Data Structures Are Ways to Organize Data (Informa- Tion). Examples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structured Recursion for Non-Uniform Data-Types
Structured recursion for non-uniform data-types by Paul Alexander Blampied, B.Sc. Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy, March 2000 Contents Acknowledgements .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Chapter 1. Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2 1.1. Non-uniform data-types .. .. .. .. .. .. .. .. .. .. .. .. 3 1.2. Program calculation .. .. .. .. .. .. .. .. .. .. .. .. .. 10 1.3. Maps and folds in Squiggol .. .. .. .. .. .. .. .. .. .. .. 11 1.4. Related work .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 14 1.5. Purpose and contributions of this thesis .. .. .. .. .. .. .. 15 Chapter 2. Categorical data-types .. .. .. .. .. .. .. .. .. .. .. .. 18 2.1. Notation .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 19 2.2. Data-types as initial algebras .. .. .. .. .. .. .. .. .. .. 21 2.3. Parameterized data-types .. .. .. .. .. .. .. .. .. .. .. 29 2.4. Calculation properties of catamorphisms .. .. .. .. .. .. .. 33 2.5. Existence of initial algebras .. .. .. .. .. .. .. .. .. .. .. 37 2.6. Algebraic data-types in functional programming .. .. .. .. 57 2.7. Chapter summary .. .. .. .. .. .. .. .. .. .. .. .. .. 61 Chapter 3. Folding in functor categories .. .. .. .. .. .. .. .. .. .. 62 3.1. Natural transformations and functor categories .. .. .. .. .. 63 3.2. Initial algebras in functor categories .. .. .. .. .. .. .. .. 68 3.3. Examples and non-examples .. .. .. .. .. .. .. .. .. .. 77 3.4. Existence of initial algebras in functor categories .. .. .. .. 82 3.5. -
Binary Search Trees
Introduction Recursive data types Binary Trees Binary Search Trees Organizing information Sum-of-Product data types Theory of Programming Languages Computer Science Department Wellesley College Introduction Recursive data types Binary Trees Binary Search Trees Table of contents Introduction Recursive data types Binary Trees Binary Search Trees Introduction Recursive data types Binary Trees Binary Search Trees Sum-of-product data types Every general-purpose programming language must allow the • processing of values with different structure that are nevertheless considered to have the same “type”. For example, in the processing of simple geometric figures, we • want a notion of a “figure type” that includes circles with a radius, rectangles with a width and height, and triangles with three sides: The name in the oval is a tag that indicates which kind of • figure the value is, and the branches leading down from the oval indicate the components of the value. Such types are known as sum-of-product data types because they consist of a sum of tagged types, each of which holds on to a product of components. Introduction Recursive data types Binary Trees Binary Search Trees Declaring the new figure type in Ocaml In Ocaml we can declare a new figure type that represents these sorts of geometric figures as follows: type figure = Circ of float (* radius *) | Rect of float * float (* width, height *) | Tri of float * float * float (* side1, side2, side3 *) Such a declaration is known as a data type declaration. It consists of a series of |-separated clauses of the form constructor-name of component-types, where constructor-name must be capitalized. -
Recursive Type Generativity
Recursive Type Generativity Derek Dreyer Toyota Technological Institute at Chicago [email protected] Abstract 1. Introduction Existential types provide a simple and elegant foundation for un- Recursive modules are one of the most frequently requested exten- derstanding generative abstract data types, of the kind supported by sions to the ML languages. After all, the ability to have cyclic de- the Standard ML module system. However, in attempting to extend pendencies between different files is a feature that is commonplace ML with support for recursive modules, we have found that the tra- in mainstream languages like C and Java. To the novice program- ditional existential account of type generativity does not work well mer especially, it seems very strange that the ML module system in the presence of mutually recursive module definitions. The key should provide such powerful mechanisms for data abstraction and problem is that, in recursive modules, one may wish to define an code reuse as functors and translucent signatures, and yet not allow abstract type in a context where a name for the type already exists, mutually recursive functions and data types to be broken into sepa- but the existential type mechanism does not allow one to do so. rate modules. Certainly, for simple examples of recursive modules, We propose a novel account of recursive type generativity that it is difficult to convincingly argue why ML could not be extended resolves this problem. The basic idea is to separate the act of gener- in some ad hoc way to allow them. However, when one considers ating a name for an abstract type from the act of defining its under- the semantics of a general recursive module mechanism, one runs lying representation. -
An Efficient Framework for Implementing Persistent Data Structures on Asymmetric NVM Architecture
