Liebherr CV 06-16.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anisodactylus Binotatus Fabr., a Carabid Beetle New to New Zealand, and a Review of the Exotic Carabid Fauna
Pacific Insects 5 (4) : 837-847 December 30, 1963 ANISODACTYLUS BINOTATUS FABR., A CARABID BEETLE NEW TO NEW ZEALAND, AND A REVIEW OF THE EXOTIC CARABID FAUNA By R. L. C. Pilgrim DEPT, OF ZOOLOGY, UNIVERSITY OF CANTERBURY, NEW ZEALAND Abstract: Anisodactylus binotatus Fabr. 1787 (Col.: Carabidae), an introduced species now established in Canterbury (South Island), New Zealand, is reported for the first time. The literature respecting other carabids sometimes recorded as introduced is reviewed; Ago- nochila binotata (White, 1846), Agonum submetallicum (White, 1846), Hypharpax australasiae (Dejean, 1829) and Pentagonica vittipennis Chaudoir, 1877 are shown to be better considered as endemic to the Australia - New Zealand area. Other species are classed as either native to New Zealand, clearly introduced though not all established, or of doubtful occurrence in New Zealand. Introduction: The Carabidae of New Zealand are predominantly endemic species, but a small number of exotic species has been recorded. This paper reports a further introduc tion to the carabid fauna of this country and concludes with a survey of recorded exotic Carabidae in New Zealand. Specimens of the newly-recorded species were collected in domestic gardens in Christ church, and were included in a collection sent for identification to Dr. E. B. Britton, British Museum (Nat. Hist.), who kindly drew the writer's attention to the fact that they were so far unreported from New Zealand. Description of adult (from New Zealand specimens) Fig. 1. Anisodactylus binotatus Fabricius, 1787 Color: Head, pronotum, elytra and femora black; tibiae and tarsi light brown to red- black ; palps and antennal segments 1-2 brown, remainder of antennae black; leg spines red-brown; head with small red spot on frons between eyes. -
Field Notes in Support of a Revision of Hawaiian Carabidae
Field Notes in Support of a Revision of Hawaiian Carabidae James K. Liebherr* Cornell University Ithaca, NY, U.S.A. * Curator (Ret.) Cornell University Insect Collection, and Professor Emeritus 23 August 2021 Field Notes in Support of a Revision of Hawaiian Carabidae © 2021 by James K. Liebherr is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ Cornell University Insect Collection John H. and Ann B. Comstock Hall Cornell University Ithaca, NY 14853-2601 U.S.A. ii Table of Contents Foreword ……………………………………………………………….…………………………. iv 00.—Introduction …………………………………………………………………..………….. 1 01.—Kauaˋi; 9-22 March, 10-16 May 1991 ……..…………………………...….... 7 02.—Hawaiˋi Island; 23 March-5 April 1991 ..…………………………..…….… 21 03.—Haleakalā; 8-13 April 1991, 29 April–9 May 1991 …………….…….… 27 04.—Oˋahu; 20–23 April, 18 May 1991 ………………………..……….…..….…..41 05.—Molokaˋi; 24-27 April 1991 …………………………………….……..….………45 06.—West Maui, 11-15 May 1992; Molokaˋi, 15-16 May 1992 ...……… 50 07.—Maui Nui, 29 April-21 May 1993 (Lānaˋi, Molokaˋi, West Maui, Haleakalā) ……………….………………………………………………………………….…….61 08.—Oˋahu, 1-15 May 1995 .………………………………….……………………..…. 89 09.—Kauaˋi, 16-22 May 1995 ………………….………………..…………..………. 104 10.—Maui + Molokaˋi 20-31 May 1997 …..……………………………………... 114 11.—Hawaiˋi Island—1–6 June 1997 …..………………………..……………….. 134 12.—Hawaiˋi Island—9–17 October 1997 …..……………………….…….….. 138 13.—Haleakalā, Maui—30 April–15 May 1998 ….…………………………... 145 14.—Haleakalā and West Maui—15–23 May 2001 …….………….………. 167 15.—Hawaiˋi Island—23–27 May 2001 …………………..…………..…………. 179 16.—Haleakalā, Maui, 14–20 May 2003 …………………………………………. 184 17.—Hawaiˋi Island, 21–25 May 2003 ………………..………………………….. 192 18.—Lānaˋi, Molokaˋi, West Maui, 10–28 May 2004 …..……..….………. -
Pu'u Wa'awa'a Biological Assessment
PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9 -
A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Systematic Revision of the Trans-Bassian Moriomorphine Genus
