Ejected Superluminal Features Associated with the VHE Flare in AGN Jets: Sites Constrained by Smbhs
Total Page:16
File Type:pdf, Size:1020Kb
Ejected Superluminal Features Associated with the VHE Flare in AGN Jets: Sites Constrained by SMBHs Image credit: W. B. Sparks (STScI) Masanori Nakamura (ASIAA) Collaborators: K. Asada (ASIAA), J. A. Biretta (STScI), D. A. Garofalo (CSUN), C. A. Norman (JHU), D. L. Meier (JPL), W. B. Sparks (STScI) TIARA WS on Transient Universe, Dec. 2011, NTHU Outline ✤ Evidence for magnetic acceleration & collimation M87 of the active galactic nuclei (AGN) jet in M87 ✤ Quad MHD shock model for sub/super-luminal ejections ✤ Stationary feature in AGN jets constrained by the SMBH ✤ ASIAA “Greenland Telescope Project”: sub-mm VLBI for exploring the SMBH shadow & origin of AGN jets Outline ✤ Evidence for magnetic acceleration & collimation of the active galactic nuclei (AGN) jet in M87 ✤ Quad MHD shock model for sub/super-luminal ejections ✤ Stationary feature in AGN jets constrained by the SMBH ✤ ASIAA “Greenland Telescope Project”: sub-mm VLBI for exploring the SMBH shadow & origin of AGN jets Observational Overview Observations • Good Resolution • Nearby: D 16 Mpc (1 mas = 0.08 pc) ∼ • FR I: Misaligned BL Lac (θ 14 ◦ ; Wang & Zhou 2009) view ∼ • SMBH mass: (6 . 6 0 . 4) 10 9 M (Gebhardt et al. 2011) ± × ⊙ • VLBA resolution: 20 RS at 43 GHz • Sub-mm VLBI resolution: 3 RS at 345 GHz (w/ GL) VLBA Movie at 43GHz (C. Walker, NRAO) • Well studied at wavelengths from radio to X-ray • Proper motions (sub/super-luminal feature) • Polarization (20-60%; ordered B-fields) • Substructure (limb-brightened, knots, wiggles, ...), indicating a role of B-fields • In situ particle acceleration (Fermi-I diffusive shock process ) HST Movie (J. Biretta, STScI) Observations (cont.) X-ray: XMM-Newton M87 M87 Forman et al. (2005) Radio: VLA M87 Image credit: X-ray (NASA/CXC/KIPAC/N. Werner, E. Million et al); Radio (NRAO/ AUI/NSF/F. Owen) • Transferring the enormous energy in the nucleus Owen et al. (2000) on the circumgalactic environment (from 10-3 to 105 parsec) Superluminal Motions Biretta et al. (1995, 1999) • Fastest apparent speeds 6c indicates a jet orientation within 19° of the line of sight ∼ and requires γ 6 ≥ • A monotonic decay of the speed of knots suggests the deceleration of shock fronts Recent Flare-up at HST-1 CORE HST-1 A New Components After Flaring TeV GeV Cheung et al. (2007) Abramowski et al., ApJ, in press • A flaring from radio through optical to X-ray (factor 50) bands (Harris et al. 2006), ∼ indicating a site for TeV γ-ray emissions (Harris et al. 2009) • HST-1c evidently splits into two roughly equally bright features: superluminal (c1; 4.3c) and a trailing sub-luminal (c2; 0.47c) features during 2005 - 2006 Q. HST-1 as an origin of superluminal knots (Cheung et al. 2007)? (eg. Biretta et al. 1999) Short Tips for MHD Jets Extraction of Matter and Energy in the Vicinity