und erlaubt detaillierte Analysen. Im R¨ontgenbereich sind dabei lange Beobachtungen mit empfindlichen Teleskopen verfugbar,¨ mit welchen einerseits die Verteilung der R¨ontgenstrahlung innerhalb der Galaxie mit hoher Winkelaufl¨osung und andererseits spektrale Details untersucht werden k¨onnen. Es zeigt sich, dass es ausgedehnte R¨ontgenemission gibt, de- ren Verteilung vereinbar mit der Position des im Radiobereich sichtbaren Jets ist. Das Spektrum dieser Komponente kann mit Bremsstrahlung und der Emission eines thermischen Plasmas model- liert werden. Ihr Ursprung ist vermutlich die Wechselwirkung des Jets mit interstellarer Materie innerhalb der Galaxie. Die R¨ontgenstrahlung bei h¨oheren Energien stammt gr¨oßtenteils aus dem Kern der Galaxie und erlaubt Ruckschl¨ usse¨ auf die Umgebung des supermassiven schwarzen Lochs. Die beobachtete starke Absorption gew¨ahrt Einblicke in die Eigenschaften des Materials in dieser Region. Interferometrische Radiobeobachtungen mit großen Entfernungen zwischen Teleskopen erm¨og- lichen Winkelaufl¨osungen, die feiner als Millibogensekunden sind. Damit ist es m¨oglich, Struktu- ren im Jet auf Gr¨oßenordnungen eines Zehntel Parsecs zu untersuchen. Im Rahmen dieser Arbeit I wurden die verfugbaren¨ Radiobeobachtungen dieser Art untersucht, die im Zeitraum von 1995 bis 2012 durchgefuhrt¨ wurden. Es l¨asst sich damit die zeitliche Entwicklung der Strukturen im Jet verfolgen und deren Bewegungsgeschwindigkeit bestimmen. Zus¨atzlich konnte die typische In- tensit¨atsentwicklung dieser Jetkomponenten auf ihrer Bewegung entlang der Jetachse bestimmt werden. Eine Extrapolation der Trajektorien zeigt, dass es bis zu einem Jahr dauert, bis eine Kom- ponente vom schwarzen Loch die Region erreicht, ab welcher sie bei 15 GHz sichtbar wird. Wenn neue Komponenten den (im Radiobereich nicht sichtbaren) Kern verlassen, zeigt sich Variabilit¨at im R¨ontgenbereich. Es werden Intensit¨atseinbruche¨ sowie Erh¨ohungen beobachtet. Ein starkes Aus- stoßereignis im Jet ereignete sich bei niedriger R¨ontgenintensit¨at. Diese erh¨ohte sich in den beiden folgenden Jahren, bis weitere Jetkomponenten ausgestoßen wurden. Fur¨ ein besseres Verst¨andnis aktiver galaktischer Kerne erg¨anzen Studien gr¨oßerer Samples die Analysen individueller Quellen. In dieser Arbeit werden das TANAMI und das MOJAVE Programm erl¨autert, sowie die dadurch erm¨oglichten Studien. In beiden Programmen werden Auswahlen akti- ver galaktischer Kerne mit Jets mit einer radiointerferometrischen Beobachtungskampagne unter- sucht. Mit diesen Langzeitstudien ist es m¨oglich, Eigenschaften, wie etwa die Jetgeschwindigkeit, zu bestimmen und mit Beobachtungen in anderen Energiebereichen zu vergleichen. Diese Arbeit stellt einen wichtigen Beitrag zum TANAMI-Programm dar. Es wurden beispielsweise Visualisie- rungsmethoden fur¨ Radiobilder entwickelt. Im letzten Abschnitt der Arbeit werden die γ-Strahlungseigenschaften der aktiven galaktischen Kerne der TANAMI- und MOJAVE-Samples behandelt. Hierfur¨ wird zun¨achst ein Uberblick¨ uber¨ die γ-Strahlenastronomie und die Fermi-Mission, die seit 2008 in Betrieb ist, gegeben. Basierend auf Daten, die mit Fermi/LAT gemessen wurden, werden die Eigenschaften der Objekte in den Samples im Energiebereich von 100 MeV bis 100 GeV analysiert. Dazu wurde nach γ-Strahlungsquellen ge- sucht, die signifikant mit Fermi/LAT detektiert wurden. Es zeigte sich, dass fast alle BL Lac-Objekte detektiert sind, sowie die Mehrheit der Quasare. Im Gegensatz dazu sind nur wenige Radiogala- xien in diesem Energiebereich sichtbar. Fur¨ aktive galaktische Kerne, die nicht mit Fermi/LAT detektierbar sind, wurden obere Grenzen fur¨ deren γ-Strahlungsfluss bestimmt. Unter Verwen- dung der Entfernung der Quellen wurden die Leuchtkr¨afte bestimmt. Diese sind am geringsten fur¨ Radiogalaxien und gr¨oßer fur¨ BL Lacs. Die h¨ochsten Leuchtkr¨afte sind die der Quasare. Ein Vergleich der vom MOJAVE-Team bestimmten Jetgeschwindigkeiten mit Eigenschaften der Quel- len im Hochenergiebereich unterstutzt¨ die Vermutung, dass die γ-Strahlung ihren Ursprung im Doppler-Boosting in relativisitischen Jets hat, die unter einem kleinen Winkel zur Sichtlinie aus- gerichtet sind. Die Jetgeschwindigkeiten zeigen,
