Theoretical Investigations Into the Effects of Reaction Environment On

Total Page:16

File Type:pdf, Size:1020Kb

Theoretical Investigations Into the Effects of Reaction Environment On Theoretical Investigations into the Effects of Reaction Environment on Acid-Catalyzed Dehydration of Biomass-Derived Oxygenates A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Chotitath Sanpitakseree IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advised by Prof. Matthew Neurock April 2020 Copyright © 2020 by Chotitath Sanpitakseree Abstract The growing concerns over greenhouse gas emissions and the limited fossil fuel resources has driven the development of alternative carbon-neutral energy sources. Lignocellulosic biomass is considered an attractive option as they are renewable and are available in abundance at low cost. However, these feedstocks possess relatively low carbon/oxygen ratio and thus making the oxygen removal necessary to increase the energy density. The chemical treatment of biomass in aqueous phase typically involves initial decomposition of sugar polymers into individual sugar monomers followed by a series of acid-catalyzed dehydration steps. The intermediate products that from include 5- hydroxymethylfurfural (HMF), 2-furfuraldehyde (furfural), levulinic acid, and formic acid which can be further upgraded to liquid fuel. These processes are relatively cost-efficient as they can be carried out in aqueous phase at low temperature. Despite its economic potential, very little is known about the effects of solvent on the dehydration kinetics. In this work, we utilized ab initio quantum chemical methods to examine the underlying principles that control the reactivity and selectivity of biomass conversion reactions, especially Brønsted acid-catalyzed dehydration of biomass-derived oxygenates in organic solvent/water mixtures. Recent experimental studies have shown that the rate of acid-catalyzed dehydration of sugars increases by up to two orders of magnitude when the reaction is carried out in polar aprotic solvent/water mixtures such as DMSO/water mixtures and acetonitrile/water mixtures in comparison to water solvent. Furthermore, the addition of metal halides such as chloride anion into the reaction media has been shown to significantly improve the i reactivity and selectivity towards the desired HMF product. In order to develop better understandings of these observations, we used ab initio molecular dynamics (AIMD) together with classical molecular dynamics simulations to explore the effects of reaction environment in liquid phase on the dehydration reactions of biomass-derived oxygenates. Our calculations suggest that the rate of Brønsted acid catalyzed dehydration in polar aprotic solvent/water mixtures is governed by the relative stability between reactants in comparison to transition state in the rate determining step. This difference in the stability is in turn controlled by the different extent of solvation for these reactive species in different solvents which explains the reactivity trend observed experimentally. The molecular dynamics trajectories for organic solvent/water systems reveal that the solvent- solute as well as solvent-solvent interactions result in the reorganization of solvent molecules around the solvated species, leading to the formation of hydrophilic domain on the reactive polyol hydroxyl groups in which the acidic proton and other hydrophilic species reside. The localization of these reactive species in close vicinity facilitates the dehydration reaction, stabilizes the charged transition state, and lowers the activation free energy of dehydration. The investigation is also extended to different reaction paths leading to the formation of humins side products to elucidate the effects of solvent on the selectivity of dehydration reactions toward HMF. In the second part of this thesis, we focus on the use of heterogeneous catalyst for dehydration reactions. The use of heterogeneous catalyst is favored over homogeneous catalyst due to the ease of catalyst recovery. However, the ab initio computational investigation of liquid-phase reactions in microporous catalyst is challenging as the result ii can be sensitive to the number of solvent molecules and reactive species available in the zeolite pore. In this work, we thus focused on developing an atomistic model to predict the adsorption properties of water molecules in industrially common Faujasite and Mordenite zeolites. The model features a new ‘cluster swap’ Monte Carlo move that allows simultaneous simulation of cation siting and aluminum distribution within the zeolite framework. The simulation results were found to satisfactorily reproduce the cationic siting in Faujasite as well as aluminum occupancy of the framework T-sites in Mordenite over a broad range of Si/Al ratios. The obtained parameters can be further improved to include the adsorption affinity for each solvent and solvated species. iii Table of Contents Abstract ............................................................................................................................... i Table of Contents ............................................................................................................. iv List of Tables ................................................................................................................... vii List of Figures ................................................................................................................. viii Chapter 1 – Introduction ................................................................................................. 1 Chapter 2 – Solvent-Enabled Control of Reactivity for Liquid Phase Reactions of Biomass-Derived Compounds .......................................................................................... 6 2.1 Introduction ............................................................................................................... 6 2.2 Results and Discussions ............................................................................................ 7 2.2.1 Experimental reaction kinetics studies ............................................................... 7 2.2.2 Molecular dynamics simulations ...................................................................... 12 2.2.3 Solvent-enabled control of reactivity for liquid-phase reactions ..................... 21 2.3 Conclusions ............................................................................................................. 23 2.4 Methods ................................................................................................................... 