A Shot in the Dark: the First Image of a Black Hole

Total Page:16

File Type:pdf, Size:1020Kb

A Shot in the Dark: the First Image of a Black Hole A Shot in the Dark: The First etry (VLBI) (visit EHT’s home page for more information[14]). VLBI create a collection of radio Image of a Black Hole wave detections that when pieced together created Written by Priscilla Dohrwardt a ”symphony” of noise (i.e radio waves). The black hole in question is only a mere 55 As Johnny Cash once said, ”I fell into a burning million light years from earth in the Messier 87 ring of fire” and on April 10th, so did the world. galaxy. It is a supermassive black hole, weighing The first ever black hole image graces us with a in at 6.5 billion times the mass of our sun. To put black interior surrounded by what is referred to as that in perspective, the center of the black hole a ring of fire. is about the size of the Milky Way Galaxy. Not only are we all astonished by this mammoth, but even Professor Heino Falcke, the man behind the project, said, ”It is one of the heaviest black holes that we think exists. It is an absolute monster, the heavyweight champion of black holes in the Uni- verse” [15]. The team who captured the iconic black hole image happened to be in a collaborative project between NASA, MIT and various other partnered The first image of a black hole, located in countries within the National Science Foundation. the Messier 87 galaxy was captured by the They used 8 different radio telescopes around the Event Horizon Telescope collaboration. Credits: world to collect an array of information. This NASA, Event Horizon Telescope collaboration et combination of telescopes created a ”super” tele- al.[12] scope that was named, the Event Horizon Tele- A black hole is an extremely dense astronom- scope (EHT). NASA’s astrophysics division direc- ical object. A black hole is comprised of three tor, Paul Hertz said, ’Years ago, we thought we major parts: an accretion disk (a disk surround- would have to build a very large space telescope ing the hole in which stellar materials have yet to image a black hole. By getting radio telescopes to be consumed), the event horizon (the marked around the world to work in concert like one in- border from which not even light can escape) and strument, the EHT team achieved this, decades the hole. Now I know what you’re thinking. If ahead of time”[15]. This creation not only pro- light can’t escape, then how did they capture the duced something that ”broke the internet”, but it image? The astronomers behind the project used will also continue to contribute to history. radio waves instead of visible light waves. Both While the group created this super telescope, waves can be detected by the stellar materials in Katie Bouman, a PhD student at Harvard led the the accretion disk, which is what is shown in the group that created the algorithm that pieced to- image. The disk creates heat as it spirals around gether the vast amount of information to create the black hole which can then be measured in many that glorious picture. CHIRP, the complex algo- different wavelengths.[13] rithm named by Bouman, took roughly four mil- The Event Horizon Telescope (EHT) used lion billion bytes (four petabytes) and a year to a method called very long baseline interferom- complete [16]. Without this algorithm, the project 9 wouldn’t have been successful. Not only has this project been a major success, but it has a special place in Professor Heino Fal- cke’s heart. He proposed this project to the Euro- pean Research Council and began researching the topic for many years. In an interview with BBC, Falcke said, ”It’s a dream come true. You’ve been thinking about this for 20 years and now you fi- nally see it and it looks like in your dreams” [15]. But Falcke isn’t stopping there. He plans on con- tinuing and involving more sources to attempt to capture the black hole within our galaxy. Although this will be much more difficult, the team is up for the challenge. While one can’t really say what the future holds, with great minds like the ones involved in this project, maybe the world will be graced with another grand achievement within the next 20 years. 10.
