2. Related Work

Total Page:16

File Type:pdf, Size:1020Kb

2. Related Work 2. Related work File prefetching is an effective technique for improving file access performance. File prefetching brings two major advantages. First, applications execute smoothly because they hit more in the file cache. Second, there is less “burst” load placed on the network because prefetching is done only when there is network bandwidth available rather than on demand. On the other hand, there are two main costs of prefetching. One cost is the CPU cycles expended by the client in determining when and what to prefetch. Cycles are spent both on gathering the information which is necessary to make prefetching decisions, and on actually executing the prefetching. The other cost is the network bandwidth wasted when prefetch decisions inevitably prove less than perfect [5]. There are kinds of distributed file systems using file prefetching to improve performance. File prefetching has also been used in web prefetching for tolerating web access latency. The following briefly describes works involving file prefetching on distributed file system, Web prefetching, and automatic prefetching. 2.1 Distributed file system Now a day, network file system [11] is more and more mature. Network file system is usually named as distributed file system, because shared files and directories can be supported by many unlike computers on network. Distributed file system can let users from different computing systems access their own files in the same directory. The primary concept of distributed file system is client/server system. One computer system provides other computers for accessing services. The supply device is server, and the request one is client. For all users who use or manage computers, distributed file system provides 12 many very important advantages. A user can access files in the same form from one or different computers. For system management, they can simplify the manage works like backup or recovery and can centralize the standard system manage work like create/delete account or monitor the use of system and so on. Because the high-speed network, powerful local servers, and distributed file system which have been tested by time work well in the “open source code” environment, we can use distributed file system more easily than before. The following is a brief introduction of some kinds of distributed file system. z AFS (Andrew File System) & OpenAFS AFS [12] [13] is a distributed file system product, pioneered at Carnegie Mellon University and supported and developed as a product by Transarc Corporation (now IBM Pittsburgh Labs). It offers client/server architecture for file sharing, providing location independence, scalability and transparent migration capabilities for data. IBM branched the source of the AFS product, and made a copy of the source available for community development and maintenance. They called the release OpenAFS. The original release is distributed here as OpenAFS 1.0. OpenAFS is based on client/server architecture model and is aimed at WAN application. To reduce the delay of network transmission, OpenAFS uses cache to overcome this problem. While a user is opening a file to edit, the file server sends the front blocks to the client device. S/he may very likely want to edit the rest part of this file. About this reason, OpenAFS file server will fetch the whole file and send it to the cache of the client device. When this user continues to edit this file, the rest of this file has already been the local cache. Before writing back this file, there is no more network transmission. z NFS (Network File System) The Network File System (NFS) [14] is the most popular distributed file system. 13 Almost all UNIX and UNIX-like system can use NFS. It was developed to allow machines to mount a disk partition on a remote machine as if it were on a local hard drive. This allows for fast, seamless sharing of files across a network. It also gives the potential for unwanted people to access your hard drive over the network (and thereby possibly read your email and delete all your files as well as break into your system) if you set it up incorrectly. So please read the Security section of this document carefully if you intend to implement an NFS setup. The latest one, NFS (Network File System) version 4 [15] is a distributed file system protocol which owes heritage to NFS protocol versions 2 [16] and 3 [17]. Unlike earlier versions, the NFS version 4 protocol supports traditional file access while integrating support for file locking and the mount protocol. In addition, support for strong security (and its negotiation), compound operations, client caching, and internationalization have been added. Of course, attention has been applied to making NFS version 4 operate well in an Internet environment. z Coda Coda [18] [19] is an advanced networked file system. It has been developed at CMU since 1987 by the systems group of M. Satyanarayanan. in the SCS department. Actually, Coda is a branch of AFS and is produced based on the source code of AFS version 2. So, Coda can share many functions with AFS. Its main goal is to solve problems with worse or even inexistence network connection. Coda is the first distributed file system supporting disconnected operation for mobile computing. This means that a user can continue to operate files in cache even if the network is disconnected. While reconnecting, the client device will synchronize files in the local cache and those in the file server automatically. z GFS (Global File System) Sistina GFS [20] is the industry’s most advanced and mature scalable file system. 