Aleutian Canada Goose (Branta Canadensis Leucopareia)

Total Page:16

File Type:pdf, Size:1020Kb

Aleutian Canada Goose (Branta Canadensis Leucopareia) U.S. Fish & Wildlife Service Threatened and Endangered Species Aleutian Canada goose (Branta canadensis leucopareia) Status Only slightly Threatened throughout its range larger than a (Federal Register, November 21, 1991), mallard duck, the formerly endangered (Federal Aleutian Canada Register, March 11, 1967). goose is one of the smallest Description subspecies of The Aleutian Canada goose is one of Canada goose. It the smallest subspecies of Canada nests only on goose. Adults are slightly larger than islands in the a mallard, weighing 1.8 to 2.7 North Pacific kilograms (4 to 6 pounds). Like all Ocean. USFWS Canada geese, Aleutian Canada geese photo by Rob have a black head and neck with a Lowe white cheek patch, brown wings and back, a grayish-brown breast and belly, a white rump patch, and black legs and feet. Aleutian Canada geese are distinguished from other Canada goose subspecies by their small size, short bill, and white ring encircling the base of the neck. Range and Population Level Aleutian Canada geese probably bred historically on islands south of the Alaska Peninsula west of Kodiak Canada geese breeding in the Aleutian wintering grounds, the geese frequent Island, throughout the Aleutian Islands winter primarily in the agricultural lands such as pastures Islands, and on the Commander and Central Valley of California, and geese and grainfields, and roost at night on Kuril islands in Russia. They probably breeding in the Semidi Islands winter inland lakes and coastal islands. wintered from British Columbia to near Pacific City, Oregon. Due to the northern Mexico and in Japan. Today, recovery program, the population of Reasons for Current Status most of the population nests on Buldir Aleutian Canada geese has increased The principal cause of the decline of Island, but remnant populations also from about 800 birds in the mid-1970’s the Aleutian Canada goose was persisted on Chagulak Island in the to more than 32,000 birds in 1999. predation by arctic fox (Alopex eastern Aleutians and on Kiliktagik lagopus). Foxes were introduced to Island in the Semidi Island group. Habitat and Habits many North Pacific islands for fur Reintroduced populations now also Aleutian Canada geese nest on farming, principally between 1915 and flourish on Agattu and Nizki-Alaid treeless islands in areas densely 1939, but dating back as early as the islands in the western Aleutians. vegetated by grasses, sedges, and 1750's. This introduced predator Releases of translocated geese or ferns. Nest sites usually are found on decimated populations of many species expansion of remnant populations steep, grassy hillsides near the of native birds on the islands. Geese have resulted in limited nesting on seacoast. Molting habitat is generally were particularly susceptible to Little Kiska, Amchitka, Amukta, and located farther inland than nesting predation not only during egg and Anowik (Semidi) islands. Aleutian sites. During migration and on chick stages, but also as molting adults became flightless. In addition, suitable wintering habitat is disappearing due to urbanization and Aleutian Canada Goose changing agricultural practices, Branta canadensis leucopareia particularly in the Central Valley of California. Current breeding range Management and Protection All known breeding locations of the Nizki-Alaid Aleutian Canada goose are protected Agattu within the Alaska Maritime National Wildlife Refuge. Years of effort have Buldir been devoted to removing introduced Little Kiska arctic foxes from former nesting islands and reintroducing Aleutian Canada geese. Remnant breeding Amchitka populations have increased, and reestablished populations now add to Semidi the recovery of this subspecies. Islands Additional goose translocations are Chagulak & Amukta occurring, including a project to reestablish Aleutian Canada