Recommended publications
  • Constraints on Black-Hole Charges with the 2017 EHT Observations of M87*
    PHYSICAL REVIEW D 103, 104047 (2021) Constraints on black-hole charges with the 2017 EHT observations of M87* – Prashant Kocherlakota ,1 Luciano Rezzolla,1 3 Heino Falcke,4 Christian M. Fromm,5,6,1 Michael Kramer,7 Yosuke Mizuno,8,9 Antonios Nathanail,9,10 H´ector Olivares,4 Ziri Younsi,11,9 Kazunori Akiyama,12,13,5 Antxon Alberdi,14 Walter Alef,7 Juan Carlos Algaba,15 Richard Anantua,5,6,16 Keiichi Asada,17 Rebecca Azulay,18,19,7 Anne-Kathrin Baczko,7 David Ball,20 Mislav Baloković,5,6 John Barrett,12 Bradford A. Benson,21,22 Dan Bintley,23 Lindy Blackburn,5,6 Raymond Blundell,6 Wilfred Boland,24 Katherine L. Bouman,5,6,25 Geoffrey C. Bower,26 Hope Boyce,27,28 – Michael Bremer,29 Christiaan D. Brinkerink,4 Roger Brissenden,5,6 Silke Britzen,7 Avery E. Broderick,30 32 Dominique Broguiere,29 Thomas Bronzwaer,4 Do-Young Byun,33,34 John E. Carlstrom,35,22,36,37 Andrew Chael,38,39 Chi-kwan Chan,20,40 Shami Chatterjee,41 Koushik Chatterjee,42 Ming-Tang Chen,26 Yongjun Chen (陈永军),43,44 Paul M. Chesler,5 Ilje Cho,33,34 Pierre Christian,45 John E. Conway,46 James M. Cordes,41 Thomas M. Crawford,22,35 Geoffrey B. Crew,12 Alejandro Cruz-Osorio,9 Yuzhu Cui,47,48 Jordy Davelaar,49,16,4 Mariafelicia De Laurentis,50,9,51 – Roger Deane,52 54 Jessica Dempsey,23 Gregory Desvignes,55 Sheperd S. Doeleman,5,6 Ralph P. Eatough,56,7 Joseph Farah,6,5,57 Vincent L.
    [Show full text]
  • Dream Image the Search for That One Elusive Image
    What? Dream image The search for that one elusive image. Why? The gravitational force around a black hole is so strong that it distorts time and space: even light cannot escape. Demonstrating the existence of black holes confirms the theories Einstein developed on gravity in physics. Who? Heino Falcke, professor of radio astronomy and astroparticle physics at the Radboud University Nijmegen, together with colleagues from Radboud University, the University of Amsterdam, Leiden University and the The shadow of University of Groningen, as well as an international team of astronomers. Where? Eight telescopes spread across the globe that together form the Event Horizon Telescope (EHT). the black hole Result? The first image of the shadow of a black hole. Finally we know what a black hole looks like. In April, an international team of astronomers presented the very first image of the shadow of a black hole. ‘ TEXT: MARION DE BOO IMAGES : HOLLANDSE HOOGTE ‘I felt like Christopher Columbus. We Big dreams saw things that none of us had ever Did he ever doubt this wild plan? ‘I often have big dreams, seen before,’ says Heino Falcke. On 10 it’s in my DNA. And then I’ll do everything in my power to April 2019, the radio astronomer working make them come true,’ Falcke says. ‘But until that mo- in Nijmegen presented the very first ima- ment arrives, you’re never sure if it’s really going to suc- ge of the light bending around the black ceed.’ In 1994 he obtained his PhD summa cum laude at hole in M87 galaxy.