14 Recognized as the de facto cluster file system on Linux, Sistina GFS is a highly stable solution for enterprise and technical computing applications requiring reliable access to data. Sistina GFS allows multiple servers on a Storage Area Network (SAN) to have read and write access to a single file system on shared SAN devices, delivering the strength, safety and simplicity demanded by enterprise and technical computing environments. z InterMezzo InterMezzo [21] is a new distributed file system with a focus on high availability. InterMezzo will be suitable for replication of servers, mobile computing, managing system software on large clusters, and for maintenance of high availability clusters. For example, InterMezzo offers disconnected operation and automatic recovery from network outages. InterMezzo is an Open Source (GPL) project. InterMezzo entered the Linux kernel at version 2.4.15. z Sprite Sprite [22] [23] is a research operating system developed at the University of California, Berkeley, by John Ousterhout's research group. Sprite is a distributed operating system that provides a single system image to a cluster of workstations. It provides very high file system performance through client and server caching. It has process migration to take advantage of idle machines. It was used as a testbed for research in log-structured file systems, striped file systems, crash recovery, and RAID file systems, among other things. z xFS There is a serverless file system called xFS [24] which will attempt to provide low latency, high bandwidth access to file system data by distributing the functionality of the server among the clients. The typical duties of a server include 15 maintaining cache coherence, locating data, and servicing disk requests. The developers of xFS are currently developing cache coherence protocols which use the collective memory of the clients as a system-wide cache. By reducing the amount of redundant caching among clients and allowing the memory of idle machines to be utilized, cooperative caching can lower the latency of reads by reducing number of requests which must go to disk. The function of locating data in xFS is distributed by having each client responsible for servicing requests on a subset of the files. File data is striped across multiple clients to provide high bandwidth. The striped data includes parity information which can be used to reconstruct a missing stripe segment due to, for example, a machine being down. In this way, no node is a single point of failure. 2.2 Web prefetching People use the World Wide Web (WWW) because it gives quick and easy access to a tremendous variety of information in remote locations. Users do not like to wait for their results; they tend to avoid or complain about Web pages that take a long time to retrieve. That is, users care about Web latency. In distributed information systems like the World Wide Web, prefetching techniques attempt to predict the future requests of users based on past history, as observed at the client, server, or proxy. Prefetching for the Web is an active area of study that has considerable practical. The objective of prefetching is the reduction of the user perceived latency. Web servers are in better position in making predictions about future references, since they log a significant part of requests by all Internet clients for the resources they own. The prediction engine can be implemented by exchange of messages between the server and clients, having the server piggybacking information about the predicted resources onto regular response messages, avoiding establishment of any new TCP connections. 16 WMo is a new algorithm whose characteristics include three factors: a) the order of dependencies between page accesses, b) the noise present in user (i.e., access that are not part of a pattern), c) the ordering of accesses within access sequences, that characterize the performance of predictive web prefetching algorithms [25] [26]. However, there is no way for the approach to pre-retrieve documents that are newly created or never visited before. For example, all anchored URLs of a page are fresh when a client gets into a new web site and none of them will be pre-fetched by the approaches.
Recommended publications
  • AFS - a Secure Distributed File System
    SLAC-PUB-11152 Part III: AFS - A Secure Distributed File System Alf Wachsmann Submitted to Linux Journal issue #132/April 2005 Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Work supported by Department of Energy contract DE–AC02–76SF00515. SLAC-PUB-11152.txt Part III: AFS - A Secure Distributed File System III.1 Introduction AFS is a secure distributed global file system providing location independence, scalability and transparent migration capabilities for data. AFS works across a multitude of Unix and non-Unix operating systems and is used at many large sites in production for many years. AFS still provides unique features that are not available with other distributed file systems even though AFS is almost 20 years old. This age might make it less appealing to some but with IBM making AFS available as open-source in 2000, new interest in use and development was sparked. When talking about AFS, people often mention other file systems as potential alternatives. Coda (http://www.coda.cs.cmu.edu/) with its disconnected mode will always be a research project and never have production quality. Intermezzo (http://www.inter-mezzo.org/) is now in the Linux kernel but not available for any other operating systems. NFSv4 (http://www.nfsv4.org/) which picked up many ideas from AFS and Coda is not mature enough yet to be used in serious production mode. This article presents the rich features of AFS and invites readers to play with it. III.2 Features and Benefits of AFS AFS client software is available for many Unix flavors: HP, Compaq, IBM, SUN, SGI, Linux.