geese from Buldir to former nesting islands The breeding range of Aleutian Canada geese is restricted to islands in the North in Russia. Pacific Ocean. Winter habitat for Aleutian Canada geese receives varying levels of Alaska, hunting of Canada geese west progress in the recovery of this protection. Many important wintering of Unimak Pass has been closed since subspecies, it may soon no longer need areas and migration stops are on 1973. Endangered Species Act protection. private lands, but Nestucca Bay National Wildlife Refuge was recently Initially listed as an endangered References established in Oregon to protect species in 1967, the Aleutian Canada Bailey, E.P. 1993. Introduction of Foxes to important wintering habitat. In goose was downlisted to “threatened” Alaskan Islands - History, Effects on Avifauna, and Eradication. U.S. California, San Joaquin River in 1991 due to successful recovery Department of the Interior, U.S. Fish and National Wildlife Refuge provides efforts and increasing population numbers. Because of continuing Wildlife Service. Resource publication 193, winter habitat for Aleutian Canada Washington, D.C. 54 pp. geese. Avian cholera is a chronic low- level problem on these wintering Byrd, G.V. 1998. Current breeding status grounds, but the losses incurred due to of the Aleutian Canada goose, a recovering this disease do not have population- endangered species. In press. Biology and level effects. Sport hunting is closed Management of Canada Geese, for all Canada geese in areas heavily Proceedings of the International Canada used by the Aleutian Canada geese. In Goose Symposium, Milwaukee, Wisconsin. For more information on this and other threatened and endangered species, contact the U.S. Fish & Wildlife Service, Ecological Services Field Office near you. Fairbanks Field Office Anchorage Field Office Northern Alaska Ecological Services (NAES) Western Alaska Ecological Services (WAES) Phone (907)456-0203 Phone (907)271-2888 Barrow Lead office for Steller’s eider, American peregrine Lead office for Aleutian Canada goose, spectacled eider, falcon, and Eskimo curlew short-tailed albatross, and Aleutian shield-fern Project review for northern Alaska Project review for western and southcentral Alaska Kotzebue Nome Juneau Field Office St. Lawrence Fairbanks Island Southeast Alaska Ecological Services U.S. Fish & Wildlife Service St. Matthew Island Anchorage (SEES) 1 800/344 WILD Nunivak Island Bethel Phone (907)586-7240 Juneau http://www.fws.gov Dillingham Ketchikan Sub-office, phone (907)225-9691 Kodiak Status review for old-growth forest species Adak July 1999 Ketchikan.
Recommended publications
  • Cougar-Squak Corridor Park Eastside Audubon Society Bird Survey
    Cougar-Squak Corridor Park Eastside Audubon Society Bird Survey Date Range Oct 1, 2015 - Sep 30, 2016 Total Number of Species 57 Total Number of Locations Cougar-Sqauk Corridor Park, Issaquah, WA Checklists 15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 Number of Species 11 11 -- 14 11 25 30 35 36 35 22 16 Number of Individuals 43 48 -- 200 72 221 210 189 372 241 113 63 Number of Checklists 1 1 -- 1 1 1 2 1 3 2 1 1 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 Species Name High Count High Count High Count High Count High Count High Count High Count High Count High Count High Count High Count High Count Canada Goose -- -- -- 2 -- 2 1 -- -- -- -- -- Trumpeter/Tundra Swan -- -- -- -- -- 10 -- -- -- -- -- -- Mallard -- -- -- -- -- 4 -- 2 -- -- -- -- Great Blue Heron -- -- -- -- -- 1 -- -- -- -- 1 -- Osprey -- -- -- -- -- -- -- 1 -- -- -- -- Bald Eagle -- -- -- -- -- -- 1 -- 1 -- -- -- Red-tailed Hawk -- -- -- -- -- -- 2 -- 1 -- -- -- Rock Pigeon -- -- -- -- -- -- 1 -- -- -- -- -- Band-tailed Pigeon -- -- -- -- -- -- -- -- 3 3 6 -- Northern Pygmy-Owl -- -- -- -- -- 1 1 -- -- -- -- -- Barred Owl -- -- -- -- -- 1 -- 1 1 -- 1 -- Vaux's Swift -- -- -- -- -- -- -- -- -- -- 2 -- Anna's Hummingbird -- -- -- -- -- -- -- -- 1 1 1 -- Rufous Hummingbird -- -- -- -- -- -- -- 2 -- -- -- -- Belted Kingfisher -- -- -- -- -- -- -- -- -- 1 -- -- Red-breasted Sapsucker -- -- -- -- -- -- 1 1 1 -- -- -- Downy Woodpecker -- -- -- -- -- -- -- -- 1 2 1 -- 6 Hairy Woodpecker 1 2 -- -- --