    [Show full text]
  • Photographing Black Holes with the Event Horizon Telescope - Past, Present and Future
    Photographing Black Holes with the Event Horizon Telescope - Past, Present and Future - Kazu Akiyama MIT Haystack Observatory The Shadow of a Black Hole BH ~5.2 Rs Rs = 2GMBH/c2 (Hilbert 1916) Credit: Hung-Yi Pu Kazu Akiyama, NEROC Symposium 2020, Online, 2020/11/17 (Tue) Event Horizon Telescope Kazu Akiyama, NEROC Symposium 2020, Online, 2020/11/17 (Tue) Event Horizon Telescope Sgr A* EHT 50μas Credit: Hotaka Shiokawa M87 EHT 40μas Credit: Monika Moscibrodzka Kazu Akiyama, NEROC Symposium 2020, Online, 2020/11/17 (Tue) Units of the Angular Size Protractor:1 ticks = 1 degree x 1/60 = 1 arcmin x 1/60 = 1 arcsec x 1/1000 = 1 mas x 1/1000 = 1 μas 0.5 deg 30 arcmin 40 - 50 μas Kazu Akiyama, NEROC Symposium 2020, Online, 2020/11/17 (Tue) Event Horizon Telescope Collaboration >300 members, >59 institutes, >18 countries in North & South America, Europe, Asia, and Africa. Kazu Akiyama, NEROC Symposium 2020, Online, 2020/11/17 (Tue) Meet the Telescope SMT, Arizona LMT, Mexico IRAM 30m Spain APEX, Chile JCMT, Hawaii Photos: ALMA, Sven Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie Meet the Telescope Photos: ALMA, Sven ALMA, Chile Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie SPT, South Pole SMA, Hawaii From Observations to Images Kazu Akiyama, NEROC Symposium 2020, Online, 2020/11/17 (Tue) Credit: Lindy Blackburn EHT Hardware EHT Backend (R2DBE, Mark 6) Recording Rate: - VLBA, GMVA: 2-4 Gbps - EHT: 32 Gbps (2017), 64 Gbps (2018-) Kazu Akiyama, NEROC Symposium 2020, Online, 2020/11/17 (Tue) From Observations to Images MIT Haystack Observatory 8 TB x 8 HDD (x 92 modules) Credit: Bryce Vickmark Credit: Lindy Blackburn Kazu Akiyama, NEROC Symposium 2020, Online, 2020/11/17 (Tue) Data Calibration HOPS Pipeline (EHT-HOPS) CASA Pipeline (rPICARD) EHT AIPS Pipeline Blackburn et al.
    [Show full text]
  • Foreign Rights Guide
    FOREIGN RIGHTS GUIDE Spring 2020 Fiction Non-Fiction FICTION FICTION HIGHLIGHT Based on a true story ENGLISH BOOKLET AVAILABLE A powerful novel about history’s darkest chapter, the German secret service in New SAMPLE TRANSLATION AVAILABLE York City and the activities of Nazis in Manhattan in the late 1930s. End of the 30s: Before the Americans entered the war, the streets of New York are in a tumult. Anti-Semitic and racist groups are eager for the sympathy of the masses, German nationalists celebrate Hitler as the man of the hour. Josef Klein, himself an immigrant from Germany, lives relatively untouched by all this. His world is the multicultural streets of Harlem. His great passion is the amateur radio. That is how he meets Lauren, Miss Doubleyoutwo, a young activist who has great sympathy for the calm German. But Josef‘s technical abilities as a radio operator attract the attention of influential men, and even before he can interpret the events correctly, Josef is already a little cog in the big wheel of the espionage network of the German defense. Ulla Lenze delivers a smart and gripping novel about the unknown history of the Germans in the US during the Second World War. The incredible life story of the emigrant Josef Klein, who is targeted by the world powers in New York, reveals the espionage activities of the Nazi regime in the US and tells about political entanglements far away from home. Ulla Lenze Highly acclaimed author The Radio Operator Sold into 9 territories before 302 pages publication Hardcover February 2020 ISBN: 978-3-608-96463-9 Rights sold to: Italy/Marsilio, The Netherlands/ Meridiaan, USA/HarperVia (English WR), Brazil/Harper Collins, France/Hachette (Lattès), Finland/Like Publishing, Croatia/Fraktura, Ulla Lenze, born in Mönchengladbach in 1973, studied Music and Spain/Salamandra, Greece/Patakis Philosophy in Cologne.