24 2.4.1 Reaction kinetics experiments .......................................................................... 24 2.4.2 Reaction mechanisms ....................................................................................... 28 2.4.3 Simulation details ............................................................................................. 28 2.4.4 Free energy calculations .................................................................................. 30 2.4.5 Radial distribution functions ............................................................................ 34 2.5 Supplementary Information ..................................................................................... 35 Chapter 3 – Effects of Chloride Ions in Acid-Catalyzed Biomass Dehydration Reactions in Polar Aprotic Solvents .............................................................................. 70 3.1 Introduction ............................................................................................................. 70 3.2 Experimental Results ............................................................................................... 71 3.3 Discussion ............................................................................................................... 75 3.3.1 Experimental discussion ................................................................................... 75 3.2.2 Computational discussion ................................................................................ 85 3.4 Conclusions ............................................................................................................. 95 3.5 Methods ................................................................................................................... 95 iv 3.5.1 Reaction kinetics experiments .......................................................................... 95 3.5.2 NMR spectroscopy ............................................................................................ 97 3.5.3 Solution calorimetry ......................................................................................... 98 3.5.4 Computational simulations ............................................................................... 99 3.6 Supplementary Information ................................................................................... 105 Chapter 4 – Theoretical Investigation of Solvent and Chloride Effects on the Production 5-Hydroxymethylfurfural from Glucose ................................................ 129 4.1 Introduction ........................................................................................................... 129 4.2 Methods ................................................................................................................. 131 4.2.1 Reaction coordinates for glucose isomerization ............................................ 134 4.2.2 Reaction coordinates for fructose dehydration .............................................. 135 4.2.3 Reaction coordinates for glucose
Recommended publications
  • Trimethylsilyl Trifluoromethanesulfonate-Mediated Additions to Acetals, Nitrones, and Aminals Chelsea Safran
    University of Richmond UR Scholarship Repository Honors Theses Student Research 4-1-2013 Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals Chelsea Safran Follow this and additional works at: http://scholarship.richmond.edu/honors-theses Recommended Citation Safran, Chelsea, "Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals" (2013). Honors Theses. Paper 71. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Trimethylsilyl trifluoromethanesulfonate-mediated additions to acetals, nitrones, and aminals By Chelsea Safran Honors Thesis In Program In Biochemistry and Molecular Biology University of Richmond Richmond, VA Spring 2012 Advisor: Dr. C. Wade Downey This thesis has been accepted as part of the honors requirements in the Program in Biochemistry and Molecular Biology ______________________________ _________________ (advisor signature) (date) ______________________________ _________________ (reader signature) (date) Table of Contents i. Acknowledgements ii ii. Abstract iii iii. Chapter I: Introduction 1-4 iv. Chapter II: Amides 4-15 v. Chapter III: I. Bisthione Synthesis 16-18 II. Reactions with other N,O-acetals 18-22 vi. Chapter IV: I. Additions to Nitrones 22-25 II. Future Work 25 vii. Chapter V: Experimental I. N,O-acetal Formation 25-28 II. Addition to Nitrones 28-29 viii. Chapter VI: References 30 i Acknowledgments I would like to acknowledge my research Dr. Wade Downey for all of his time and dedication to my research for the past two years.
    [Show full text]
  • Solvatochromism, Solvents, Polarity, Pomiferin, Absorption
    Physical Chemistry 2016, 6(2): 33-38 DOI: 10.5923/j.pc.20160602.01 Study in the Solvent Polarity Effects on Solvatochromic Behaviour of Pomiferin Erol Tasal1, Ebru Gungor2,*, Tayyar Gungor2 1Physics Department, Eskisehir Osmangazi University, Eskisehir, Turkey 2Energy Systems Engineering Department, Mehmet Akif Ersoy University, Burdur, Turkey Abstract Solvent polarity is very important considering the coulombic and dispersive interactions between the charge distribution in the solubility and the polarizability of the solvent. Therefore, the solvatochromic properties of pomiferin molecule in solvents of different polarities has been investigated. So, the electronic absorption of pomiferin molecule at room temperature was analyzed by using some physical parameters such as refractive index, dielectric constant, Kamlet–Taft parameters α (hydrogen bond donating ability) and β (hydrogen bond accepting ability). The absorption spectra were decomposed by using multiple peak analysis. It was obtained that some solvents indicated a good linearity for hydrogen-bond acceptor basicity parameter, refractive index and dielectric constant with respect to wavenumber. This showed that the hydrogen-bond acceptor basicity parameter is the most important parameter for both dissociation and complex formation reactions, and the hydrogen bonding acceptor ability and the induction-dispersive forces of solvent molecules have caused the bathochromic shift in absorption maxima of pomiferin molecule. Keywords Solvatochromism, Solvents, Polarity, Pomiferin, Absorption increased collagen expression in ex vivo hair follicles [23]. 1. Introduction Ultraviolet–visible (UV-Vis) spectroscopy is proven as a convenient technique to study electronic absorption Pomiferin molecule is known to exhibit solvatochromic properties of the molecule and to understand the solvent behavior and find various pharmaceutical applications.
