Seeing Black Holes: from the Computer to the Telescope

Total Page:16

File Type:pdf, Size:1020Kb

Seeing Black Holes: from the Computer to the Telescope universe Review Seeing Black Holes: From the Computer to the Telescope Jean-Pierre Luminet 1,2,3 1 Aix Marseille University, CNRS, LAM, 13013 Marseille, France; [email protected] or [email protected] 2 Aix Marseille University, CNRS, CPT, 13009 Marseille, France 3 Observatoire de Paris, CNRS, LUTH, 92195 Meudon, France Received: 7 July 2018; Accepted: 6 August 2018; Published: 9 August 2018 Abstract: Astronomical observations are about to deliver the very first telescopic image of the massive black hole lurking at the Galactic Center. The mass of data collected in one night by the Event Horizon Telescope network, exceeding everything that has ever been done in any scientific field, should provide a recomposed image in 2018. All this, forty years after the first numerical simulations performed by the present author. Keywords: black hole; numerical simulation; observation; general relativity 1. Introduction According to the laws of general relativity (for recent overviews at the turn of its centennial, see, e.g., [1,2]), black holes are, by definition, invisible. Contrary to uncollapsed stars, their surface is neither a solid nor a gas; it is an intangible frontier known as the event horizon. Beyond this horizon, gravity is so strong that nothing escapes, not even light. Seen projected onto the background of the sky, the event horizon would probably resemble a perfectly black disk if the black hole is static (Schwarzschild black hole) or a slightly flattened disk if it is rotating (Kerr black hole). A black hole however, be it small and of stellar mass or giant and supermassive, is rarely “bare”; in typical astrophysical conditions it is usually surrounded by gaseous matter. It forms an accretion disk in which the spinning gas is accelerated to large speeds by the huge gravity, releasing heat and high energy electromagnetic radiation. A giant black hole, as can be found in the centre of most galaxies, may also be surrounded by a cluster of stars, the orbital dynamics of which is strongly influenced by it. In essence, a black hole remains invisible, but in its own special way, it lights up the matter it attracts. Logically, scientists have wondered what a black hole lit up by its surrounding matter would look like. Educational or artistic representations can be seen in popular science magazines in the form of a sphere seeming to float in a whirlpool of glowing gas. These images, although forceful, fail to convey the astrophysical reality. A black hole can be described correctly using computer simulations that take account of the complex distortions made by the gravitational field on space-time and on the paths of light rays that follow its fabric. These were performed for the first time in 1978 by the author of this article [3]. Today, progress in astronomical observation is about to deliver the first telescopic image of the shadow of a giant black hole, thanks to the ambitious Event Horizon Telescope (EHT) programme (for a popular account, e.g., [4]). Universe 2018, 4, 86; doi:10.3390/universe4080086 www.mdpi.com/journal/universe Universe 2018, 4, 86 2 of 12 Universe 2018, 4, x FOR PEER REVIEW 2 of 11 2. Black Black Holes Holes Simulated The notion of the blackblack holehole shadowshadow waswas introduced introduced for for the the first first time time in in 1972 1972 by by James James Bardeen Bardeen at ata Summera Summer school school in Les in Houches,Les Houches, France France [5]. He [5]. initiated He initiated research research on gravitational on gravitational lensing bylensing spinning by spinningblack holes black by computing holes by computing how the black how hole’s the rotationblack hole’s would rotation affect thewould shape affect of the the shadow shape that of the shadowevent horizon that the casts event on horizon light from casts a background on light from radiating a background screen. radiating screen. Next, Cunningham Cunningham and and Bardeen Bardeen [6] [6 ]ca calculatedlculated the the optical optical appearance appearance of ofa star a star in incircular circular orbit orbit in thein the equatorial equatorial plane plane of ofan an extreme extreme Kerr Kerr black black ho hole,le, taking taking account account of of th thee Doppler Doppler effect effect due due to relativistic motion motion of of the the star, star, and and pointed pointed out out the the corresponding corresponding amplification amplification of of the the star’s star’s luminosity. luminosity. The calculation of the black hole shadow can be generalized to the more complex situation when the radiating source is an accretion disk, each emitti emittingng point of the disk being equivalent to a point-like source in circular orbit. To To create the most realis realistictic