    [Show full text]
  • Linux Kernal II 9.1 Architecture
    Page 1 of 7 Linux Kernal II 9.1 Architecture: The Linux kernel is a Unix-like operating system kernel used by a variety of operating systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a prominent example of free and open source software. Programming language The Linux kernel is written in the version of the C programming language supported by GCC (which has introduced a number of extensions and changes to standard C), together with a number of short sections of code written in the assembly language (in GCC's "AT&T-style" syntax) of the target architecture. Because of the extensions to C it supports, GCC was for a long time the only compiler capable of correctly building the Linux kernel. Compiler compatibility GCC is the default compiler for the Linux kernel source. In 2004, Intel claimed to have modified the kernel so that its C compiler also was capable of compiling it. There was another such reported success in 2009 with a modified 2.6.22 version of the kernel. Since 2010, effort has been underway to build the Linux kernel with Clang, an alternative compiler for the C language; as of 12 April 2014, the official kernel could almost be compiled by Clang. The project dedicated to this effort is named LLVMLinxu after the LLVM compiler infrastructure upon which Clang is built. LLVMLinux does not aim to fork either the Linux kernel or the LLVM, therefore it is a meta-project composed of patches that are eventually submitted to the upstream projects.
    [Show full text]
  • Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
    Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3
    [Show full text]
  • Comparative Analysis of Distributed and Parallel File Systems' Internal Techniques
    Comparative Analysis of Distributed and Parallel File Systems’ Internal Techniques Viacheslav Dubeyko Content 1 TERMINOLOGY AND ABBREVIATIONS ................................................................................ 4 2 INTRODUCTION......................................................................................................................... 5 3 COMPARATIVE ANALYSIS METHODOLOGY ....................................................................... 5 4 FILE SYSTEM FEATURES CLASSIFICATION ........................................................................ 5 4.1 Distributed File Systems ............................................................................................................................ 6 4.1.1 HDFS ..................................................................................................................................................... 6 4.1.2 GFS (Google File System) ....................................................................................................................... 7 4.1.3 InterMezzo ............................................................................................................................................ 9 4.1.4 CodA .................................................................................................................................................... 10 4.1.5 Ceph.................................................................................................................................................... 12 4.1.6 DDFS ..................................................................................................................................................
    [Show full text]
  • A Parallel File System for Linux Clusters Authors: Philip H
    PVFS: A Parallel File System for Linux Clusters Authors: Philip H. Carns Walter B. Ligon III Robert B. Ross Rajeev Thakur Presented by: Pooja Nilangekar [email protected] Motivation ● Cluster computing is a mainstream method for parallel computing. ● Linux is the most common OS for cluster computing. ● Lack of production-quality performant parallel file system for Linux clusters. ● Linux clusters cannot be used for large I/O-intensive parallel applications. Solution: Parallel Virtual File System (PVFS) for linux clusters. Used at: Argonne National Laboratory, NASA Goddard Space Flight Center, and Oak Ridge National Laboratory. Objectives for PVFS 1. Basic software platform for pursuing further research in parallel I/O and parallel file systems in the context of Linux clusters. a. Requires a stable, full-featured parallel file system to begin with. 2. Meet the need for a parallel file system for Linux clusters. ● High bandwidth for concurrent read/write operations. ● Multiple API support: a native PVFS API, the UNIX/POSIX I/O API, other APIS MPI-IO. ● Common UNIX shell commands, such as ls, cp, and rm. ● Compatible with applications developed with the UNIX I/O API. ● Robust and scalable. ● Easy to install and use. ● Distribute the software as open source. Related Work ● Commercial parallel file systems ○ PFS (Intel Paragon), PIOFS & GPFS (IBM SP), HFS (HP Exemplar), XFS (SGI Origin2000). ○ High performance and functionality desired for I/O-intensive applications. ○ Available only on the specific platforms. ● Distributed file systems ○ NFS, AFS/Coda, InterMezzo, xFS, and GFS. ○ Distributed access to files from multiple client machines. ○ Varying consistency semantics and caching behavior.
    [Show full text]
  • A Distributed NFS Server for Clusters of Workstations
    nfsp: A Distributed NFS Server for Clusters of Workstations Pierre Lombard, Yves Denneulin Laboratoire Informatique et Distribution - IMAG ENSIMAG - Antenne de Montbonnot - ZIRST 51 avenue Jean Kuntzmann, 38330 Montbonnot Saint-Martin, France ¡ Pierre.Lombard,Yves.Denneulin ¢ @imag.fr Abstract fers a common naming space (one network volume), has performance good enough to saturate the bandwidth of the A consequence of the increasing popularity of Beowulf network, needs minimal modifications on the client side (no clusters has been their increasing size (in number of nodes). new protocol) and no extra administration cost. Yet, the hard drives available on these nodes are only used The results of a survey on several existing systems (see for the system and temporary files, thus wasting a lot of section 2) did not satisfy our needs. Existing systems often space (several TiB on large clusters !). The systems that have too many features and do not take into account the pe- might help recycling this otherwise-unused space are few culiarities of a typical cluster: highly available nodes, local and far between. This paper presents a NFS server that network, secure environment, disks on most nodes, ”very” aims at using the unused disk space spread over the cluster standard hardware. As we wanted to use a subset of nodes nodes and at offering performance and scalability improve- as a distributed file server but without using a new protocol ments (compared to the plain NFS servers). The architec- because it often requires kernel alterations and/or an heavy ture of our solution uses a metaserver and I/O daemons.