AsymNVM: An Efficient Framework for Implementing Persistent Data Structures on Asymmetric NVM Architecture Teng Ma Mingxing Zhang Kang Chen∗ [email protected] [email protected] [email protected] Tsinghua University Tsinghua University & Sangfor Tsinghua University Beijing, China Shenzhen, China Beijing, China Zhuo Song Yongwei Wu Xuehai Qian [email protected] [email protected] [email protected] Alibaba Tsinghua University University of Southern California Beijing, China Beijing, China Los Angles, CA Abstract We build AsymNVM framework based on AsymNVM ar- The byte-addressable non-volatile memory (NVM) is a promis- chitecture that implements: 1) high performance persistent ing technology since it simultaneously provides DRAM-like data structure update; 2) NVM data management; 3) con- performance, disk-like capacity, and persistency. The cur- currency control; and 4) crash-consistency and replication. rent NVM deployment with byte-addressability is symmetric, The key idea to remove persistency bottleneck is the use of where NVM devices are directly attached to servers. Due to operation log that reduces stall time due to RDMA writes and the higher density, NVM provides much larger capacity and enables efficient batching and caching in front-end nodes. should be shared among servers. Unfortunately, in the sym- To evaluate performance, we construct eight widely used metric setting, the availability of NVM devices is affected by data structures and two transaction applications based on the specific machine it is attached to. High availability canbe AsymNVM framework. In a 10-node cluster equipped with achieved by replicating data to NVM on a remote machine. real NVM devices, results show that AsymNVM achieves However, it requires full replication of data structure in local similar or better performance compared to the best possible memory — limiting the size of the working set. -
Efficient Support of Position Independence on Non-Volatile Memory
Efficient Support of Position Independence on Non-Volatile Memory Guoyang Chen Lei Zhang Richa Budhiraja Qualcomm Inc. North Carolina State University Qualcomm Inc. [email protected] Raleigh, NC [email protected] [email protected] Xipeng Shen Youfeng Wu North Carolina State University Intel Corp. Raleigh, NC [email protected] [email protected] ABSTRACT In Proceedings of MICRO-50, Cambridge, MA, USA, October 14–18, 2017, This paper explores solutions for enabling efficient supports of 13 pages. https://doi.org/10.1145/3123939.3124543 position independence of pointer-based data structures on byte- addressable None-Volatile Memory (NVM). When a dynamic data structure (e.g., a linked list) gets loaded from persistent storage into 1 INTRODUCTION main memory in different executions, the locations of the elements Byte-Addressable Non-Volatile Memory (NVM) is a new class contained in the data structure could differ in the address spaces of memory technologies, including phase-change memory (PCM), from one run to another. As a result, some special support must memristors, STT-MRAM, resistive RAM (ReRAM), and even flash- be provided to ensure that the pointers contained in the data struc- backed DRAM (NV-DIMMs). Unlike on DRAM, data on NVM tures always point to the correct locations, which is called position are durable, despite software crashes or power loss. Compared to independence. existing flash storage, some of these NVM technologies promise This paper shows the insufficiency of traditional methods in sup- 10-100x better performance, and can be accessed via memory in- porting position independence on NVM. It proposes a concept called structions rather than I/O operations. -
Software II: Principles of Programming Languages
Software II: Principles of Programming Languages Lecture 6 – Data Types Some Basic Definitions • A data type defines a collection of data objects and a set of predefined operations on those objects • A descriptor is the collection of the attributes of a variable • An object represents an instance of a user- defined (abstract data) type • One design issue for all data types: What operations are defined and how are they specified? Primitive Data Types • Almost all programming languages provide a set of primitive data types • Primitive data types: Those not defined in terms of other data types • Some primitive data types are merely reflections of the hardware • Others require only a little non-hardware support for their implementation The Integer Data Type • Almost always an exact reflection of the hardware so the mapping is trivial • There may be as many as eight different integer types in a language • Java’s signed integer sizes: byte , short , int , long The Floating Point Data Type • Model real numbers, but only as approximations • Languages for scientific use support at least two floating-point types (e.g., float and double ; sometimes more • Usually exactly like the hardware, but not always • IEEE Floating-Point Standard 754 Complex Data Type • Some languages support a complex type, e.g., C99, Fortran, and Python • Each value consists of two floats, the real part and the imaginary part • Literal form real component – (in Fortran: (7, 3) imaginary – (in Python): (7 + 3j) component The Decimal Data Type • For business applications (money) -