possible images of a black hole surrounded by an accretion disk, notnot onlyonly dodo wewe havehave toto calculate calculate the the propagation propagation of of light light rays rays emitted emitted by by the the matter matter in inthe the disk disk through through the the curved curved space-time space-time geometry geometry generated generated by by the the blackblack hole,hole, butbut wewe also have to know the physical properties of the accretion disk it itself,self, in order to know the intrinsic flux flux emitted in its various regions. In In 1978, 1978, I I was was a a young young scient scientistist at at the the Paris-Meudon Paris-Meudon Observatory Observatory and and performed performed the firstfirst accurateaccurate numerical numerical simulation simulation of of the the “photographic” “photographic” appearance appearance of a of Schwarzschild a Schwarzschild black black hole holesurrounded surrounded by a thinby accretiona thin accretion disk. To disk. do so, To I used do theso, IBMI used 7040 the mainframe IBM 7040 of mainframe the Paris-Meudon of the Paris-MeudonObservatory, an Observatory, early transistor an computer early transistor with punch computer card inputs. with Withoutpunch card a computer inputs. visualisation Without a computertool, I had visualisation to create the finaltool, imageI had to by create hand fromthe fina thel digitalimage data.by hand For from this I the drew digital directly data. on For negative this I drewimage directly paper with on negative black India image ink, placingpaper with dots blac morek India densely ink, where placing the dots simulation more densely showed morewhere light. the simulationNext, I took showed the negative more oflight. my Next, negative I took to getthe thenega positive,tive of my the negative black points to get becoming the positive, white the and black the pointswhite backgroundbecoming white becoming and the black. white background becoming black. This image (Figure(Figure1 )1) appeared appeared first first in in the the November November issue issue of aof French a French popular popular magazine magazine [ 7] and [7] andconcluded concluded a 1979 a 1979 article article in a specializedin a specialized journal, journal, with with all equations all equations and technicaland technical details details [3]. [3]. The top of the disk remains visible regardless of the viewing angle—in contrast to the typical views of Saturn’s rings. Indeed, Indeed, the the gravitational gravitational fi fieldeld curves curves the the light light rays rays near the black hole so much thatthat thethe rearrear part part of of the the disk disk is “revealed”.is “revealed”. Even Even if the if blackthe black hole hideshole hides what fallswhat into falls it, into it cannot it, it cannotmask what mask is what behind is behind it. it. Figure 1. Simulated photograph of a spherical black hole with thin accretion disk. The system is Figure 1. Simulated photograph of a spherical black hole with thin accretion disk. The system is seen seen from a great distance by an observer at 10° above the disk’s plane, in a frame at rest with the from a great distance by an observer at 10◦ above the disk’s plane, in a frame at rest with the black hole. black hole. © J.-P. Luminet, from [3]. © J.-P. Luminet, from [3]. The curving ofof thethe lightlight rays rays also also generates generates a secondarya secondary image image that that allows allows us tous see to thesee otherthe other side sideof the of accretion the accretion disk, ondisk, the on opposing the opposing side of side the blackof the hole black from hole the from observer. the observer. Very deformed Very deformed optically, optically,the rear part the looksrear part like looks a thin like halo a ofthin light halo around of light the around dark shadow the dark of shadow the black of hole, the black which hole, represents which represents the event horizon enlarged by a factor of 3√3/2 ≈ 2.6 due to the gravitational lens effect. Indeed the gravitational lensing generates an infinity of images of the disk, because the light rays can Universe 2018, 4, 86 3 of 12 p the event horizon enlarged by a factor of 3 3/2 ≈ 2.6 due to the gravitational lens effect. Indeed the gravitational lensing generates an infinity of images of the disk, because the light rays can travel any number of times around the black hole before escaping from its gravitational field and being observed by a distant astronomer. The primary image shows the upper side, the secondary image shows the lower side, the third image shows the upper side again, and so on. However, multiple images of order higher than 2 are not relevant for observational purposes because they are stuck to the edge of the black hole shadow. The main feature of this view of the black hole is the significant difference in luminosity between the various regions of the disk.
