Coordinated Beating of Algal Flagella Is Mediated by Basal Coupling

Total Page:16

File Type:pdf, Size:1020Kb

Coordinated Beating of Algal Flagella Is Mediated by Basal Coupling Coordinated beating of algal flagella is mediated by basal coupling Kirsty Y. Wana and Raymond E. Goldsteina,1 aDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom Edited by Peter Lenz, Philipps University of Marburg, Marburg, Germany, and accepted by the Editorial Board March 14, 2016 (received for review September 30, 2015) Cilia and flagella often exhibit synchronized behavior; this includes However, not all flagellar coordination observed in unicellular phase locking, as seen in Chlamydomonas, and metachronal wave organisms can be explained thus. The lineage to which Volvox formation in the respiratory cilia of higher organisms. Since the ob- belongs includes the common ancestor of the alga Chlamydo- servations by Gray and Rothschild of phase synchrony of nearby monas reinhardtii (CR) (Fig. 1B), which swims with a familiar IP swimming spermatozoa, it has been a working hypothesis that syn- breaststroke with twin flagella that are developmentally posi- chrony arises from hydrodynamic interactions between beating fila- tioned to beat in opposite directions (Fig. 1 C and D). However, a ments. Recent work on the dynamics of physically separated pairs of Chlamydomonas mutant with dysfunctional phototaxis switches flagella isolated from the multicellular alga Volvox has shown that stochastically the actuation of its flagella between IP and AP hydrodynamic coupling alone is sufficient to produce synchrony. modes (15, 16). These observations led us to conjecture (15) that However, the situation is more complex in unicellular organisms bear- a mechanism, internal to the cell, must function to overcome ing few flagella. We show that flagella of Chlamydomonas mutants hydrodynamic effects. deficient in filamentary connections between basal bodies display Pairs of interacting flagella evoke no image more potent than markedly different synchronization from the wild type. We perform Huygens’ clocks (17): Two oscillating pendula may tend toward micromanipulation on configurations of flagella and conclude that a synchrony (or antisynchrony) if attached to a common support, mechanism, internal to the cell, must provide an additional flagellar whose flexibility provides the necessary coupling. Here we present coupling. In naturally occurring species with 4, 8, or even 16 flagella, a diverse body of evidence for the existence of a biophysical we find diverse symmetries of basal body positioning and of the equivalent to this mechanical coupling, which, in CR and related flagellar apparatus that are coincident with specific gaits of flagellar algae, we propose is provided ultrastructurally by prominent fibers actuation, suggesting that it is a competition between intracellular connecting pairs of basal bodies (BB) (18) that are known to have coupling and hydrodynamic interactions that ultimately determines contractile properties. Such filamentary connections are absent in the precise form of flagellar coordination in unicellular algae. configurations of two pipette-held uniflagellate cells and defective in a class of CR mutants known as vfl (variable number of flagella) green algae | flagella | synchronization | basal fibers | internal coupling (Fig. 1B). We show, in both cases, that the synchronization states are markedly different from the wild-type breaststroke. ossession of multiple cilia and flagella bestows significant Seeking evidence for the generality of putative internal control Pevolutionary advantage upon living organisms only if these of flagellar coupling in algal unicells, we use light microscopy, organelles can achieve coordination. This may be for purposes of high-speed imaging, and image processing to elucidate the re- swimming (1, 2), feeding (3), or fluid transport (4, 5). Multiciliation markable coordination strategies adopted by quadriflagellates, may have evolved first in single-celled microorganisms due to the octoflagellates, and hexadecaflagellates, which possess networks of propensity for hydrodynamic interactions to couple their motions, basal, interflagellar linkages that increase in complexity with fla- but it was retained in higher organisms, occurring in such places as gella number. The flagellar apparatus, comprising BBs, connecting the murine brain (6) or human airway epithelia (7). Since Sir James Gray first noted that “automatic units” of flagella beat in “an orderly sequence” when placed side by side (8), others have Significance observed the tendency for nearby sperm cells to undulate in unison or aggregate (9, 10), and subsequently the possible hydrodynamic In areas as diverse as developmental biology, physiology, and origins of this phenomenon have been the subject of extensive biomimetics, there is great interest in understanding the mecha- theoretical analyses (2, 5, 11). Despite this, the exclusiveness and nisms by which active hair-like cellular appendages known as fla- universality of hydrodynamic effects in the coordination of neigh- gella or cilia are brought into coordinated motion. The prevailing boring cilia and flagella remains unclear. theoretical hypothesis over many years is that fluid flows driven by We begin by considering one context in which hydrodynamic beating flagella provide the coupling that leads to synchronization, interactions are sufficient for synchrony (12). The alga Volvox but this is surprisingly inconsistent with certain experimentally carteri (VC) is perhaps the smallest colonial organism