    [Show full text]
  • Miles, A.K., M.A. Ricca, R.G. Anthony, and J.A. Estes. 2009
    Environmental Toxicology and Chemistry, Vol. 28, No. 8, pp. 1643–1654, 2009 ᭧ 2009 SETAC Printed in the USA 0730-7268/09 $12.00 ϩ .00 ORGANOCHLORINE CONTAMINANTS IN FISHES FROM COASTAL WATERS WEST OF AMUKTA PASS, ALEUTIAN ISLANDS, ALASKA, USA A. KEITH MILES,*† MARK A. RICCA,† ROBERT G. ANTHONY,‡ and JAMES A. ESTES§ †U.S. Geological Survey, Western Ecological Research Center, Davis Field Station, 1 Shields Avenue, University of California, Davis, California 95616 ‡U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, 104 Nash Hall, Oregon State University, Corvallis, Oregon 97331 §Department of Ecology and Evolutionary Biology, Center for Ocean Health, 100 Schaffer Road, University of California, Santa Cruz, California 95060, USA (Received 2 October 2008; Accepted 6 March 2009) Abstract—Organochlorines were examined in liver and stable isotopes in muscle of fishes from the western Aleutian Islands, Alaska, in relation to islands or locations affected by military occupation. Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and rock greenling (Hexagrammos lagocephalus) were collected from nearshore waters at contemporary (decommissioned) and historical (World War II) military locations, as well as at reference locations. Total (⌺) polychlorinated biphenyls (PCBs) dominated the suite of organochlorine groups (⌺DDTs, ⌺chlordane cyclodienes, ⌺other cyclodienes, and ⌺chlo- rinated benzenes and cyclohexanes) detected in fishes at all locations, followed by ⌺DDTs and ⌺chlordanes; dichlorodiphenyldi- chloroethylene (p,pЈDDE) composed 52 to 66% of ⌺DDTs by species. Organochlorine concentrations were higher or similar in cod compared to halibut and lowest in greenling; they were among the highest for fishes in Arctic or near Arctic waters. Organ- ochlorine group concentrations varied among species and locations, but ⌺PCB concentrations in all species were consistently higher at military locations than at reference locations.
    [Show full text]
  • Homestead Poultry Feed Brochure
    PREMIUM QUALITY NUTRITION ® Mankato, MN 56001 www.HomesteadPoultryFeed.com www.facebook.com/homesteadpoultryfeeds W5191 Formulated to Produce Top-Quality Birds DUCKS & GEESE Waterfowl need somewhat less heat than chickens. In their rst week of life, their environment should be heated to 90º F. This temperature can be lowered in ve-degree increments each week until their fth week, after which they are usually ready to live without supplemental heat. Bedding Do not use wood shavings for birds less than two weeks old, as they are more likely to consume the shavings and get blocked up. Try to avoid using slick surfaces like newspapers; if you must use them, spread paper towels over the newspapers for the rst few days. Since they are so unsteady at rst, goslings are prone to a condition called splay-leg, or spraddle legs, so it is important for them to have good footing immediately after hatching. During warm weather, spending some time walking on grass each day can be very good for their legs — plus, they'll begin eating grass. Water A constant supply of fresh water is necessary for ducklings and goslings. For the rst week, a chick waterer works well. After that, however, they are too large to submerge their heads and clean their faces in the water, which all waterfowl must be able to do. ® Avoid using a bowl of water. Here’s why: First, ducklings and goslings may walk in their drinking water and/or leave droppings in it. Second, if they stay wet, they may catch a fatal cold. Provide a waterer that is deep enough for older ducklings and goslings Homestead Poultry Feeds to submerge their heads in but not deep enough for them to get inside or tip over.