Recommended publications
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • THOMAS M. CRAWFORD University of Chicago
    Department of Astronomy and Astrophysics ERC 433 5640 South Ellis Avenue Chicago, IL 60637 Office: 773.702.1564, Home: 773.580.7491 THOMAS M. CRAWFORD [email protected] University of Chicago DEGREES PhD University of Chicago. Astronomy & Astrophysics. 2003. MS University of Chicago. Astronomy & Astrophysics. 1997. BS DePaul University. Physics. 1996. BA Columbia University. German Language & Literature. 1992. DISSERTATION Title: Mapping the Southern Polar Cap with a Balloon-borne Millimeter-wave Telescope. Advisor: Stephan Meyer. HONORS Breakthrough Prize Winner. 2020. National Academy of Sciences Kavli Fellow. 2014. NASA Center of Excellence Award. 2002. NASA Graduate Student Research Fellowship. 1999–2002. B.S. conferred With Highest Honors. B.A. conferred Magna Cum Laude. ACADEMIC POSITIONS University of Chicago: Research Professor, Department of Astronomy & Astrophysics. 2019–Present. University of Chicago: Senior Researcher, Kavli Institute for Cosmological Physics. 2009–Present. University of Chicago: Research Associate Professor, Department of Astronomy & Astrophysics. 2017–2019. University of Chicago: Senior Research Associate, Department of Astronomy & Astrophysics. 2009–2017. University of Chicago: Research Scientist, Department of Astronomy & Astrophysics. 2006–2009. University of Chicago: Associate Fellow, Kavli Institute for Cosmological Physics. 2003–2009. University of Chicago: Research Associate, Department of Astronomy & Astrophysics. 2003–2006. Thomas M. Crawford, page 2 of 11 RECENT SYNERGISTIC ACTIVITIES Chair, Simons Observatory operations review committee, October 2020 Member, CMB-S4 Collaboration Governing Board, 2018 – present Member, NASA Legacy Archive for Microwave Background Data Analysis (LAMBDA) Users’ Group, 2016 – present Referee, Physical Review D, Physical Review Letters, Astrophysical Journal, Nature, Journal of Cosmology and Astroparticle Physics, and others, 2008 – present DOE, NASA, and NSF review panel member, 2013 – present RECENT INVITED COLLOQUIA AND SEMINARS University of Chicago: Astronomy Colloquium.
    [Show full text]
  • The Giant Flares of the Microquasar Cygnus X-3: X-Raysstates and Jets
    galaxies Article The Giant Flares of the Microquasar Cygnus X-3: X-RaysStates and Jets Sergei Trushkin 1,2,*,† ID , Michael McCollough 3,†, Nikolaj Nizhelskij 1,† and Peter Tsybulev 1,† 1 The Special Astrophysical Observatory of the Russian Academy of Sciences, Niznij Arkhyz 369167, Russia; [email protected] (N.N.); [email protected] (P.T.) 2 Institute of Physics, Kazan Federal University, Kazan 420008, Russia 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +7-928-396-3178 † These authors contributed equally to this work. Received: 18 September 2017; Accepted: 21 November 2017; Published: 27 November 2017 Abstract: We report on two giant radio flares of the X-ray binary microquasar Cyg X-3, consisting of a Wolf–Rayet star and probably a black hole. The first flare occurred on 13 September 2016, 2000 days after a previous giant flare in February 2011, as the RATAN-600 radio telescope daily monitoring showed. After 200 days on 1 April 2017, we detected a second giant flare. Both flares are characterized by the increase of the fluxes by almost 2000-times (from 5–10 to 17,000 mJy at 4–11 GHz) during 2–7 days, indicating relativistic bulk motions from the central region of the accretion disk around a black hole. The flaring light curves and spectral evolution of the synchrotron radiation indicate the formation of two relativistic collimated jets from the binaries. Both flares occurred when the source went from hypersoft X-ray states to soft ones, i.e.