Purely Functional Data Structures
Purely Functional Data Structures Chris Okasaki September 1996 CMU-CS-96-177 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Thesis Committee: Peter Lee, Chair Robert Harper Daniel Sleator Robert Tarjan, Princeton University Copyright c 1996 Chris Okasaki This research was sponsored by the Advanced Research Projects Agency (ARPA) under Contract No. F19628- 95-C-0050. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of ARPA or the U.S. Government. Keywords: functional programming, data structures, lazy evaluation, amortization For Maria Abstract When a C programmer needs an efficient data structure for a particular prob- lem, he or she can often simply look one up in any of a number of good text- books or handbooks. Unfortunately, programmers in functional languages such as Standard ML or Haskell do not have this luxury. Although some data struc- tures designed for imperative languages such as C can be quite easily adapted to a functional setting, most cannot, usually because they depend in crucial ways on as- signments, which are disallowed, or at least discouraged, in functional languages. To address this imbalance, we describe several techniques for designing functional data structures, and numerous original data structures based on these techniques, including multiple variations of lists, queues, double-ended queues, and heaps, many supporting more exotic features such as random access or efficient catena- tion. In addition, we expose the fundamental role of lazy evaluation in amortized functional data structures. -
Heapmon: a Low Overhead, Automatic, and Programmable Memory Bug Detector ∗
Appears in the Proceedings of the First IBM PAC2 Conference HeapMon: a Low Overhead, Automatic, and Programmable Memory Bug Detector ∗ Rithin Shetty, Mazen Kharbutli, Yan Solihin Milos Prvulovic Dept. of Electrical and Computer Engineering College of Computing North Carolina State University Georgia Institute of Technology frkshetty,mmkharbu,[email protected] [email protected] Abstract memory bug detection tool, improves debugging productiv- ity by a factor of ten, and saves $7,000 in development costs Detection of memory-related bugs is a very important aspect of the per programmer per year [10]. Memory bugs are not easy software development cycle, yet there are not many reliable and ef- to find via code inspection because a memory bug may in- ficient tools available for this purpose. Most of the tools and tech- volve several different code fragments which can even be in niques available have either a high performance overhead or require different files or modules. The compiler is also of little help a high degree of human intervention. This paper presents HeapMon, in finding heap-related memory bugs because it often fails to a novel hardware/software approach to detecting memory bugs, such fully disambiguate pointers [18]. As a result, detection and as reads from uninitialized or unallocated memory locations. This new identification of memory bugs must typically be done at run- approach does not require human intervention and has only minor stor- time [1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 18]. Unfortunately, the age and execution time overheads. effects of a memory bug may become apparent long after the HeapMon relies on a helper thread that runs on a separate processor bug has been triggered. -
Recursive Type Generativity
JFP 17 (4 & 5): 433–471, 2007. c 2007 Cambridge University Press 433 doi:10.1017/S0956796807006429 Printed in the United Kingdom Recursive type generativity DEREK DREYER Toyota Technological Institute, Chicago, IL 60637, USA (e-mail: [email protected]) Abstract Existential types provide a simple and elegant foundation for understanding generative abstract data types of the kind supported by the Standard ML module system. However, in attempting to extend ML with support for recursive modules, we have found that the traditional existential account of type generativity does not work well in the presence of mutually recursive module definitions. The key problem is that, in recursive modules, one may wish to define an abstract type in a context where a name for the type already exists, but the existential type mechanism does not allow one to do so. We propose a novel account of recursive type generativity that resolves this problem. The basic idea is to separate the act of generating a name for an abstract type from the act of defining its underlying representation. To define several abstract types recursively, one may first “forward-declare” them by generating their names, and then supply each one’s identity secretly within its own defining expression. Intuitively, this can be viewed as a kind of backpatching semantics for recursion at the level of types. Care must be taken to ensure that a type name is not defined more than once, and that cycles do not arise among “transparent” type definitions. In contrast to the usual continuation-passing interpretation of existential types in terms of universal types, our account of type generativity suggests a destination-passing interpretation. -
Compositional Data Types