    [Show full text]
  • "Seeing a Black Hole" the First Image of a Black Hole from the Event Horizon Telescope
    "Seeing a Black Hole" The First Image of a Black Hole from the Event Horizon Telescope Matthew Newby Temple University Department of Physics May 1, 2019 "Seeing a Black Hole" The First Image of a Black Hole from the Event Horizon Telescope ● Black Holes – a Background ● Techniques to observe M87* ● Implications Matthew Newby, Temple University, May 1, 2019 2 "Seeing a Black Hole" Matthew Newby, Temple University, May 1, 2019 3 What is a black hole? Classical escape velocity: Let vesc → c, and the escape velocity is greater than the speed of light → “Black” Matthew Newby, Temple University, May 1, 2019 4 In General Relativity Einstein (and Hilbert) Field Equation Metric tensor Stress-energy tensor Ricci curvature tensor Scalar curvature “Solution” (“source” term) Matthew Newby, Temple University, May 1, 2019 5 Schwarzschild Metric Spherically symmetric, isolated, vacuum solution: Constant rs Schwarzschild Radius: Looks like classical escape velocity! Matthew Newby, Temple University, May 1, 2019 6 Space-Time Interval ● τ is proper time ● t is time measured at infinity (τ∞) ● r, θ, φ, are Schwarzschild spherical coordinates (i.e., coordinates as viewed at infinity) ● ds is a path element in spacetime Matthew Newby, Temple University, May 1, 2019 7 General Relativistic Time Dilation Allow a photon emitted at r to travel to infinity; in that photon’s rest frame: Since the frequency of a photon is a proper time interval, this implies that the photon’s frequency (and energy) are lower as it travels away from a spherical mass. Matthew Newby, Temple University, May 1, 2019 8 The Event Horizon rs is the “Surface of infinite redshift” or event horizon The event horizon is the “surface” of a black hole.
    [Show full text]
  • Global Program
    PROGRAM Monday morning, July 13th La Sapienza Roma - Aula Magna 09:00 - 10:00 Inaugural Session Chairperson: Paolo de Bernardis Welcoming addresses Remo Ruffini (ICRANet), Yvonne Choquet-Bruhat (French Académie des Sciences), Jose’ Funes (Vatican City), Ricardo Neiva Tavares (Ambassador of Brazil), Sargis Ghazaryan (Ambassador of Armenia), Francis Everitt (Stanford University) and Chris Fryer (University of Arizona) Marcel Grossmann Awards Yakov Sinai, Martin Rees, Sachiko Tsuruta, Ken’Ichi Nomoto, ESA (acceptance speech by Johann-Dietrich Woerner, ESA Director General) Lectiones Magistrales Yakov Sinai (Princeton University) 10:00 - 10:35 Deterministic chaos Martin Rees (University of Cambridge) 10:35 - 11:10 How our understanding of cosmology and black holes has been revolutionised since the 1960s 11:10 - 11:35 Group Picture - Coffee Break Gerard 't Hooft (University of Utrecht) 11:35 - 12:10 Local Conformal Symmetry in Black Holes, Standard Model, and Quantum Gravity Plenary Session: Mathematics and GR Katarzyna Rejzner (University of York) 12:10 - 12:40 Effective quantum gravity observables and locally covariant QFT Zvi Bern (UCLA Physics & Astronomy) 12:40 - 13:10 Ultraviolet surprises in quantum gravity 14:30 - 18:00 Parallel Session 18:45 - 20:00 Stephen Hawking (teleconference) (University of Cambridge) Public Lecture Fire in the Equations Monday afternoon, July 13th Code Classroom Title Chairperson AC2 ChN1 MHD processes near compact objects Sergej Moiseenko FF Extended Theories of Gravity and Quantum Salvatore Capozziello, Gabriele AT1 A Cabibbo Cosmology Gionti AT3 A FF3 Wormholes, Energy Conditions and Time Machines Francisco Lobo Localized selfgravitating field systems in the AT4 FF6 Dmitry Galtsov, Michael Volkov Einstein and alternatives theories of gravity BH1:Binary Black Holes as Sources of Pablo Laguna, Anatoly M.