ZooKeys 1044: 339–373 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1044.62335 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Systematic revision of the trans-Bassian moriomorphine genus Theprisa Moore (Coleoptera, Carabidae) James K. Liebherr1, Nick Porch2, Matthew Shaw3, Bronte E. Sinclair4, David R. Maddison5 1 Department of Entomology, John H. and Anna B. Comstock Hall, 129 Garden Ave., Cornell University, Ithaca, NY 14853-2601, USA 2 School of Life & Environmental Sciences & Centre for Integrated Ecology, Deakin University, Geelong, VIC 3216, Australia 3 South Australian Museum, South Terrace, Adelaide, SA 5000, Australia 4 Australian National Insect Collection, Building 101, Clunies Ross St., Black Mountain, ACT 2601, Australia 5 Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA Corresponding author: James K. Liebherr ([email protected]) Academic editor: Thorsten Assmann | Received 21 December 2020 | Accepted 18 February 2021 | Published 16 June 2021 http://zoobank.org/8264C999-3201-4A3B-B39C-222790AC0192 Citation: Liebherr JK, N Porch, M Shaw, BE Sinclair, DR Maddison (2021) Systematic revision of the trans-Bassian moriomorphine genus Theprisa Moore (Coleoptera, Carabidae). In: Spence J, Casale A, Assmann T, Liebherr JK, Penev L (Eds) Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940–2020). ZooKeys 1044: 339–373. https://doi.org/10.3897/zookeys.1044.62335 Abstract The Australian genus Theprisa Moore, 1963, is taxonomically revised to comprise five species, two newly described: Theprisa darlingtoniLiebherr & Porch, sp. nov. of Tasmania, and Theprisa otway Liebherr, Porch & Maddison, sp. nov. from the Otway Ranges, Victoria. Two previously described species, T. -
Coleoptera: Carabidae) of the Canterbury Foothills, New Zealand
Berndt & Brockerhoff. New Zealand Journal of Forestry Science (2019) 49:12 https://doi.org/10.33494/nzjfs492019x54x E-ISSN: 1179-5395 published on-line: 30/12/2019 Research Article Open Access New Zealand Journal of Forestry Science Effects of land cover type on carabid beetles (Coleoptera: Carabidae) of the Canterbury foothills, New Zealand Lisa A. Berndt1,2 and Eckehard G. Brockerhoff3,4,* 1 Scion (New Zealand Forest Research Institute), Private Bag 3020, Rotorua 3046, New Zealand 2 Current address: LifeLab Coaching, 29 Iles Rd, Lynmore, Rotorua 3010, New Zealand 3 Scion (New Zealand Forest Research Institute), PO Box 29 237, Christchurch 8440, New Zealand 4 Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland *Corresponding author: [email protected] (Received for publication 27 April 2019; accepted in revised form 23 December 2019) Abstract Background: Land cover changes during the recent history of New Zealand have had a major impact on its largely endemic and iconic biodiversity. As in many other countries, large areas of native forest have been replaced by other land cover and are now in exotic pasture grassland or plantation forest. Ground beetles (Carabidae) are often used as ecological indicators, they provide ecosystem services such as pest control, and some species are endangered. However, few studies in New Zealand have assessed the habitat value for carabid beetles of natural forest, managed regenerating natural forest, pine plantation forest and pasture. Methods: We compared the carabid beetle assemblages of natural forest of Nothofagus solandri var solandri (also known as Fuscospora solandri or black beech), regenerating N. solandri forest managed for timber production, exotic pine plantation forest and exotic pasture, using pitfall traps. -
On a Collection of Carabidae from Timor Leste, with Descriptions of Nine New Species (Insecta: Coleoptera, Carabidae)
© The Authors, 2017. Journal compilation © Australian Museum, Sydney, 2017 Records of the Australian Museum (2017) Vol. 69, issue number 6, pp. 421–450. ISSN 0067-1975 (print), ISSN 2201-4349 (online) https://doi.org/10.3853/j.2201-4349.69.2017.1660 urn:lsid:zoobank.org:pub:0622726F-CAC8-4816-B6B7-2DF2E8BDDA50 Martin Baehr orcid.org/0000-0002-2541-3966 Chris A. M. Reid orcid.org/0000-0003-1899-9839 On a Collection of Carabidae from Timor Leste, with Descriptions of Nine New Species (Insecta: Coleoptera, Carabidae) Martin Baehr1 and Chris A. M. Reid2* 1 Zoologische Staatssammlung, Münchhausenstr. 21, D-81247 München, Germany 2 Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney NSW 2010, Australia [email protected] · [email protected] Abstract. The ground beetle (Carabidae) fauna of Timor is reviewed based on recent collecting by the Australian Museum, in Timor Leste. 