Recommended publications
  • The Early Explorers by Andrew J
    The Early Explorers by Andrew J. LePage August 8, 1999 Among these programs were the next generation of Introduction Explorer satellites the ABMA was planning. In the chaos that swept the United States after the launching of the first Soviet Sputniks, a variety of The First New Explorers satellite programs was sponsored by the Department The first of the new series of larger Explorer satellites of Defense (DoD) to supplement (and in some cases was the 39.7 kilogram (87.5 pound) satellite NASA supplant) the country's flagging "official" satellite designated as S-1. Built by JPL, the spin stabilized program, Vanguard. One of the stronger programs S-1 consisted of a pair of fiberglass cones joined at was sponsored by the ABMA (Army Ballistic Missile their bases with a diameter and height of 76 Agency) with its engineering team lead by the centimeters each. The scientific payload consisted of German rocket expert, Wernher von Braun. Using instruments to study cosmic rays, solar X-ray and the Juno I launch vehicle, the ABMA team launched ultraviolet emissions, micrometeorites, as well as the America's first satellite, Explorer 1, which was built globe's heat balance. This was all powered by a bank by Caltech's Jet Propulsion Laboratory (JPL) (see of 15 nickel-cadmium batteries recharged by 3,000 Explorer: America's First Satellite in the February solar cells mounted on the satellite's exterior. This 1998 issue of SpaceViews). advanced payload was equipped with a timer to turn itself off after a year in orbit. While these first satellites returned a wealth of new data, they were limited by the tiny 11 kilogram (25 Explorer S-1 was launched from Cape Canaveral on pound) payload capability of the Juno I.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • The Hot and Energetic Universe
    The Hot And Energetic Universe The Universe was always the final frontier of the Human quest for knowledge Through all its history, humanity has observed the sky trying to understand the Cosmos outside the limits of our planet Today, this effort has yielded significant results. Now we know that our sun is a typical star, which does not differ significantly from the other stars of the starry sky. We have discovered the planets of our Solar System and we have studied the conditions prevailing in them. We studied asteroids and comets and found their important role in the formation of planets. We understand the basic principles of the formation, the life and the death of stars. We have also discovered thousands of exoplanets orbiting other stars. We studied giant star clusters. We have discovered dense clouds of interstellar dust and gas where new stars are born continuously. We have managed to describe the gigantic complex of stars to which we belong. Our Galaxy. We realized that our Galaxy is not alone in the universe and that there are hundreds of billions of galaxies. We discovered that the universe of galaxies is extremely violent and in constant motion. Finally we found that the whole universe is in accelerating expansion and we are searching urgently for its origin. This quest is an epic journey towards knowledge, which abolish superstitions and defines human existence. Vehicles for the journey of humanity in the universe are scientific instruments called telescopes, which are installed at various observatories. Telescopes collect light. Their performance depends on the diameter of the lens or mirror used.