    [Show full text]
  • PVFS: a Parallel File System for Linux Clusters
    In Proc. of the Extreme Linux Track: 4th Annual Linux Showcase and Conference, October 2000. PVFS: A Parallel File System for Linux Clusters Philip H. Carns Walter B. Ligon III Parallel Architecture Research Laboratory Clemson University, Clemson, SC 29634, USA ¡ pcarns, walt ¢ @parl.clemson.edu Robert B. Ross Rajeev Thakur Mathematics and Computer Science Division Argonne National Laboratory, Argonne, IL 60439, USA ¡ rross, thakur ¢ @mcs.anl.gov Abstract 1 Introduction Cluster computing has recently emerged as a main- As Linux clusters have matured as platforms for low- stream method for parallel computing in many applica- cost, high-performance parallel computing, software tion domains, with Linux leading the pack as the most packages to provide many key services have emerged, popular operating system for clusters. As researchers especially in areas such as message passing and net- continue to push the limits of the capabilities of clus- working. One area devoid of support, however, has ters, new hardware and software have been developed to been parallel file systems, which are critical for high- meet cluster computing’s needs. In particular, hardware performance I/O on such clusters. We have developed a and software for message passing have matured a great parallel file system for Linux clusters, called the Parallel deal since the early days of Linux cluster computing; in- Virtual File System (PVFS). PVFS is intended both as deed, in many cases, cluster networks rival the networks a high-performance parallel file system that anyone can of commercial parallel machines. These advances have download and use and as a tool for pursuing further re- broadened the range of problems that can be effectively search in parallel I/O and parallel file systems for Linux solved on clusters.
    [Show full text]
  • Proceedings of the 4Th Annual Linux Showcase & Conference, Atlanta
    USENIX Association Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta Atlanta, Georgia, USA October 10 –14, 2000 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. The Linux BIOS Ron Minnich, James Hendricks, Dale Webster Advanced Computing Lab, Los Alamos National Labs Los Alamos, New Mexico August 15, 2000 Abstract the LinuxBIOS to other machines. According to one ven- dor, weshould be able to purchase their LinuxBIOS-based The Linux BIOS replaces the normal BIOS found on PCs, mainboards by the end of this year. Alphas, and other machines. The BIOS boot and setup is eliminated and replaced by a very simple initialization phase, followed by a gunzip of a Linux kernel. The Linux 1 Introduction kernel is then started and from there on the boot proceeds as normal. Current measurements on two mainboards Current PC and Alpha cluster nodes, as delivered, are show we can go from a machine power-off state to the dependent on a vendor-supplied BIOS for booting. The “mount root” step in a under a second, depending on the BIOS in turn relies on inherently unreliable devices – type of hardware in the machine.
    [Show full text]
  • Journaled File System (JFS) for Linux UT, Texas 4/08/2002
    Journaled File System (JFS) for Linux UT, Texas 4/08/2002 Steve Best [email protected] Linux Technology Center - JFS for Linux IBM Austin http://oss.software.ibm.com/developer/opensource/jfs/project/pub/jfs040802.pdf Overview of Talk Linux Filesystems Features of JFS Why log/journal Performance JFS project GPL Licensed Source of the port Goal to run on all architectures (x86, PowerPC, S/390, ARM) Goal to get into kernel.org source 2.4.x & 2.5.x New features being added Other Journaling File Systems Ext3, ReiserFS, XFS Linux Filesystems Local disk filesystems Ext2, msdos/vfat, isofs/udf, ntfs/hpfs,ufs, ..... Newer journaling filesystems Ext3, ReiserFS, XFS, JFS Network filesystems NFS, AFS, SMBFS Distributed filesystems Coda, InterMezzo, GFS, GPFS Others Proc, devfs, shmfs, ramfs Virtual Filesystem Layer abstraction layer above file systems Filesystems modular, except boot fs Module name = fs type in /etc/fstab VFS does not know fs specifics VFS works with generic superblock & Inode Superblock/inode hold pointers to fs data/functions VFS calls method in inode by name Virtual and Filesystem Application LibC Syscall VFS ext2 JFS proc NFS SMB Blockdev Kernel Network VFS & FS Mount of FS checks /etc/fstab for type Kernel loads module for filesystem Filesystem registers itself with kernel VFS only knows fs type, fs read_super method VFS calls read_super Reads superblock from disk, initializes generic sb Superblock points to fs-specific operations Read/write/update/delete inode Write superblock Statfs(returns used & free space, etc.) VFS & FS read_super loads root inode inode has fs-specific data, operations Inode operations Create/lookup/link/unlink file mkdir/rmdir rename File operations Seek/read/write/sync mmap/ioctl VFS Role Summary Keep track of available file system types.