    [Show full text]
  • Anchored in Shadows: Tying the Celestial Reference Frame Directly to Black Hole Event Horizons
    URSI GASS 2020, Rome, Italy, 29 August - 5 September 2020 Anchored in Shadows: Tying the Celestial Reference Frame Directly to Black Hole Event Horizons T. M. Eubanks Space Initiatives Inc Palm Bay, Florida, USA [email protected] Abstract the micro arc second level, and showing that natural radio sources can exhibit brightness temperatures > 1013 K[5]. Both the radio International Celestial Reference Frame This work clearly needs to be continued and extended with (ICRF) and the optical Gaia Celestial Reference Frame larger space radio telescopes at even higher frequencies. (Gaia-CRF2) are derived from observations of jets pro- Further impetus to a new space VLBI mission has been re- duced by the Super Massive Black Holes (SMBH) power- cently provided by the successful imaging of the shadow of ing active galactic nuclei and quasars. These jets are inher- M87 by Event Horizon Telescope (EHT) [6]. ently subject to change and will appear different at differ- ent observing frequencies, leading to instabilities and sys- The EHT is pushing the limits of what is possible with tematic errors in the resulting Celestial Reference Frames purely terrestrial VLBI, due to the limitations caused at- (CRFs). Recently, the Event Horizon Telescope (EHT), a mospheric absorption in the mm and sub-mm bands, which mm-wave Very Long Baseline Interferometry (VLBI) array, limits both the frequencies used and which limits the EHT has observed the 40 μas diameter shadow of the SMBH in to using mostly very dry and high-altitude sites, limiting M87 at 1.3 mm, showing that the emitting region is smaller the (u,v) plane imaging coverage.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Ming-Tang Chen, Ph.D., Physics Research Fellow Deputy Director of ASIAA Hawaii Operations Academia Sinica, Institute of Astronomy and Astrophysics (Taiwan) PO Box 23-141, Taipei, Taiwan, ROC (USA) 645 N. A’ohoku Place, Hilo, HI 96720, USA Telephone (TW): +886-2-2366-5348 Telephone (US): +1-808-938-4708 Email: [email protected] CURRICULUM VITAE ................................................................................................... 1 Brief Biography: .............................................................................................................. 2 Person Data: ..................................................................................................................... 2 Education: ........................................................................................................................ 2 Knowledge & Skills: ....................................................................................................... 2 Professional TitleS: .......................................................................................................... 2 Committee Service: ......................................................................................................... 3 Grant Executed: ............................................................................................................... 4 International Invited Talks: ............................................................................................. 5 Current and Past Research Topics: .................................................................................
    [Show full text]
  • A Conceptual Overview of Single-Dish Absolute Amplitude Calibration
    Event Horizon Telescope Memo Series EHT Memo 2017-CE-02 Calibration & Error Analysis WG A conceptual overview of single-dish absolute amplitude calibration S. Issaoun1, T. W. Folkers2, L. Blackburn3, D. P. Marrone2, T. Krichbaum4, M. Janssen1, I. Mart´ı-Vidal5 and H. Falcke1 Sept 15, 2017 – Version 1.0 1Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, the Netherlands 2Arizona Radio Observatory, Steward Observatory, University of Arizona, AZ 85721 Tucson, USA 3Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 4Max Planck Institut f¨urRadioastronomie (MPIfR), Auf dem H¨ugel 69, 53121 Bonn, Germany 5Onsala Space Observatory, Chalmers University of Technology, Observatoriev¨agen 90, 43992 Onsala, Sweden Abstract This document presents an outline of common single-dish calibration techniques and key differences be- tween centimeter-wave and millimeter-wave observatories in naming schemes and measured quantities. It serves as a conceptual overview of the complete single-dish amplitude calibration procedure for the Event Horizon Telescope, using the Submillimeter Telescope (SMT) as the model station. Note: This document is not meant to be used as a general telescope guide or manual from an engineering perspective. It contains a number of common approximations used at observatories as an attempt to reason through the methods used and the specific calibration information needed to calibrate VLBI amplitudes from Event Horizon Telescope observing runs. This document can be used in conjunction with similar calibration outlines from other stations for procedural comparisons. Contents 1 Introduction to standard single-dish Tsys calibration techniques 4 1.1 The antenna-based system-equivalent flux densities (SEFDs) .