53 species were collected, of which the following nine species are described as new: Mecyclothorax timorensis sp. nov. Baehr; M. reidi sp. nov. Baehr; Rhytisternus externus sp. nov. Baehr; Arhytinus timorensis sp. nov. Baehr; Notagonum reidi sp. nov. Baehr; N. angusticolle sp. nov. Baehr; Perigona timorensis sp. nov. Baehr; Aristolebia timorensis sp. nov. Baehr; Lebia timorensis sp. nov. Baehr The new species are compa red with their nearest relatives. The remaining material is identified to species, or at least to genus, and discussed according to the current classification of Carabidae. Several species and genera are newly recorded for Timor. In spite of the rather small number of species contained, the sample allows some insight into the relations of the Carabid fauna of Timor to the Oriental and Australopapuan Regions, with about two thirds of the species belonging to the Oriental fauna, and one third to the Australopapuan fauna. -
Tasmanian Trechinae and Psydrinae
Subterranean Biology 9: 1-72, 2011 Trechinae and Psydrinae from Tasmania 1 doi: 10.3897/subtbiol.9.2516 Tasmanian Trechinae and Psydrinae (Coleoptera, Carabidae): a taxonomic and biogeographic synthesis, with description of new species and evaluation of the impact of Quaternary climate changes on evolution of the subterranean fauna(3) Stefan EBERHARD (1), Pier Mauro GIACHINO (2,*) (1) Subterranean Ecology, Scientific Environmental Services, Suite 8 / 37 Cedric Street, Stirling WA 6921, Australia; e-mail: stefan@ subterraneanecology.com.au (2) Regione Piemonte, Settore Fitosanitario Regionale, Environment Park Palazzina A2, Via Livorno 60, 10144 Turin, Italy; e-mail: [email protected] (3) Results (in part) of the Turin M.R.S.N. Zoological Missions to “Gondwanaland” sponsored by the National Academy of Lincei, Rome. XXVI contribution. * corresponding author ABSTRACT This paper provides taxonomic, distributional and ecological data for 59 species in 17 genera of Trechinae and Psydrinae from Tasmania, and describes 18 new species in six existing genera (Pterocyrtus, Tasmanorites, Sloanella, Trechistus, Goedetrechus, Tas- manotrechus) collected from caves, forest and montane habitats: Pterocyrtus grayi sp. nov., P. meridionalis sp. nov., Tasmanorites beatricis sp. nov., T. daccordii sp. nov., T. lynceorum sp. nov., T. microphthalmus sp. nov., Sloanella gordoni sp. nov., Trechistus gordoni sp. nov., Goedetrechus minutus sp. nov., G. rolani sp. nov., G. florentinus sp. nov., G. damperi sp. nov., Tasmanotrechus gordoni sp. nov., T. alticola sp. nov., T. montisfieldi sp. nov., T. osbornianus sp. nov., T. moorei sp. nov., T. rolani sp. nov. Forty-one (41) previously described species have been re-examined and illustrated with supplementary descriptions. New collection records combined with the published literature revealed 196 records of 83 species in 21 genera, collected from 41 localities (including 11 karst areas). -
Localised and Regional Patterns in Ground-Dwelling Beetle Assemblages in a Semi-Tropical Arid Zone Environment
DOI: 10.18195/issn.0313-122x.78(1).2010.169-184 Records of the Western Australian Museum, Supplement 78: 169–184 (2010). Localised and regional patterns in ground-dwelling beetle assemblages in a semi-tropical arid zone environment Nadine A. Guthrie1*, Tom Weir2 and Kipling Will3 1Department of Environment and Conservation, PO Box 51, Wanneroo, Western Australia 6946, Australia. Email: [email protected] 2Australian National Insect Collection, CSIRO Entomology, GPO Box 1700, Canberra, Australian Capital Territory, 2601, Australia. 