to exhibit observed phenomena. Here we demonstrate the insufficiency of cellular division of labor (13). Adult spheroids possess two cell hydrodynamic coupling in an evolutionarily significant range of types: Large germ cells interior of an extracellular matrix grow to unicellular algal species bearing multiple flagella, and suggest that form new colonies, whereas smaller somatic cells form a dense the key additional ingredient for precise coordination of flagellar surface covering of flagella protruding into the medium, enabling beating is provided by contractile fibers of the basal apparatus. swimming. These flagella generate waves of propulsion, which, “ ” Author contributions: K.Y.W. and R.E.G. designed research, performed research, analyzed despite lack of centralized or neuronal control ( coxless ), are data, and wrote the paper. coherent over the span of the organism (14). In addition, somatic The authors declare no conflict of interest. cells isolated from their embedding colonies (Fig. 1A)beattheir This article is a PNAS Direct Submission. P.L. is a guest editor invited by the Editorial flagella in synchrony when held sufficiently close to each other (12). Board. Pairwise configurations of these flagella tend to synchronize in Freely available online through the PNAS open access option. phase (IP) when oriented with power strokes in the same direction, 1To whom correspondence should be addressed. Email: [email protected]. but antiphase (AP) when oriented in opposite directions, as This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. predicted (15) if their mutual interaction were hydrodynamic. 1073/pnas.1518527113/-/DCSupplemental. E2784–E2793 | PNAS | Published online May 2, 2016 www.pnas.org/cgi/doi/10.1073/pnas.1518527113 Downloaded by guest on September 27, 2021 A C CR cells turn by modulation of bilateral symmetry. During pho- PNAS PLUS multicellular IP AP totaxis (33), photons incident on the eyespot activate voltage-gated cis calcium channels, which alter levels of intracellular calcium, leading BB 2+ 5 μm to differential flagellar responses. Ionic fluctuations (e.g., Ca )alter not only the flagellar beat but also the synchrony of a pair. Gait 1. parallel 2. anti-parallel trans changes involving transient loss of synchrony (called “slips”) occur BB stochastically at rates sensitive to such environmental factors (15, 27, 34) as temperature, light, chemicals, hydrodynamics, and age of cell culture. In free-swimming cells, slips can alter the balance of hy- drodynamic drag on the cell body, producing a rocking motion that promotes subsequent resynchrony of flagella (31), but this does not B D cis BB explain the robust IP synchrony in cells held immobilized on mi- unicellular cropipettes (16, 29), nor the motility of isolated and reactivated flagellar apparatuses (35). The altered beat during slips is analogous to the freestyle gait (AP in Fig. 1) characterized in the phototaxis mutant ptx1, which stochastically transitions between IP and AP gaits 5 μm (15, 16). The dependence of CR flagellar synchronization state on or physiology through temperature or ionic content of the medium (27) trans BB leads us now to the possibility for intracellular coupling of flagella. no robust IP synchrony Early work (18) identified thick fibers connecting the two Chla- × × 3 Fig. 1. Flagellar synchronization in multicellular vs. unicellular algae. (A)Pairsof mydomonas BBs, including a 300 250 75 nm bilaterally sym- isolated, somatic flagella of VC tend to synchronize either in IP or AP depending metric distal fiber (DF), bearing complex striation patterns with a on their relative orientation. (B) CR flagella maintain position 2 yet swim a robust periodicity of ∼ 80 nm (Fig. 1B). Two or more parallel proximal IP breaststroke that is lost (i) by mutation of the DF, and (ii) in pairs of nearby fibers (PF) also connect the BB at one end (Fig. 1B). Striation uniflagellate cells. (C and D) Ultrastructure comprising BBs, rootlets, and eyespot periodicity varies across species, and
Recommended publications
  • Sexual Selection in Fungi
    Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis committee Thesis supervisor Prof. dr. R.F. Hoekstra Emeritus professor of Genetics (Population and Quantitative Genetics) Wageningen University Thesis co-supervisor Dr. D.K. Aanen Assistant professor at the Laboratory of Genetics Wageningen University Other members Prof. dr. J. B. Anderson, University of Toronto, Toronto, Canada Prof. dr. W. de Boer, NIOO, Wageningen and Wageningen University Prof. dr. P.G.L. Klinkhamer, Leiden University, Leiden Prof. dr. H.A.B. Wösten, Utrecht Univesity, Utrecht This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis submittted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 21 September 2012 at 4 p.m. in the Aula. Bart P. S. Nieuwenhuis Sexual selection in Fungi Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-358-0 Contents Chapter 1 7 General introduction Chapter 2 17 Why mating types are not sexes Chapter 3 31 On the asymmetry of mating in the mushroom fungus Schizophyllum commune Chapter 4 49 Sexual selection in mushroom-forming basidiomycetes Chapter 5 59 Fungal fidelity: Nuclear divorce from a dikaryon by mating or monokaryon regeneration Chapter 6 69 Fungal nuclear arms race: experimental evolution for increased masculinity in a mushroom Chapter 7 89 Sexual selection in the fungal kingdom Chapter 8 109 Discussion: male and female fitness Bibliography 121 Summary 133 Dutch summary 137 Dankwoord 147 Curriculum vitea 153 Education statement 155 6 Chapter 1 General introduction Bart P.