    [Show full text]
  • John F. Kennedy Space Center
    1 . :- /G .. .. '-1 ,.. 1- & 5 .\"T!-! LJ~,.", - -,-,c JOHN F. KENNEDY ', , .,,. ,- r-/ ;7 7,-,- ;\-, - [J'.?:? ,t:!, ;+$, , , , 1-1-,> .irI,,,,r I ! - ? /;i?(. ,7! ; ., -, -?-I ,:-. ... 8 -, , .. '',:I> !r,5, SPACE CENTER , , .>. r-, - -- Tp:c:,r, ,!- ' :u kc - - &te -- - 12rr!2L,D //I, ,Jp - - -- - - _ Lb:, N(, A St~mmaryof MAJOR NASA LAUNCHINGS Eastern Test Range Western Test Range (ETR) (WTR) October 1, 1958 - Septeniber 30, 1968 Historical and Library Services Branch John F. Kennedy Space Center "ational Aeronautics and Space Administration l<ennecly Space Center, Florida October 1968 GP 381 September 30, 1968 (Rev. January 27, 1969) SATCIEN S.I!STC)RY DCCCIivlENT University uf A!;b:,rno Rr=-?rrh Zn~tituta Histcry of Sciecce & Technc;oGy Group ERR4TA SHEET GP 381, "A Strmmary of Major MSA Zaunchings, Eastern Test Range and Western Test Range,'" dated September 30, 1968, was considered to be accurate ag of the date of publication. Hmever, additianal research has brought to light new informetion on the official mission designations for Project Apollo. Therefore, in the interest of accuracy it was believed necessary ta issue revfsed pages, rather than wait until the next complete revision of the publiatlion to correct the errors. Holders of copies of thia brochure ate requested to remove and destroy the existing pages 81, 82, 83, and 84, and insert the attached revised pages 81, 82, 83, 84, 8U, and 84B in theh place. William A. Lackyer, 3r. PROJECT MOLL0 (FLIGHTS AND TESTS) (continued) Launch NASA Name -Date Vehicle -Code Sitelpad Remarks/Results ORBITAL (lnaMANNED) 5 Jul 66 Uprated SA-203 ETR Unmanned flight to test launch vehicle Saturn 1 3 7B second (S-IVB) stage and instrment (IU) , which reflected Saturn V con- figuration.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
    Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates.
    [Show full text]
  • Pos(NLS1)058 Ce of Broad Emission Lines in Their Ds Reveals Strong Similarities in the Ant Differences (E.G
    BL Lac objects with optical jets: PKS 2201+044, 3C 371 and PKS 0521-365. PoS(NLS1)058 E∗. Liuzzo Istituto di Radioastronomia-INAF-Bologna (Italy) E-mail: [email protected] R. Falomo Osservatorio Astronomico di Padova-INAF (Italy) A. Treves Università dell’Insubria (Como-Italy), associated to INAF and INFN We investigate the properties of the three BL Lac objects, PKS 2201+044, 3C 371 and PKS 0521- 365, that exhibit prominent optical jets. We present high resolution near-IR images of the jet of the first two, obtained with an innovative adaptive-optics system (MAD) at ESO VLT telescope. Comparison of the jet in the optical, radio, NIR and X-ray bands reveals strong similarities in the morphology. A common property of these sources is the presence of broad emission lines in their optical spectra at variance with the typical featureless spectrum of the nearby BL Lac objects. Despite some resemblances (e.g. in the radio type), significant differences (e.g. in the central black hole masses and radio structures) with radio-loud NLS1s are found. Narrow-Line Seyfert 1 Galaxies and their place in the Universe - NLS1, April 04-06, 2011 Milan Italy ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ BL Lac objects with optical jets. E 1. Introduction Radio loud (RL) Active Galactic Nuclei (AGN), in the contrary to their radio quiet (RQ) counterparts, show prominent jets mainly observable in the radio band. Blazars, including BL Lac objects and flat-spectrum radio quasars (FSRQs), are an important class of RL AGNs in which jets are relativistic and beamed in the observing direction.