of the SMBH Sturrock & Barns (1972) Punsly et al. (2009) ➡ Initiation by Piddington (1970); Sturrock & Barnes (1972) ,inspired by some early work for solar winds (Weber & Davis 1967; Ozernoi & Usov 1973) • Magnetized accretion disk: Lovelace (1976); Blandford (1976); Blandford & Payne (1983) • SMBH Magnetosphere: Blandford & Znajek (1977); Hirotani et al. (1992); Meier (2001) • Hybrid model: Meier (1999); Garofalo (2009) Global Picture of MHD Outflows Two constants along a poloidal stream line: Magnetic tension rBφBp (hoop-stress) drives l = rVφ − 4πρVp both collimation & 1 1 Γ p 1 acceleration e = V 2 + (V Ωr)2 + +Φ Ω2r2 2 p 2 φ Γ 1 ρ 2 Bp + Bφ Vp − − Vp = Vf − (Not a critical point) z-component of the momentum eq.: ρ(V )V = ·∇ z ∂p ρ∂Φ 1 ∂B2 1 Magnetic pressure + (B )B driven −∂z − ∂z − 8π ∂z 4π ·∇ z The Alfvén Mach number m1/2, the fast magnetosonic number n1/2, the 1/2 poloidal velocity U f, the toroidal velocity g, and the magnetic pitch Bφ/ Bz along a single streamline Vp = VA Magneto-centrifugal driven Blandford & Payne (1982)’s solution & Payne (1982)’s Blandford Pelletier & Pudritz (1992)’s solution Pelletier & Pudritz (1992)’s Vp = Vs Gas pressure driven Vφ Contopoulos (1995) Blandford & Payne (1982) START the Exhaust Inspection of the Jet Engine Image Credit: W. Steffen Puzzle Remains Unsolved for 2 Decades Distance from the nucleus: z (arcsec) Junor et al. (1999) 10-3 10-2 10-1 1 101 log r (arcsec) -1 0 1 8 N2 L HST-1 D E F AB C Reid et al. (1989) Junor & Biretta (1995) Biretta et al. (1995) 6 Biretta et al. (1999) Cheung et al. (2007) ) c Kovalev et al. (2007) / V 4 Apparent speed ( 2 0 10-2 10-1 1 101 102 103 Distance from the nucleus: z (pc) • Superluminal motions begin at HST-1, lying about 1” ( 80 pc) from the nucleus ∼ • Many VLBI observations show sub-luminal motions upstream of HST-1 • Visible pc-scale features may reside in slower layers near the surface (Biretta et al. 1999) or possibly standing shocks and/or instability patterns (Kovalev et al. 2007)? ➡ Q. No “systematic” acceleration towards HST-1 exists although collimation occurs asymptotically? Or proper motions do not correspond to the real flow speed at all? Superluminal Motions Upstream of HST-1 Three years monitoring of the M87 jet using European VLBI Network (EVN) at 1.6GHz Asada, MN, et al. A Missing Link Found! Distance from the nucleus: z (arcsec) Junor et al. (1999) 10-3 10-2 10-1 1 101 log r (arcsec) -1 0 1 8 N2 L HST-1 D E F AB C Reid et al. (1989) Junor & Biretta (1995) Biretta et al. (1995) 6 Biretta et al. (1999) Cheung et al. (2007) ) c Kovalev et al. (2007) / V Asada et al. (2011) 4 Apparent speed ( 2 0 10-2 10-1 1 101 102 103 Distance from the nucleus: z (pc) Asada, MN, et al. ✓ Yes, We found final pieces of the puzzle, but γ~1/θ as expected? • The (bulk) acceleration (γ) and collimation (θ) are correlated in a parabolic streamline α (z r , 1 < α 2 ) (Zakamska et al. 2008; Komissarov et al. 