    [Show full text]
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • By Thesis for the Degree of Doctor of Philosophy
    COMPARATIVE ANATOMY AND HISTOCHEMISTRY OF TIIE ASSOCIATION OF PUCCIiVIA POARUM WITH ITS ALTERNATE HOSTS By TALIB aWAID AL-KHESRAJI Department of Botany~ Universiiy of SheffieZd Thesis for the degree of Doctor of Philosophy JUNE 1981 Vol 1 IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, lS23 7BQ www.bl.uk BEST COpy AVAILABLE. VARIABLE PRINT QUALITY TO MY PARENTS i Ca.1PARATIVE ANATCl1Y AND HISTOCHEMISTRY OF THE ASSOCIATION OF PUCCINIA POARUM WITH ITS ALTERNATE HOSTS Talib Owaid Al-Khesraji Depaptment of Botany, Univepsity of Sheffield The relationship of the macrocyclic rust fungus PUccinia poarum with its pycnial-aecial host, Tussilago fapfaPa, and its uredial-telial host, Poa ppatensis, has been investigated, using light microscopy, electron microscopy and micro-autoradiography. Aspects of the morp­ hology and ontogeny of spores and sari, which were previously disputed, have been clarified. Monokaryotic hyphae grow more densely in the intercellular spaces of Tussilago leaves than the dikaryotic intercellular hyphae on Poa. Although ultrastructurally sbnilar, monokaryotic hyphae differ from dikaryotic hyphae in their interaction with host cell walls, often growing embedded in wall material which may project into the host cells. The frequency of penetration of Poa mesophyll cells by haustoria of the dikaryon is greater than that of Tussilago cells by the relatively undifferentiated intracellular hyphae of the monokaryon. Intracellular hyphae differ from haustoria in their irregular growth, septation, lack of a neck-band or markedly constricted neck, the deposition of host wall-like material in the external matrix bounded by the invaginated host plasmalemma and in the association of callose reactions \vith intracellular hyphae and adjacent parts of host walls.
    [Show full text]
  • Phylogenetic Classification of Life
    Proc. Natl. Accad. Sci. USA Vol. 93, pp. 1071-1076, February 1996 Evolution Archaeal- eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life (centriole-kinetosome DNA/Protoctista/kingdom classification/symbiogenesis/archaeprotist) LYNN MARGULIS Department of Biology, University of Massachusetts, Amherst, MA 01003-5810 Conitribluted by Lynnl Marglulis, September 15, 1995 ABSTRACT A symbiosis-based phylogeny leads to a con- these features evolved in their ancestors by inferable steps (4, sistent, useful classification system for all life. "Kingdoms" 20). rRNA gene sequences (Trichomonas, Coronympha, Giar- and "Domains" are replaced by biological names for the most dia; ref. 11) confirm these as descendants of anaerobic eu- inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis- karyotes that evolved prior to the "crown group" (12)-e.g., derived nucleated organisms). The earliest Eukarya, anaero- animals, fungi, or plants. bic mastigotes, hypothetically originated from permanent If eukaryotes began as motility symbioses between Ar- whole-cell fusion between members of Archaea (e.g., Thermo- chaea-e.g., Thermoplasma acidophilum-like and Eubacteria plasma-like organisms) and of Eubacteria (e.g., Spirochaeta- (Spirochaeta-, Spirosymplokos-, or Diplocalyx-like microbes; like organisms). Molecular biology, life-history, and fossil ref. 4) where cell-genetic integration led to the nucleus- record evidence support the reunification of bacteria as cytoskeletal system that defines eukaryotes (21)-then an Prokarya while
    [Show full text]
  • Acidotropic Probes and Flow Cytometry: a Powerful Combination for Detecting Phagotrophy in Mixotrophic and Heterotrophic Protists