    [Show full text]
  • THOMAS M. CRAWFORD University of Chicago
    Department of Astronomy and Astrophysics ERC 433 5640 South Ellis Avenue Chicago, IL 60637 Office: 773.702.1564, Home: 773.580.7491 THOMAS M. CRAWFORD [email protected] University of Chicago DEGREES PhD University of Chicago. Astronomy & Astrophysics. 2003. MS University of Chicago. Astronomy & Astrophysics. 1997. BS DePaul University. Physics. 1996. BA Columbia University. German Language & Literature. 1992. DISSERTATION Title: Mapping the Southern Polar Cap with a Balloon-borne Millimeter-wave Telescope. Advisor: Stephan Meyer. HONORS Breakthrough Prize Winner. 2020. National Academy of Sciences Kavli Fellow. 2014. NASA Center of Excellence Award. 2002. NASA Graduate Student Research Fellowship. 1999–2002. B.S. conferred With Highest Honors. B.A. conferred Magna Cum Laude. ACADEMIC POSITIONS University of Chicago: Research Professor, Department of Astronomy & Astrophysics. 2019–Present. University of Chicago: Senior Researcher, Kavli Institute for Cosmological Physics. 2009–Present. University of Chicago: Research Associate Professor, Department of Astronomy & Astrophysics. 2017–2019. University of Chicago: Senior Research Associate, Department of Astronomy & Astrophysics. 2009–2017. University of Chicago: Research Scientist, Department of Astronomy & Astrophysics. 2006–2009. University of Chicago: Associate Fellow, Kavli Institute for Cosmological Physics. 2003–2009. University of Chicago: Research Associate, Department of Astronomy & Astrophysics. 2003–2006. Thomas M. Crawford, page 2 of 11 RECENT SYNERGISTIC ACTIVITIES Chair, Simons Observatory operations review committee, October 2020 Member, CMB-S4 Collaboration Governing Board, 2018 – present Member, NASA Legacy Archive for Microwave Background Data Analysis (LAMBDA) Users’ Group, 2016 – present Referee, Physical Review D, Physical Review Letters, Astrophysical Journal, Nature, Journal of Cosmology and Astroparticle Physics, and others, 2008 – present DOE, NASA, and NSF review panel member, 2013 – present RECENT INVITED COLLOQUIA AND SEMINARS University of Chicago: Astronomy Colloquium.
    [Show full text]
  • Page 1 of 45 “Journey to a Black Hole”
    “Journey to a Black Hole” Demonstration Manual What is a black hole? How are they made? Where can you find them? How do they influence the space and time around them? Using hands-on activities and visual resources from NASA's exploration of the universe, these activities take audiences on a mind-bending adventure through our universe. 1. How to Make a Black Hole [Stage Demo, Audience Participation] (Page 3) 2. The Little Black Hole That Couldn’t [Stage Demo, Audience Participation] (Page 6) 3. It’s A Bird! It’s a Plane! It’s a Supernova! [Stage Demo] (Page 10) 4. Where Are the Black Holes? [Stage Demo, Audience Participation] (Page 14) 5. Black Holes for Breakfast [Make-and-Take…and eat!] (Page 17) 6. Modeling a Black Hole [Cart Activity] (Page 19) 7. How to Spot a Black Hole [Stage Demo, Audience Participation] (Page 25) 8. Black Hole Hide and Seek [Cart Activity] (Page 29) 9. Black Hole Lensing [Stage Demo, Audience Participation] (Page 32) 10. Spaghettification [Make-and-Take] (Page 35) Many of these activities were inspired by or adapted from existing activities. Each such write-up contains a link to these original sources. In addition to supply lists, procedure and discussion, each activity lists a supplemental visualization and/or presentation that illustrates a key idea from the activity. Although many of these supplemental resources are available from the “Inside Einstein’s Universe” web site, specific links are given, along with a brief annotated description of each resource. http://www.universeforum.org/einstein/ Note: the science of black holes may not be immediately accessible to the younger members of your audience, but each activity includes hands-on participatory aspects to engage these visitors (pre-teen and below).