    [Show full text]
  • Resource Utilization in Atka, Aleutian Islands, Alaska
    RESOURCEUTILIZATION IN ATKA, ALEUTIAN ISLANDS, ALASKA Douglas W. Veltre, Ph.D. and Mary J. Veltre, B.A. Technical Paper Number 88 Prepared for State of Alaska Department of Fish and Game Division of Subsistence Contract 83-0496 December 1983 ACKNOWLEDGMENTS To the people of Atka, who have shared so much with us over the years, go our sincere thanks for making this report possible. A number of individuals gave generously of their time and knowledge, and the Atx^am Corporation and the Atka Village Council, who assisted us in many ways, deserve particular appreciation. Mr. Moses Dirks, an Aleut language specialist from Atka, kindly helped us with Atkan Aleut terminology and place names, and these contributions are noted throughout this report. Finally, thanks go to Dr. Linda Ellanna, Deputy Director of the Division of Subsistence, for her support for this project, and to her and other individuals who offered valuable comments on an earlier draft of this report. ii TABLE OF CONTENTS ACKNOWLEDGMENTS . e . a . ii Chapter 1 INTRODUCTION . e . 1 Purpose ........................ Research objectives .................. Research methods Discussion of rese~r~h*m~t~odoio~y .................... Organization of the report .............. 2 THE NATURAL SETTING . 10 Introduction ........... 10 Location, geog;aih;,' &d*&oio&’ ........... 10 Climate ........................ 16 Flora ......................... 22 Terrestrial fauna ................... 22 Marine fauna ..................... 23 Birds ......................... 31 Conclusions ...................... 32 3 LITERATURE REVIEW AND HISTORY OF RESEARCH ON ATKA . e . 37 Introduction ..................... 37 Netsvetov .............. ......... 37 Jochelson and HrdliEka ................ 38 Bank ....................... 39 Bergslind . 40 Veltre and'Vll;r;! .................................... 41 Taniisif. ....................... 41 Bilingual materials .................. 41 Conclusions ...................... 42 iii 4 OVERVIEW OF ALEUT RESOURCE UTILIZATION . 43 Introduction ............
    [Show full text]
  • Late-Quaternary Geomorphic Processes: Effects on the Ancient Aleuts of Umnak Island in the Aleutians
    Late-Quaternary Geomorphic Processes: Effects on the Ancient Aleuts of Umnak Island in the Aleutians ROBERT F. BLACK1 ABSTRACT. Glaciation, volcanic activity, marine processes and wind action affected in various ways the lives of the ancient Aleuts of Umnak Island, who first settled at Anangula about 8,400 BP following deglaciation some 3,000 years earlier. Expanding alpine glaciers reached the sea in places about 3,000 BP without the nearby peoples being much affected. A catastrophic eruption of Okmok Volcano about 8,250 BP is suggested as the cause of the abandonment of the oldest known siteof Anangula, and subsequentmigration westward into thecentral Aleutians. Cutting of strandflats between 8,250 and 3,000 BP led to the development of a very large, accessible, year- round food resource, and an apparent proliferationof settlements. In marked contrast to other parts of Beringia, Umnak Island became the site most favourable for human settlement. RfiSUMe: Les processus géomorphologiques fini-quaternaires et leurs conséquencespour les anciens Aléoutes de Me d’Umnak dans les Aléoutiennes. La glaciation, l’activite vol- canique, les processus marins et l’actiondu vent ont affect6 de diverses façonsla vie des anciens Aleoutes de l’ile d‘Umnak, qui s’établirent B Anangula vers 8400 AP, soit environ 3000 ans après la deglaciation. Les glaciers alpins en expansion atteignirentla mer par endroit vers 3000 AP sans que les habitants du voisinage soient beaucoup affectes. On suppose qu’une eruption catastrophique du volcan Okmok vers 8250 AP a caud l’abandon du plus vieux site COMU d’Anangula et une migration vers l’ouest jusqu’au centre des A16outiennes.