    [Show full text]
  • Active Galactic Nuclei Imaging Programs of the Radioastron Mission
    Active galactic nuclei imaging programs of the RadioAstron mission Gabriele Brunia,∗, Tuomas Savolainenb,c,d , Jose Luis G´omeze, Andrei P. Lobanovd, Yuri Y. Kovalevf,g,d , on behalf of the RadioAstron AGN imaging KSP teams aINAF - Istituto di Astrofisica e Planetologia Spaziali, via del Fosso delCavaliere 100, 00133 Rome, Italy bAalto University Department of Electronics and Nanoengineering, PL 15500, FI-00076 Aalto, Finland cAalto University Mets¨ahovi Radio Observatory, Mets¨ahovintie 114, 02540 Kylm¨al¨a, Finland dMax-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany eInstituto de Astrof´ısica de Andaluc´ıa, CSIC, Glorieta de la Astronom´ıa s/n, 18008 Granada, Spain f Astro Space Center of Lebedev PhysicalInstitute, Profsoyuznaya St. 84/32, 117997 Moscow, Russia gInstitute of Physics and Technology, Dolgoprudny, Institutsky per., 9, Moscow region, 141700, Russia Abstract Imaging relativistic jets in active galactic nuclei (AGN) at angular resolu- tion significantly surpassing that of the ground-based VLBI at centimetre wavelengths is one ofthe key science objectives ofthe RadioAstron space- VLBI mission. There are three RadioAstron imaging key science programs that target both nearby radio galaxies and blazars, with one of the programs specifically focusing on polarimetry of the jets. The first images from these programs reach angular resolution of a few tens of microarcseconds and reveal unprecedented details about the jet collimation profile, magnetic field con- figuration, and Kelvin-Helmholtz instabilities along the flow in some of the ∗Corresponding author Email addresses:[email protected] (Gabriele Bruni), [email protected] (Tuomas Savolainen), [email protected] (Jose Luis G´omez), [email protected] (Andrei P.
    [Show full text]
  • Extremely Long-Baseline Interferometry with the Origins Space Telescope
    Astro2020 APC White Paper Extremely Long-Baseline Interferometry with the Origins Space Telescope DOMINIC W. PESCE1;2,KARI HAWORTH1,GARY J. MELNICK1,LINDY BLACKBURN1;2, MACIEK WIELGUS1;2,ALEXANDER RAYMOND1;2,JONATHAN WEINTROUB1,DANIEL C. M. PALUMBO1;2,MICHAEL D. JOHNSON1;2,SHEPERD S. DOELEMAN1;2,DAVID J. JAMES1;2 Abstract: Operating 1.5 106 km from Earth at the Sun-Earth L2 Lagrangian point, the Ori- gins Space Telescope, equipped× with a slightly modified version of its HERO heterodyne in- strument, could function as a uniquely valuable node in a VLBI network. The unprecedented angular resolution resulting from the combination of Origins with existing ground-based submil- limeter/millimeter telescope arrays would increase the number of spatially resolvable black holes by a factor of 106, permit the study of these black holes across all cosmic history, and enable new tests of General Relativity by unveiling the photon ring substructure in the nearest black holes. 1 Center for Astrophysics Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA j 2 Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA Astro2020 APC White Paper: Extreme Interferometry with Origins Space Telescope Page 1 1. Introduction A leap forward in our understanding of black holes came earlier this year, when the Event Hori- zon Telescope (EHT) collaboration revealed the first horizon-scale image of the active galactic nucleus of M87 [3]. This feat was accomplished using a ground-based very long baseline interfer- ometry (VLBI) network with baselines extending across the planet, reaching the highest angular resolution currently achievable from the surface of the Earth.
    [Show full text]
  • Sub-Mm VLBI from the Arctic — Imaging Black Holes
    Astrophysics from Antarctica Proceedings IAU Symposium No. 288, 2012 c International Astronomical Union 2013 M. G. Burton, X. Cui & N. F. H. Tothill, eds. doi:10.1017/S1743921312016870 Sub-mm VLBI from the Arctic — Imaging Black Holes Makoto Inoue1 and the Greenland Telescope team1,2,3,4 1 Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617 Taiwan, R.O.C. email: [email protected] 2 Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA 3 MIT Haystack Observatory, Off Route 40, Westford, MA 01886-1299, USA 4 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-4608, USA Abstract. We are deploying a new station for sub-millimeter Very Long Baseline Interferom- etry (VLBI) to obtain shadow images of Supermassive Black Hole (SMBH). Sub-mm VLBI is thought to be the only way so far to get the direct image of SMBH by its shadow, thanks to the superb angular resolution and high transparency against dense plasma around SMBH. At the Summit Station on Greenland, we have started monitoring the opacity at sub-mm region. The Summit Station subtends long baselines with the Atacama Large Milimeter/submillimeter Array (ALMA) in Chile and Submillimeter Array (SMA) in Hawaii. In parallel, we started retrofitting the ALMA North America prototype telescope (renamed as Greenland Telescope: GLT) for the cold environment. Keywords. Supermassive Black Hole (SMBH), Sub-millimeter telescope, Very Long Baseline Interferometry (VLBI) 1. Introduction An experiment in the sub-millimeter (submm) Very Long Baseline Interferometry (VLBI) has shown the capability for direct imaging of Sumermassive Black Hole (SMBH) (Doelaman et al.