    [Show full text]
  • The Giant Flares of the Microquasar Cygnus X-3: X-Raysstates and Jets
    galaxies Article The Giant Flares of the Microquasar Cygnus X-3: X-RaysStates and Jets Sergei Trushkin 1,2,*,† ID , Michael McCollough 3,†, Nikolaj Nizhelskij 1,† and Peter Tsybulev 1,† 1 The Special Astrophysical Observatory of the Russian Academy of Sciences, Niznij Arkhyz 369167, Russia; [email protected] (N.N.); [email protected] (P.T.) 2 Institute of Physics, Kazan Federal University, Kazan 420008, Russia 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +7-928-396-3178 † These authors contributed equally to this work. Received: 18 September 2017; Accepted: 21 November 2017; Published: 27 November 2017 Abstract: We report on two giant radio flares of the X-ray binary microquasar Cyg X-3, consisting of a Wolf–Rayet star and probably a black hole. The first flare occurred on 13 September 2016, 2000 days after a previous giant flare in February 2011, as the RATAN-600 radio telescope daily monitoring showed. After 200 days on 1 April 2017, we detected a second giant flare. Both flares are characterized by the increase of the fluxes by almost 2000-times (from 5–10 to 17,000 mJy at 4–11 GHz) during 2–7 days, indicating relativistic bulk motions from the central region of the accretion disk around a black hole. The flaring light curves and spectral evolution of the synchrotron radiation indicate the formation of two relativistic collimated jets from the binaries. Both flares occurred when the source went from hypersoft X-ray states to soft ones, i.e.
    [Show full text]
  • Extragalactic Radio Jets
    Annual Reviews www.annualreviews.org/aronline Ann. Rev. Astron.Astrophys. 1984. 22 : 319-58 Copyright© 1984 by AnnualReviews Inc. All rights reserved EXTRAGALACTIC RADIO JETS Alan H. Bridle National Radio AstronomyObservatory, 1 Charlottesville, Virginia 22901 Richard A. Perley National Radio Astronomy Observatory, Socorro, New Mexico 87801 1. INTRODUCTION Powerful extended extragalactic radio sources pose two vexing astro- physical problems [reviewed in (147) and (157)]. First, from what energy reservoir do they draw their large radio luminosities (as muchas 10a8 W between 10 MHzand 100 GHz)?Second, how does the active center in the parent galaxy or QSOsupply as muchas 10~4 J in relativistic particles and fields to radio "lobes" up to several hundredkiloparsecs outside the optical object? Newaperture synthesis arrays (68, 250) and new image-processing algorithms (66, 101, 202, 231) have recently allowed radio imaging subarcsecond resolution with high sensitivity and high dynamicrange; as a result, the complexityof the brighter sources has been revealed clearly for the first time. Manycontain radio jets, i.e. narrow radio features between compact central "cores" and more extended "lobe" emission. This review examinesthe systematic properties of such jets and the dues they give to the by PURDUE UNIVERSITY LIBRARY on 01/16/07. For personal use only. physics of energy transfer in extragalactic sources. Wedo not directly consider the jet production mechanism,which is intimately related to the Annu. Rev. Astro. Astrophys. 1984.22:319-358. Downloaded from arjournals.annualreviews.org first problemnoted above--for reviews, see (207) and (251). 1. i Why "’Jets"? Baade & Minkowski(3) first used the term jet in an extragalactic context, describing the train of optical knots extending ,-~ 20" from the nucleus of M87; the knots resemble a fluid jet breaking into droplets.
    [Show full text]
  • Structure in Radio Galaxies
    Atxention Microfiche User, The original document from which this microfiche was made was found to contain some imperfection or imperfections that reduce full comprehension of some of the text despite the good technical quality of the microfiche itself. The imperfections may "be: — missing or illegible pages/figures — wrong pagination — poor overall printing quality, etc. We normally refuse to microfiche such a document and request a replacement document (or pages) from the National INIS Centre concerned. However, our experience shows that many months pass before such documents are replaced. Sometimes the Centre is not able to supply a "better copy or, in some cases, the pages that were supposed to be missing correspond to a wrong pagination only. We feel that it is better to proceed with distributing the microfiche made of these documents than to withhold them till the imperfections are removed. If the removals are subsequestly made then replacement microfiche can be issued. In line with this approach then, our specific practice for microfiching documents with imperfections is as follows: i. A microfiche of an imperfect document will be marked with a special symbol (black circle) on the left of the title. This symbol will appear on all masters and copies of the document (1st fiche and trailer fiches) even if the imperfection is on one fiche of the report only. 2» If imperfection is not too general the reason will be specified on a sheet such as this, in the space below. 3» The microfiche will be considered as temporary, but sold at the normal price. Replacements, if they can be issued, will be available for purchase at the regular price.
    [Show full text]