    [Show full text]
  • Servers Reintegration in Disconnection-Resilient File Systems for Mobile Clients
    Servers Reintegration in Disconnection-Resilient File Systems for Mobile Clients Azzedine Boukerche Raed Al-Shaikh PARADISE Research Laboratory SITE, University of Ottawa Email:{boukerch, rshaikh}@site.uottawa.ca Abstract Servers’ reintegration is a mode of file system operation that allows file servers to synchronize their data after network partitions. The reintegration design supports the main objectives of the disconnection-resilient file systems, which is to provide high available and reliable storage for files, and guarantees that file operations are executed in spite of concurrency and failures. In this paper, we show that server reintegration is efficient and practical by describing its design and implementation in Paradise File System. Moreover, we report on its performance evaluation using a cluster of workstations. Our results indicate clearly that our design exhibits a significant degree of automation and conflict- free mobile file system. 1. Introduction In this paper, we explore the server reintegration The last two decades have witnessed an increase mechanism that is used in Paradise Mobile File in complexity and maturity of distributed file System (PFS) [1]. In section 2, we review the related systems. Both well-established commercial and work done on this field , and in section 3, we present research systems have addressed a vast palette of a detailed description of our design. In section 4, we users’ needs in today’s highly distributed report the performance and tests results. The last environments. Those needs range from failure section also states our conclusions. resiliency to mobility, to extended file sharing, and to dramatic scalability. However, even the most 2. Related Work advanced of current systems fail to tackle the issue The two systems that are most closely related to of continuous availability of every mobile client’s our work are Coda [1,2,4] and InterMezzo [2,3].
    [Show full text]
  • File Replication with the Intermezzo File System
    The InterMezzo File System Peter J. Braam, [email protected] Carnegie Mellon University & Stelias Computing Michael Callahan, [email protected] The Roda Group Phil Schwan, [email protected] Stelias Computing Abstract To keep our project modest, we are first targeting the project of online directory Is it possible to implement a distributed file replication on a system area network, allowing system, retaining some of the advanced for network and system failures. This exposes protocol features of systems like Coda, while many of the subsystems needed, but leaves getting an implementation that is an order of some others aside. However, our paper magnitude simpler? We claim the answer is describes the broader design issues, parts of “yes”, and InterMezzo is well on its way which will be implemented and likely modified towards being a prototype of such a system. in the process of bringing InterMezzo forward. The key design decisions were to exploit local file systems as server storage and as a client The code for InterMezzo will soon be available cache and make the kernel file system driver a at http://www.inter-mezzo.org. wrapper around a local file system. We use a rich, high level language and work with Acknowledgements: The authors thank the asynchronous completion instead of threads. other members of the Coda project for fruitful Finally, we rely on existing infrastructure, such discussions. This research was supported by as TCP. This is in contrast with systems like the Air Force Materiel Command (AFMC) under Coda and AFS, which implement their entire DARPA contract number F19628-96-C-0061.
    [Show full text]
  • Secure Filesystems
    Secure Filesystems Simon Wilkinson and Craig Strachan School of Informatics University of Edinburgh [email protected] [email protected] February 26, 2007 1 Introduction The School of Informatics at Edinburgh University is in the process of deploying a next generation, secure, networked filesystem for general computing use. This paper presents an overview of our experiences to date in this deployment. It discusses the local requirements for a networked file system, provides an evaluation of products in this space, and details our reasons for choosing AFS. It addresses the issues involved in deploying OpenAFS over a medium scale site, discussing the AFS architecture, and considering disaster recovery and backup issue. Finally, it examines the lessons learned from our pilot program, and presents some solutions for the technical and social issues we encountered. 2 Background The process of evaluating replacements for our existing networked file system began towards the end of 2004. At this time, the School of Informatics had approximately 1500 hosts in service located in four geographically separate sites and connected via the University of Edinburgh local area network. These hosts were mainly PCs running Red Hat Linux and maintained via a locally developed configuration system for large numbers of Linux hosts known as LCFG[1]. Six commodity file servers running Solaris 9 on Sun hardware and located at three of the four Informatics site exported the twenty terabytes of disk space available within Informatics using NFSv3. This file space was automounted onto local hosts using amd to create a site wide view of the available file space.
    [Show full text]