    [Show full text]
  • An Unprecedented Global Communications Campaign for the Event Horizon Telescope First Black Hole Image
    An Unprecedented Global Communications Campaign Best for the Event Horizon Telescope First Black Hole Image Practice Lars Lindberg Christensen Colin Hunter Eduardo Ros European Southern Observatory Perimeter Institute for Theoretical Physics Max-Planck Institute für Radioastronomie [email protected] [email protected] [email protected] Mislav Baloković Katharina Königstein Oana Sandu Center for Astrophysics | Harvard & Radboud University European Southern Observatory Smithsonian [email protected] [email protected] [email protected] Sarah Leach Calum Turner Mei-Yin Chou European Southern Observatory European Southern Observatory Academia Sinica Institute of Astronomy and [email protected] [email protected] Astrophysics [email protected] Nicolás Lira Megan Watzke Joint ALMA Observatory Center for Astrophysics | Harvard & Suanna Crowley [email protected] Smithsonian HeadFort Consulting, LLC [email protected] [email protected] Mariya Lyubenova European Southern Observatory Karin Zacher Peter Edmonds [email protected] Institut de Radioastronomie de Millimétrique Center for Astrophysics | Harvard & [email protected] Smithsonian Satoki Matsushita [email protected] Academia Sinica Institute of Astronomy and Astrophysics Valeria Foncea [email protected] Joint ALMA Observatory [email protected] Harriet Parsons East Asian Observatory Masaaki Hiramatsu [email protected] Keywords National Astronomical Observatory of Japan Event Horizon Telescope, media relations, [email protected] black holes An unprecedented coordinated campaign for the promotion and dissemination of the first black hole image obtained by the Event Horizon Telescope (EHT) collaboration was prepared in a period spanning more than six months prior to the publication of this result on 10 April 2019.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • THOMAS M. CRAWFORD University of Chicago
    Department of Astronomy and Astrophysics ERC 433 5640 South Ellis Avenue Chicago, IL 60637 Office: 773.702.1564, Home: 773.580.7491 THOMAS M. CRAWFORD [email protected] University of Chicago DEGREES PhD University of Chicago. Astronomy & Astrophysics. 2003. MS University of Chicago. Astronomy & Astrophysics. 1997. BS DePaul University. Physics. 1996. BA Columbia University. German Language & Literature. 1992. DISSERTATION Title: Mapping the Southern Polar Cap with a Balloon-borne Millimeter-wave Telescope. Advisor: Stephan Meyer. HONORS Breakthrough Prize Winner. 2020. National Academy of Sciences Kavli Fellow. 2014. NASA Center of Excellence Award. 2002. NASA Graduate Student Research Fellowship. 1999–2002. B.S. conferred With Highest Honors. B.A. conferred Magna Cum Laude. ACADEMIC POSITIONS University of Chicago: Research Professor, Department of Astronomy & Astrophysics. 2019–Present. University of Chicago: Senior Researcher, Kavli Institute for Cosmological Physics. 2009–Present. University of Chicago: Research Associate Professor, Department of Astronomy & Astrophysics. 2017–2019. University of Chicago: Senior Research Associate, Department of Astronomy & Astrophysics. 2009–2017. University of Chicago: Research Scientist, Department of Astronomy & Astrophysics. 2006–2009. University of Chicago: Associate Fellow, Kavli Institute for Cosmological Physics. 2003–2009. University of Chicago: Research Associate, Department of Astronomy & Astrophysics. 2003–2006. Thomas M. Crawford, page 2 of 11 RECENT SYNERGISTIC ACTIVITIES Chair, Simons Observatory operations review committee, October 2020 Member, CMB-S4 Collaboration Governing Board, 2018 – present Member, NASA Legacy Archive for Microwave Background Data Analysis (LAMBDA) Users’ Group, 2016 – present Referee, Physical Review D, Physical Review Letters, Astrophysical Journal, Nature, Journal of Cosmology and Astroparticle Physics, and others, 2008 – present DOE, NASA, and NSF review panel member, 2013 – present RECENT INVITED COLLOQUIA AND SEMINARS University of Chicago: Astronomy Colloquium.