3ESPM Department & Essig Museum of Entomology, University of California, Berkeley, California, U.S.A. Abstract – Ground-dwelling beetles were sampled by pitfall traps at 304 quadrats positioned to represent the geomorphic extent and profi le of the Pilbara Region, a semi-tropical arid region in north-west Western Australia. For each quadrat, 47 climatic, soil, landform, geological and vegetation attributes were determined. A total of 429 taxa across the Bolboceratidae, Carabidae, Hybosoridae, Scarabaeidae and Tenebrionidae were identifi ed, of which 68% could not be assigned to currently recognised species. Species richness ranged from 1 to 36 species per quadrat, with an average of 11.6±5.9 species (n = 296 quadrats). Species recorded at one quadrat only (‘singletons’) constituted 33% of the fauna and were collected mainly from areas near the edge of the region or were associated with the Fortescue subregion; they included 36% of the Bolboceratidae (8 species), 32% of the Carabidae (72 species), 33% of the Hybosoridae (2 species), 46% of the Scarabaeidae (45 species) and 22% of the Tenebrionidae (17 species). Those from the region’s edge may have their distributions centred elsewhere, while singletons from the Fortescue subregion may be restricted to marsh habitats that are rare elsewhere in the region. -
Coleoptera: Carabidae) in Maui, Hawai'f
Introduction and Distributional Expansion of Trechus obtusus (Coleoptera: Carabidae) in Maui, Hawai'F James K Liebherr2 and Raina Takumi3 Abstract: Trechus obtusus Erichson (tribe Trechini), native to Europe and North Africa and introduced to the Pacific coast ofNorth America, is recorded for the first time from East Maui Island, Hawai'i, based on collections made at Halea kala National Park in September 1998. The species subsequently expanded its distribution to include Polipoli Springs State Recreation Area, East Maw. Range expansion has averaged 3 km per year, based on documented absence of T. ob tusus from the Polipoli Springs area in 1998. All Hawaiian individuals are mac ropterous, even though European and North American populations of T. obtusus are dimorphic for wing configuration, with the brachypterous form most com mon in long-established populations. The source area for the Hawaiian inva sion is hypothesized to be Oregon or the San Francisco Bay area, based on the closest match in the frequency of macroptery between specimens from Hawai'i and those from those mainland areas. Monomorphic macroptery of the Hawai ian populations suggests that the founder population was small, with estimates ranging from as few as 6 individuals to as many as 25, assuming the founding propagule was drawn at random from populations in the western United States. Baseline abundance data are presented for Polipoli Springs State Recreation Area, where T. obtusus co-occurs with seven native Mecyclothorax species (tribe Psydrini), establishing the opportunity for long-term assessment of the impact of the introduced species on the sympatric native fauna. Means to identify T. -
Coleoptera, Carabidae, Trechitae)
A peer-reviewed open-access journal ZooKeys 147: 229–260 (2011) Phylogeny of Trechitae... 229 doi: 10.3897/zookeys.147.1871 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Phylogeny of minute carabid beetles and their relatives based upon DNA sequence data (Coleoptera, Carabidae, Trechitae) David R. Maddison1, Karen A. Ober2 1 Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Current address: Department of Zoology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA 2 Department of Ento- mology, University of Arizona, Tucson, AZ 85721, USA; Current Address: Department of Biology, College of the Holy Cross, Worcester, MA 01610, USA Corresponding author: David R. Maddison ([email protected]) Academic editor: T. Erwin | Received 30 July 2011 | Accepted 25 August 2011 | Published 16 November 2011 Citation: Maddison DR, Ober KA (2011) Phylogeny of minute carabid beetles and their relatives based upon DNA sequence data (Coleoptera, Carabidae, Trechitae). In: Erwin T (Ed) Proceedings of a symposium honoring the careers of Ross and Joyce Bell and their contributions to scientific work. Burlington, Vermont, 12–15 June 2010. ZooKeys 147: 229–260. doi: 10.3897/zookeys.147.1871 Abstract The phylogeny of ground beetles of supertribe Trechitae is inferred using DNA sequences of genes that code for 28S ribosomal RNA, 18S ribosomal RNA, and wingless. Within the outgroups, austral psydrines are inferred to be monophyletic, and separate from the three genera of true Psydrina (Psydrus, Nomius, Laccocenus); the austral psydrines are formally removed from Psydrini and are treated herein as their own tribe, Moriomorphini Sloane. All three genes place Gehringia with Psydrina.