    [Show full text]
  • Incubating and Hatching Eggs
    EPS-001 7/13 Incubating and Hatching Eggs Gregory S. Archer and A. Lee Cartwright* hether eggs come from a common chicken Factors that affect hatchability or an exotic bird, you must store and incu- W Breeder Hatchery bate them carefully for a successful hatch. Envi- Breeder nutrition Sanitation ronmental conditions, handling, sanitation, and Disease Egg storage record keeping are all important factors when it Mating activity Egg damage comes to incubating and hatching eggs. Egg damage Incubation—Management of Correct male and female setters and hatchers Fertile egg quality body weight Chick handling A fertile egg is alive; each egg contains living cells Egg sanitation that can become a viable embryo and then a chick. Egg storage Eggs are fragile and a successful hatch begins with undamaged eggs that are fresh, clean, and fertile. Collecting and storing fertile eggs You can produce fertile eggs yourself or obtain Fertile eggs must be collected carefully and stored them elsewhere. While commercial hatcheries properly until they are incubated. Keeping the produce quality eggs that are highly fertile, many eggs at proper storage temperatures keeps the do not ship small quantities. If you mail order embryo from starting and stopping development, eggs, be sure to pick them up promptly from your which increases embryo mortality. Collecting receiving area. Hatchability will decrease if eggs eggs frequently and storing them properly delays are handled poorly or get too hot or too cold in embryo development until you are ready to incu- transit. bate them. If you produce the eggs on site, you must care for the breeding stock properly to ensure maximum Egg storage reminders fertility.
    [Show full text]
  • Than a Meal: the Turkey in History, Myth
    More Than a Meal Abigail at United Poultry Concerns’ Thanksgiving Party Saturday, November 22, 1997. Photo: Barbara Davidson, The Washington Times, 11/27/97 More Than a Meal The Turkey in History, Myth, Ritual, and Reality Karen Davis, Ph.D. Lantern Books New York A Division of Booklight Inc. Lantern Books One Union Square West, Suite 201 New York, NY 10003 Copyright © Karen Davis, Ph.D. 2001 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of Lantern Books. Printed in the United States of America Library of Congress Cataloging-in-Publication Data For Boris, who “almost got to be The real turkey inside of me.” From Boris, by Terry Kleeman and Marie Gleason Anne Shirley, 16-year-old star of “Anne of Green Gables” (RKO-Radio) on Thanksgiving Day, 1934 Photo: Underwood & Underwood, © 1988 Underwood Photo Archives, Ltd., San Francisco Table of Contents 1 Acknowledgments . .9 Introduction: Milton, Doris, and Some “Turkeys” in Recent American History . .11 1. A History of Image Problems: The Turkey as a Mock Figure of Speech and Symbol of Failure . .17 2. The Turkey By Many Other Names: Confusing Nomenclature and Species Identification Surrounding the Native American Bird . .25 3. A True Original Native of America . .33 4. Our Token of Festive Joy . .51 5. Why Do We Hate This Celebrated Bird? . .73 6. Rituals of Spectacular Humiliation: An Attempt to Make a Pathetic Situation Seem Funny . .99 7 8 More Than a Meal 7.