    AQUATIC MICROBIAL ECOLOGY Vol. 44: 85–96, 2006 Published August 16 Aquat Microb Ecol Acidotropic probes and flow cytometry: a powerful combination for detecting phagotrophy in mixotrophic and heterotrophic protists Wanderson F. Carvalho*, Edna Granéli Marine Science Department, University of Kalmar, 391 82 Kalmar, Sweden ABSTRACT: Studies with phagotrophic organisms are hampered by a series of methodological con- straints. To overcome problems related to the detection and enumeration of mixotrophic and hetero- trophic cells containing food vacuoles, we combined flow cytometry and an acidotropic blue probe as an alternative method. Flow cytometry allows the analysis of thousands of cells per minute with high sensitivity to the autofluorescence of different groups of cells and to probe fluorescence. The method was first tested in a grazing experiment where the heterotrophic dinoflagellate Oxyrrhis marina fed on Rhodomonas salina. The maximum ingestion rate of O. marina was 1.7 prey ind.–1 h–1, and the fre- quency of cells with R. salina in the food vacuoles increased from 0 to 2.4 ± 0.5 × 103 cells ml–1 within 6 h. The blue probe stained 100% of O. marina cells that had R. salina in the food vacuoles. The acidotropic blue probe was also effective in staining food vacuoles in the mixotrophic dinoflagellate Dinophysis norvegica. We observed that 75% of the D. norvegica population in the aphotic zone pos- sessed food vacuoles. Overall, in cells without food vacuoles, blue fluorescence was as low as in cells that were kept probe free. Blue fluorescence in O. marina cells with food vacuoles was 6-fold higher than in those without food vacuoles (20 ± 4 and 3 ± 0 relative blue fluorescence cell–1, respectively), while in D.
    [Show full text]
  • Antimicrobial Peptides Expression for Defense System in Chicken Gastrointestinal and Reproductive Organs
    The 6th International Seminar on Tropical Animal Production Integrated Approach in Developing Sustainable Tropical Animal Production October 20-22, 2015, Yogyakarta, Indonesia Antimicrobial Peptides Expression for Defense System in Chicken Gastrointestinal and Reproductive Organs Yukinori Yoshimura1, 2 Bambang Ariyadi3 and Naoki Isobe1, 2 1Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739- 8528, Japan; 2Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; 3Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia. Email address: [email protected] ABSTRACT: Maintenance of animal health is essential to obtain their maximum productivity and safe products. Avian β-defensins (AvBDs) are the member of antimicrobial peptides, and Toll-like receptors (TLRs) are the primary receptors that recognize pathogen-associated molecular patterns (PAMPs) of microbes. The aim of this study was to characterize the innate immune system with the focus on the expression of AvBDs in the gastrointestinal tract and reproductive organs for the strategy to enhance the disease resistance of chickens. The proventriculus and cecum of broiler chicks expressed TLRs and AvBDs. It is suggested that a variety of PAMPs of microbes are recognized by different TLRs, probably leading to regulate the synthesis of innate immune factors including AvBDs. In laying hens, TLRs and AvBDs were expressed in the theca and granulosa layers of ovarian follicles and in the oviduct. In vivo LPS challenge increased the expression of several AvBDs in the theca tissue. In contrast, in the cultured theca tissue, LPS upregulated the expression of IL1β and IL6, but did not affect the AvBDs expression; whereas IL1β upregulated the expression of the AvBD12 gene and protein.