2009; Tchekhovskoy et al. 2009):γθ 1 ∝ (α 1)/α • Acceleration/collimation occurs logarithmically (Komissarov 2009):γ z − ∝ ➡ We need to determine the jet structure (α)! The Structure of the M87 Jet (a) MERLIN image at 1.6 GHz VLBA at 43 GHz VLBA at 15 GHz EVN at 1.6 GHz MERLIN at 1.6 GHz Parabolic streamline Bondi radius (confined by the ISM): 1.73 0.05 z r ± s ∝ Conical streamline (unconfined, freely expanding): (b) EVN image at 1.6 GHz 0.96 0.1 z r ± ∝ jet radius r [r ] radius r jet Over-collimation ISCO (c) VLBA image at 15 GHz distance from the core z [rs ] ✓ The jet maintains the parabolic stream with α=1.73 over 105 Rs ✓ A transition of streamlines presumably occurs at an ISM transition beyond the gravitational influence of the SMBH ✓ Propose a way to identify the jet ejection radius by tracing back of the ridge line Asada & MN (arXiv:1110.1793) Sub-to Superlumial Transition Deprojected distance from the nucleus: z (pc) 10-3 10-2 10-1 1 101 102 103 104 N2 L HST-1 D E F ABC Reid et al. (1989), VLBI 1.6 GHz 1 2 10 Biretta et al. (1995), VLA 15 GHz 10 cf. Ejection point (BP82) Biretta et al. (1999), HST Kellermann et al. (2004), VLBA 15 GHz ) Cheung et al. (2007), VLBA 1.6 GHz c / Expected slope on Kovalev et al. (2007), VLBA 15 GHz 1 1 10 α 0.43 0.01 app. the stream line: z∝r θ z− ± (deg.) V Asada et al. (2011), EVN 1.6 GHz e ( ∝ app. ` 10-1 1 Owen et al. (1980, 1989), VLA 15 GHz Junor & Biretta (unpublished), VLBA 609 MHz Reid et al. (1989), VLBI 1.6 GHz Jet opening angle: Junor et al. (unpublished), VSOP + VLBA 5 GHz Apparent speed: Junor & Biretta (1995), VLBI 22 GHz -2 -1 10 10 Junor et al. (1999), VLBI 43 GHz Asada et al. (2010), EVN 1.6 GHz Asada et al. (2010), VLBA 15 GHz Ly et al. (2007), VLBA 43 GHz 10-3 10-2 10-2 10-1 1 101 102 103 104 105 10-3 10-2 10-1 1 101 102 103 104 105 Deprojected distance from the nucleus: z (mas) Deprojected distance from the nucleus: z (mas) Asada, MN, et al. Q. Do they exhibit an asymptotic acceleration from non-relativistic (0.01c) 2-5 to relativistic speed (0.99c) over an extremely large scale 10 Rs ? Magnetic Acceleration & Collimation (MAC) Zone 102 Reid et al. (1989), VLBI 1.6 GHz 1 Biretta et al. (1999), HST γ 101 Kellermann et al. (2004), VLBA 15 GHz ≡ 1 (V/c)2 a Cheung et al. (2007), VLBA 1.6 GHz − Kovalev et al. (2007), VLBA 15GHz Asada et al. (2011), EVN 1.6 GHz 1 101 Walker et al. (2008), VLBA 43 GHz -1 Acciari et al. (2009), VLBA 43 GHz a (α 1)/α z − ∝ 10-1 Lorentz factor: 1 1 10-2 2/α z 10-1 -3 ∝ ) 10 Reid et al. (1989), VLBI 1.6 GHz c / Specific Kinetic Energy: Biretta et al. (1999), HST 2GM V BH ( -2 Kellermann et al. (2004), VLBA 15 GHz Vesc = 10 ` z 10-4 Cheung et al. (2007), VLBA 1.6 GHz Kovalev et al. (2007), VLBA 15GHz Walker et al. (2008), VLBA 43 GHz 10-3 Speed: Acciari et al. (2009), VLBA 43 GHz -5 10 Asada et al. (2011), EVN 1.6 GHz 10-4 1 101 102 103 104 1 101 102 103 104 Deprojected distance from the nucleus: z (mas) MN, Asada, et al.