    [Show full text]
  • 2015 Disease Summary
    SUMMARY OF DISEASES AFFECTING MICHIGAN WILDLIFE 2015 ABSCESS Abdominal Eastern Fox Squirrel, Trumpeter Swan, Wild Turkey Airsac Canada Goose Articular White-tailed Deer Cranial White-tailed Deer Dermal White-tailed Deer Hepatic White-tailed Deer, Red-tailed Hawk, Wild Turkey Intramuscular White-tailed Deer Muscular Moose, White-tailed Deer, Wild Turkey Ocular White-tailed Deer Pulmonary Granulomatous Focal White-tailed Deer Unspecified White-tailed Deer, Raccoon, Canada Goose Skeletal Mourning Dove Subcutaneous White-tailed Deer, Raccoon, Eastern Fox Squirrel, Mute Swan Thoracic White-tailed Deer Unspecified White-tailed Deer ADHESION Pleural White-tailed Deer 1 AIRSACCULITIS Egg Yolk Canada Goose Fibrinous Chronic Bald Eagle, Red-tailed Hawk, Canada Goose, Mallard, Wild Turkey Mycotic Trumpeter Swan, Canada Goose Necrotic Caseous Chronic Bald Eagle Unspecified Chronic Bald Eagle, Peregrine Falcon, Mute Swan, Redhead, Wild Turkey, Mallard, Mourning Dove Unspecified Snowy Owl, Common Raven, Rock Dove Unspecified Snowy Owl, Merlin, Wild Turkey, American Crow Urate Red-tailed Hawk ANOMALY Congenital White-tailed Deer ARTHROSIS Inflammatory Cooper's Hawk ASCITES Hemorrhagic White-tailed Deer, Red Fox, Beaver ASPERGILLOSIS Airsac American Robin Cranial American Robin Pulmonary Trumpeter Swan, Blue Jay 2 ASPERGILLOSIS (CONTINUED ) Splenic American Robin Unspecified Red-tailed Hawk, Snowy Owl, Trumpeter Swan, Canada Goose, Common Loon, Ring- billed Gull, American Crow, Blue Jay, European Starling BLINDNESS White-tailed Deer BOTULISM Type C Mallard
    [Show full text]
  • Aleutian Islands
    Journal of Global Change Data & Discovery. 2018, 2(1): 109-114 © 2018 GCdataPR DOI:10.3974/geodp.2018.01.18 Global Change Research Data Publishing & Repository www.geodoi.ac.cn Global Change Data Encyclopedia Aleutian Islands Liu, C.1* Yang, A. Q.2 Hu, W. Y.1 Liu, R. G.1 Shi, R. X.1 1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing100101,China Keywords: Aleutian Islands; Fox Islands; Four Mountains Islands; Andreanof Islands; Rat Islands; Near Islands; Kommandor Islands; Unimak Island; USA; Russia; data encyclopedia The Aleutian Islands extends latitude from 51°12′35″N to 55°22′14″N and longitude about 32 degrees from 165°45′10″E to 162°21′10″W, it is a chain volcanic islands belonging to both the United States and Russia[1–3] (Figure 1, 2). The islands are formed in the northern part of the Pacific Ring of Fire. They form part of the Aleutian Arc in the Northern Pacific Ocean, extending about 1,900 km westward from the Alaska Peninsula to- ward the Kamchatka Peninsula in Russia, Figure 1 Dataset of Aleutian Islands in .kmz format and mark a dividing line between the Ber- ing Sea to the north and the Pacific Ocean to the south. The islands comprise 6 groups of islands (east to west): the Fox Islands[4–5], islands of Four Mountains[6–7], Andreanof Islands[8–9], Rat Islands[10–11], Near Is- lands[12–13] and Kommandor Islands[14–15].
    [Show full text]
  • 4-H-993-W, Wildlife Habitat Evaluation Food Flash Cards
    Purdue extension 4-H-993-W Wildlife Habitat Evaluation Food Flash Cards Authors: Natalie Carroll, Professor, Youth Development right, it goes in the “fast” pile. If it takes a little and Agricultural Education longer, put the card in the “medium” pile. And if Brian Miller, Director, Illinois–Indiana Sea Grant College the learner does not know, put the card in the “no” Program Photos by the authors, unless otherwise noted. pile. Concentrate follow-up study efforts on the “medium” and “no” piles. These flash cards can help youth learn about the foods that wildlife eat. This will help them assign THE CONTEST individual food items to the appropriate food When youth attend the WHEP Career Development categories and identify which wildlife species Event (CDE), actual food specimens—not eat those foods during the Foods Activity of the pictures—will be displayed on a table (see Wildlife Habitat Evaluation Program (WHEP) Figure 1). Participants need to identify which contest. While there may be some disagreement food category is represented by the specimen. about which wildlife eat foods from the category Participants will write this food category on the top represented by the picture, the authors feel that the of the score sheet (Scantron sheet, see Figure 2) and species listed give a good representation. then mark the appropriate boxes that represent the wildlife species which eat this category of food. The Use the following pages to make flash cards by same species are listed on the flash cards, making it cutting along the dotted lines, then fold the papers much easier for the students to learn this material.