    [Show full text]
  • Space VLBI 2020: Science and Technology Futures Conference Summary
    Space VLBI 2020: Science and Technology Futures Conference Summary† T. Joseph W. Lazio (Jet Propulsion Laboratory, California Institute of Technology), Walter Brisken (National Radio Astronomy Observatory), Katherine Bouman (California Institute of Technology), Sheperd Doeleman (Harvard-Smithsonian Center for Astrophysics), Heino Falcke (Radboud University), Satoru Iguchi (Graduate University of Advanced Studies; National Astronomical Observatory of Japan), Yuri Y. Kovalev (Astro Space Center of Lebedev Physical Institute; Moscow Institute of Physics & Technology), Colin J. Lonsdale (Massachusetts Institute of Technology/Haystack Observatory), Zhiqiang Shen (Shanghai Astronomical Observatory), Anton Zensus (Universit¨at zu K¨oln; Max-Planck-Institut fuer Radioastronomie), Anthony J. Beasley (National Radio Astronomy Observatory) May 27, 2020 1 Introduction The “Space VLBI 2020: Science and Technology Futures” meeting was the second in The Future of High-Resolution Radio Interferometry in Space series. The first meeting (2018 September 5–6; Noordwijk, the Netherlands) focused on the full range of science applications possible for very long baseline interferometry (VLBI) with space-based antennas. Accordingly, the observing frequencies (wavelengths) considered ranged from below 1 MHz (> 300 m) to above 300 GHz (< 1 mm). For this second meeting, the focus was narrowed to mission concepts and the supporting technologies to enable the highest angular resolution observations at frequencies of 30 GHz and higher (< 1 cm). This narrowing of focus was driven by both scientific and technical considerations. First, results arXiv:2005.12767v1 [astro-ph.IM] 20 May 2020 from the RadioAstron mission and the Event Horizon Telescope (EHT) have generated consider- able excitement for studying the inner portions of black hole (BH) accretion disks and jets and testing elements of the General Theory of Relativity (GR).
    [Show full text]
  • A Shot in the Dark: the First Image of a Black Hole
    A Shot in the Dark: The First etry (VLBI) (visit EHT’s home page for more information[14]). VLBI create a collection of radio Image of a Black Hole wave detections that when pieced together created Written by Priscilla Dohrwardt a ”symphony” of noise (i.e radio waves). The black hole in question is only a mere 55 As Johnny Cash once said, ”I fell into a burning million light years from earth in the Messier 87 ring of fire” and on April 10th, so did the world. galaxy. It is a supermassive black hole, weighing The first ever black hole image graces us with a in at 6.5 billion times the mass of our sun. To put black interior surrounded by what is referred to as that in perspective, the center of the black hole a ring of fire. is about the size of the Milky Way Galaxy. Not only are we all astonished by this mammoth, but even Professor Heino Falcke, the man behind the project, said, ”It is one of the heaviest black holes that we think exists. It is an absolute monster, the heavyweight champion of black holes in the Uni- verse” [15]. The team who captured the iconic black hole image happened to be in a collaborative project between NASA, MIT and various other partnered The first image of a black hole, located in countries within the National Science Foundation. the Messier 87 galaxy was captured by the They used 8 different radio telescopes around the Event Horizon Telescope collaboration. Credits: world to collect an array of information.
    [Show full text]
  • First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring
    The Astrophysical Journal Letters, 875:L5 (31pp), 2019 April 10 https://doi.org/10.3847/2041-8213/ab0f43 © 2019. The American Astronomical Society. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring The Event Horizon Telescope Collaboration (See the end matter for the full list of authors.) Received 2019 March 4; revised 2019 March 12; accepted 2019 March 12; published 2019 April 10 Abstract The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87’s large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets.
    [Show full text]