Compositional Data Types Patrick Bahr Tom Hvitved Department of Computer Science, University of Copenhagen Universitetsparken 1, 2100 Copenhagen, Denmark {paba,hvitved}@diku.dk Abstract require the duplication of functions which work both on general and Building on Wouter Swierstra’s Data types `ala carte, we present a non-empty lists. comprehensive Haskell library of compositional data types suitable The situation illustrated above is an ubiquitous issue in com- for practical applications. In this framework, data types and func- piler construction: In a compiler, an abstract syntax tree (AST) tions on them can be defined in a modular fashion. We extend the is produced from a source file, which then goes through different existing work by implementing a wide array of recursion schemes transformation and analysis phases, and is finally transformed into including monadic computations. Above all, we generalise recur- the target code. As functional programmers, we want to reflect the sive data types to contexts, which allow us to characterise a special changes of each transformation step in the type of the AST. For ex- yet frequent kind of catamorphisms. The thus established notion of ample, consider the desugaring phase of a compiler which reduces term homomorphisms allows for flexible reuse and enables short- syntactic sugar to the core syntax of the object language. To prop- cut fusion style deforestation which yields considerable speedups. erly reflect this structural change also in the types, we have to create We demonstrate our framework in the setting of compiler con- and maintain a variant of the data type defining the AST for the core struction, and moreover, we compare compositional data types with syntax. -
4. Types and Polymorphism
4. Types and Polymorphism Oscar Nierstrasz Static types ok Semantics ok Syntax ok Program text Roadmap > Static and Dynamic Types > Type Completeness > Types in Haskell > Monomorphic and Polymorphic types > Hindley-Milner Type Inference > Overloading References > Paul Hudak, “Conception, Evolution, and Application of Functional Programming Languages,” ACM Computing Surveys 21/3, Sept. 1989, pp 359-411. > L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,” ACM Computing Surveys, 17/4, Dec. 1985, pp. 471-522. > D. Watt, Programming Language Concepts and Paradigms, Prentice Hall, 1990 3 Conception, Evolution, and Application of Functional Programming Languages http://scgresources.unibe.ch/Literature/PL/Huda89a-p359-hudak.pdf On Understanding Types, Data Abstraction, and Polymorphism http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf Roadmap > Static and Dynamic Types > Type Completeness > Types in Haskell > Monomorphic and Polymorphic types > Hindley-Milner Type Inference > Overloading What is a Type? Type errors: ? 5 + [ ] ERROR: Type error in application *** expression : 5 + [ ] *** term : 5 *** type : Int *** does not match : [a] A type is a set of values? > int = { ... -2, -1, 0, 1, 2, 3, ... } > bool = { True, False } > Point = { [x=0,y=0], [x=1,y=0], [x=0,y=1] ... } 5 The notion of a type as a set of values is very natural and intuitive: Integers are a set of values; the Java type JButton corresponds to all possible instance of the JButton class (or any of its possible subclasses). What is a Type? A type is a partial specification of behaviour? > n,m:int ⇒ n+m is valid, but not(n) is an error > n:int ⇒ n := 1 is valid, but n := “hello world” is an error What kinds of specifications are interesting? Useful? 6 A Java interface is a simple example of a partial specification of behaviour. -
Reducing the Storage Overhead of Main-Memory OLTP Databases with Hybrid Indexes
Reducing the Storage Overhead of Main-Memory OLTP Databases with Hybrid Indexes Huanchen Zhang David G. Andersen Andrew Pavlo Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University [email protected] [email protected] [email protected] Michael Kaminsky Lin Ma Rui Shen Intel Labs Carnegie Mellon University VoltDB [email protected] [email protected] [email protected] ABSTRACT keep more data resident in memory. Higher memory efficiency al- Using indexes for query execution is crucial for achieving high per- lows for a larger working set, which enables the system to achieve formance in modern on-line transaction processing databases. For higher performance with the same hardware. a main-memory database, however, these indexes consume a large Index data structures consume a large portion of the database’s fraction of the total memory available and are thus a major source total memory—particularly in OLTP databases, where tuples are of storage overhead of in-memory databases. To reduce this over- relatively small and tables can have many indexes. For example, head, we propose using a two-stage index: The first stage ingests when running TPC-C on H-Store [33], a state-of-the-art in-memory all incoming entries and is kept small for fast read and write opera- DBMS, indexes consume around 55% of the total memory. Freeing tions. The index periodically migrates entries from the first stage to up that memory can lead to the above-mentioned benefits: lower the second, which uses a more compact, read-optimized data struc- costs and/or the ability to store additional data.