    [Show full text]
  • Waterfowl in Iowa, Overview
    STATE OF IOWA 1977 WATERFOWL IN IOWA By JACK W MUSGROVE Director DIVISION OF MUSEUM AND ARCHIVES STATE HISTORICAL DEPARTMENT and MARY R MUSGROVE Illustrated by MAYNARD F REECE Printed for STATE CONSERVATION COMMISSION DES MOINES, IOWA Copyright 1943 Copyright 1947 Copyright 1953 Copyright 1961 Copyright 1977 Published by the STATE OF IOWA Des Moines Fifth Edition FOREWORD Since the origin of man the migratory flight of waterfowl has fired his imagination. Undoubtedly the hungry caveman, as he watched wave after wave of ducks and geese pass overhead, felt a thrill, and his dull brain questioned, “Whither and why?” The same age - old attraction each spring and fall turns thousands of faces skyward when flocks of Canada geese fly over. In historic times Iowa was the nesting ground of countless flocks of ducks, geese, and swans. Much of the marshland that was their home has been tiled and has disappeared under the corn planter. However, this state is still the summer home of many species, and restoration of various areas is annually increasing the number. Iowa is more important as a cafeteria for the ducks on their semiannual flights than as a nesting ground, and multitudes of them stop in this state to feed and grow fat on waste grain. The interest in waterfowl may be observed each spring during the blue and snow goose flight along the Missouri River, where thousands of spectators gather to watch the flight. There are many bird study clubs in the state with large memberships, as well as hundreds of unaffiliated ornithologists who spend much of their leisure time observing birds.
    [Show full text]
  • Some Alaskan Notes
    270 GABRIELSON,SomeAlaskan Notes L[Auk April SOME ALASKAN NOTES BY IRA N. GABRIELSON (Concluded[romp. 150) CALn*ORNIAMumu•, Uria aalgecali[ornica (Bryant).--This was prob- ably the mostabundant species observed on the trip. We did not see California Murres until we reachedSeward (June 10) where there was a large colony associatedwith the still more numerousPacific Kittiwakes.The deepwater at the baseof the cliff allowedus to drift the boat closeand in the clear depthswe could see the birds literally flyingunder the water as expertlyas fishes. Often they came to the surface,saw the boat, and instantly dived again. The great coloniesof the Semidisand Kagamil Island were the largest,composed largely or entirely of this species. In the former island group, wheneverwe approachedthe precipitouscliffs dosely enough to see distinctly,we found every available shelf and nook crowdedwith tourres. At Kagamil Island we traveledin the 'Brown Bear' for at least two miles along cliffs similarly occupied,and the water was covered with birds. These were two of the most impressiveof the bird coloniesseen on the trip. On BogoslofIsland an almostequally large concentra- tion of tourrescontained both this speciesand the next. PALLAS'SMumu•, Uria lornvia arra (Pallas).--Thisnorthern species was first found on BogoslofIsland (June 24). At St. GeorgeIsland (July 8) and St. Paul Island (July 4-6) Pallas's Murre was common,while at Walrus Island (July 7) the enormous murre colony was comprisedlargely, if not entirely, of this species. I saw only one bird there that I thought was a California Murre and it movedaway before I couldbe sure. Pallas'sMurre wasabundant also at St.
    [Show full text]