    [Show full text]
  • Mannitol Biosynthesis in Algae : More Widespread and Diverse Than Previously Thought
    This is a repository copy of Mannitol biosynthesis in algae : more widespread and diverse than previously thought. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/113250/ Version: Accepted Version Article: Tonon, Thierry orcid.org/0000-0002-1454-6018, McQueen Mason, Simon John orcid.org/0000-0002-6781-4768 and Li, Yi (2017) Mannitol biosynthesis in algae : more widespread and diverse than previously thought. New Phytologist. pp. 1573-1579. ISSN 1469-8137 https://doi.org/10.1111/nph.14358 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Mannitol biosynthesis in algae: more widespread and diverse than previously thought. Thierry Tonon1,*, Yi Li1 and Simon McQueen-Mason1 1 Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK. * Author for correspondence: tel +44 1904328785; email [email protected] Key words: Algae, primary metabolism, mannitol biosynthesis, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, haloacid dehalogenase, histidine phosphatase, evolution of metabolic pathways.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Cilia and Flagella of Eukaryotes
    Cilia and Flagella of Eukaryotes I . R . GIBBONS The simple description that cilia are "contractile protoplasm in Early Developments its simplest form" (Dellinger, 1909) has fallen away as a mean- Among the most notable steps in the history of early studies ingless phrase ... A cilium is manifestly a highly complex and Downloaded from http://rupress.org/jcb/article-pdf/91/3/107s/1075481/107s.pdf by guest on 26 September 2021 compound organ, and . morphological description is clearly on cilia and flagella were the initial light microscope observa- only a beginning . tions of beating cilia on ciliated protozoa by Anton van Leeu- Irene Manton, 1952 wenhoek in 1675 ; the hypothesis proposed by W . Sharpey in 1835 that cilia and flagella are active organelles moved by contractile material distributed along their length rather than As recognized by Irene Manton (1) at the time that the basic passive structures moved by cytoplasmic flow or other contrac- 9 + 2 structural uniformity of cilia and most eukaryotic flagella tile activity within the cell body; and the observation in 1888- was first becoming recognized, these organelles are sufficiently 1890 by E . Ballowitz (2) that sperm flagella contain a substruc- complex that knowledge of their structure, no matter how ture of about 9-11 fine fibrils which are continuous along the detailed, cannot provide an understanding of their mechanisms length of the flagellum (Fig . 1) . More detailed accounts with of growth and function . In our understanding of these mecha- full references to this early work and to other studies before nisms, the substantial advances of the intervening 28 years 1948 can be found in the monographs of Sir James Gray (3) have, for the most part, resulted from experiments in which it and Michael Sleigh (4) .
    [Show full text]
  • C O N F E R E N C E 12 6 January 2016
    Joint Pathology Center Veterinary Pathology Services WEDNESDAY SLIDE CONFERENCE 2015-2016 C o n f e r e n c e 12 6 January 2016 Moderator: Tim Cooper, DVM, Ph.D, DACVP Associate Professor Department of Comparative Pathology Penn State Hershey Medical Center Hershey, PA CASE I: A10-9691 (JPC 3164430). Numerous fluid-filled cysts up to 7-8 mm in diameter were evident on cross-section. Signalment: Adult female guinea pig (Cavia Extensive stromal calcification or porcellus). ossification necessitated decalcification before histologic processing. History: This underweight adult guinea pig was found abandoned with truncal alopecia Laboratory Results: and a palpable abdominal mass. Age was No ancillary testing performed. estimated at 3 years. Ovariohysterectomy was performed in preparation for adoption. Histopathologic Description: A few viable follicles are in the periphery of the mass, but most of the specimen lacks recognizable ovarian tissue and instead is composed of neoplastic tissue from all 3 germ layers. The endodermal component includes tubuloacinar glands (lobules of serous acini formed by pyramidal cells with bright eosinophilic cytoplasmic granules) and cystic Ovary, guinea pig. The right ovary was enlarged at 3.5 cm x spaces lined by respiratory type epithelium 4 cm x 3.5 cm. (Photo courtesy of: Purdue University Animal Disease Diagnostic Laboratory: with numerous ciliated cells and mucus-filled http://www.addl.purdue.edu/ and Department of goblet cells. The ectodermal component Comparative Pathobiology: http://www.vet.purdue.) consists of neuroectodermal tissue with axons, glial cells, and neuronal cell bodies; Gross Pathology: The right ovary was no skin, hair follicles or cutaneous adnexal enlarged at 3.5 cm x 4 cm x 3.5 cm.
    [Show full text]
  • Ciliary Dyneins and Dynein Related Ciliopathies
    cells Review Ciliary Dyneins and Dynein Related Ciliopathies Dinu Antony 1,2,3, Han G. Brunner 2,3 and Miriam Schmidts 1,2,3,* 1 Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany; [email protected] 2 Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands; [email protected] 3 Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands * Correspondence: [email protected]; Tel.: +49-761-44391; Fax: +49-761-44710 Abstract: Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel Citation: Antony, D.; Brunner, H.G.; developments in the field.
    [Show full text]
  • Fungal Allergy and Pathogenicity 20130415 112934.Pdf
    Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]