    [Show full text]
  • Feature Extraction on Synthetic Black Hole Images
    Feature Extraction on Synthetic Black Hole Images Joshua Yao-Yu Lin 1 George N. Wong 1 Ben S. Prather 1 Charles F. Gammie 1 2 3 Abstract 80 80 The Event Horizon Telescope (EHT) recently re- 60 60 leased the first horizon-scale images of the black 40 40 hole in M87. Combined with other astronomical 20 20 data, these images constrain the mass and spin of as 0 0 the hole as well as the accretion rate and magnetic µ 20 20 flux trapped on the hole. An important question − − 40 40 for EHT is how well key parameters such as spin − − 60 60 and trapped magnetic flux can be extracted from − − 80 80 − 75 50 25 0 25 50 75 − 75 50 25 0 25 50 75 present and future EHT data alone. Here we ex- − − − − − − plore parameter extraction using a neural network µas µas trained on high resolution synthetic images drawn from state-of-the-art simulations. We find that the Figure 1. Synthetic image examples. Left panel: full resolution neural network is able to recover spin and flux simulated black hole image based on numerical model of black with high accuracy. We are particularly interested hole accretion flow with M87-like parameters. Right panel: the in interpreting the neural network output and un- same simulated image convolved with 20µas FWHM Gaussian derstanding which features are used to identify, beam meant to represent the resolving power of the EHT. e.g., black hole spin. Using feature maps, we find that the network keys on low surface brightness with data from other sources, the EHT images constrain features in particular.
    [Show full text]
  • The Giant Flares of the Microquasar Cygnus X-3: X-Raysstates and Jets
    galaxies Article The Giant Flares of the Microquasar Cygnus X-3: X-RaysStates and Jets Sergei Trushkin 1,2,*,† ID , Michael McCollough 3,†, Nikolaj Nizhelskij 1,† and Peter Tsybulev 1,† 1 The Special Astrophysical Observatory of the Russian Academy of Sciences, Niznij Arkhyz 369167, Russia; [email protected] (N.N.); [email protected] (P.T.) 2 Institute of Physics, Kazan Federal University, Kazan 420008, Russia 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +7-928-396-3178 † These authors contributed equally to this work. Received: 18 September 2017; Accepted: 21 November 2017; Published: 27 November 2017 Abstract: We report on two giant radio flares of the X-ray binary microquasar Cyg X-3, consisting of a Wolf–Rayet star and probably a black hole. The first flare occurred on 13 September 2016, 2000 days after a previous giant flare in February 2011, as the RATAN-600 radio telescope daily monitoring showed. After 200 days on 1 April 2017, we detected a second giant flare. Both flares are characterized by the increase of the fluxes by almost 2000-times (from 5–10 to 17,000 mJy at 4–11 GHz) during 2–7 days, indicating relativistic bulk motions from the central region of the accretion disk around a black hole. The flaring light curves and spectral evolution of the synchrotron radiation indicate the formation of two relativistic collimated jets from the binaries. Both flares occurred when the source went from hypersoft X-ray states to soft ones, i.e.
    [Show full text]
  • Anchored in Shadows: Tying the Celestial Reference Frame Directly to Black Hole Event Horizons
    URSI GASS 2020, Rome, Italy, 29 August - 5 September 2020 Anchored in Shadows: Tying the Celestial Reference Frame Directly to Black Hole Event Horizons T. M. Eubanks Space Initiatives Inc Palm Bay, Florida, USA [email protected] Abstract the micro arc second level, and showing that natural radio sources can exhibit brightness temperatures > 1013 K[5]. Both the radio International Celestial Reference Frame This work clearly needs to be continued and extended with (ICRF) and the optical Gaia Celestial Reference Frame larger space radio telescopes at even higher frequencies. (Gaia-CRF2) are derived from observations of jets pro- Further impetus to a new space VLBI mission has been re- duced by the Super Massive Black Holes (SMBH) power- cently provided by the successful imaging of the shadow of ing active galactic nuclei and quasars. These jets are inher- M87 by Event Horizon Telescope (EHT) [6]. ently subject to change and will appear different at differ- ent observing frequencies, leading to instabilities and sys- The EHT is pushing the limits of what is possible with tematic errors in the resulting Celestial Reference Frames purely terrestrial VLBI, due to the limitations caused at- (CRFs). Recently, the Event Horizon Telescope (EHT), a mospheric absorption in the mm and sub-mm bands, which mm-wave Very Long Baseline Interferometry (VLBI) array, limits both the frequencies used and which limits the EHT has observed the 40 μas diameter shadow of the SMBH in to using mostly very dry and high-altitude sites, limiting M87 at 1.3 mm, showing that the emitting region is smaller the (u,v) plane imaging coverage.
    [Show full text]