    [Show full text]
  • Aprotic Solvents
    1 Prioritised substance group: Aprotic solvents Responsible author Normunds Kadikis Email [email protected] Short Name of Institution VIAA, LV Phone Co-authors 1.1 Background Information In chemistry the solvents are qualitatively grouped into non-polar, polar aprotic, and polar protic solvents. A protic solvent is a solvent that has a hydrogen atom bound to oxygen (as in a hydroxyl group) or nitrogen (as in an amine group). In general terms, any solvent that contains a labile H+ is called a protic solvent. The molecules of such solvents readily donate protons (H+) to reagents. On the contrary, aprotic solvents cannot donate hydrogen as they do not have O-H or N-H bonds. The "a" means "without", and "protic" refers to protons or hydrogen atoms. Examples of non-polar solvents are benzene, toluene, chloroform, dichloromethane, etc. Examples of polar protic solvents are water, most alcohols, formic acid, ammonia, etc, In their turn, some common polar aprotic solvents are acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, etc. There are numerous aprotic solvents, and they are widely used in different applications - as pH regulators and in water treatment products, anti-freeze products, coating products, lubricants and greases, adhesives and sealants, air care products (scented candles, air freshening sprays, electric and non-electric fragrance diffusers), non-metal-surface treatment products, inks and toners, leather treatment products, polishes and waxes, washing and cleaning products. They are also used as laboratory chemicals in scientific research, in agriculture, forestry and fishing as well as in the formulation of mixtures and/or re-packaging. During the second prioritisation process within HBM4EU the ECHA and Germany proposed to include in the second list of priority substances four aprotic solvents that have a similar toxicological profile and a harmonised classification for reproductive toxicity: ▸ 1-methyl-2-pyrrolidone (NMP), ▸ 1-ethylpyrrolidin-2-one (NEP), ▸ N,N-dimethylacetamide (DMAC), ▸ N,N-dimethylformamide (DMF).
    [Show full text]
  • Selective Depolymerization of Cellulose to Solubilized Carbohydrates in Aprotic Solvent Systems Introduction Results and Discussion Results and Discussion
    4th International Conference on Thermochemical Biomass Conversion Science Bioeconomy Institute 2-5th November, 2015 Westin Chicago River North Arpa Ghosh, Robert C. Brown, Xianglan Bai Selective depolymerization of cellulose to solubilized carbohydrates in aprotic solvent systems Introduction Results and Discussion Results and Discussion Cellulose is the primary source of fermentable carbohydrates in biomass but it is inherently recalcitrant to Product Distribution of Cellulose Solvolysis in Non-catalytic Aprotic Solvents at Supercritical State: chemical and biological treatments. Effect of Reaction Conditions on LG Yields in 1,4-dioxane: (Published, [1]) Conventional method of enzymatic hydrolysis suffers from slow conversion rates, limited by inhibitors, involves costly enzyme production step. Temperature 350oC and 20 mg Cellulose LG Yields Correlated with Solvent Polarity Effect of Acid Concentration Effect of Mass loading of cellulose Effect of Temperature 40 50 70 60 Reaction time 8-16 min 0.25 mM 1 mg o 35 GVL 375 C Biomass/Cellulose Solid residue 60 50 100 Acetonitrile 40 10 mg 350oC 30 50 300oC 90 0.1 mM 40 25 MIBK Supercritical Polar Aprotic Solvent 80 Furfural THF 30 40 Acetone 20 mg 30 70 20 2 mM yield (%) Ethyl acetate 30 60 20 50 mg o 5-HMF 15 20 250 C 1,4-dioxane LGyield (%) LG LGyield (%) Solubilized Carbohydrates and 50 20 LGyield (%) 10 y = 0.9948x + 13.31 10 No acid 10 Minor Secondary Dehydration Products 40 R² = 0.867 10 Solubilized 5 30 0 0 0 Carbon yield (%) carbohydrates of DP >1 Hot and pressurized polar aprotic solvents can rapidly decompose cellulose to produce significantly high 20 0 0 5 10 15 0 2 4 0 5 10 10 AGF 0 5 10 15 20 25 Time of reaction (min) Time of reaction (min) Time of reaction (min) yields of solubilized carbohydrates (anhydrosugar levoglucosan is primary product).
    [Show full text]
  • Furanosyl Oxocarbenium Ion Conformational Energy Landscape
    DOI: 10.1002/chem.201900651 Full Paper & Stereoselectivity |Hot Paper| Furanosyl Oxocarbenium Ion Conformational Energy Landscape Maps as a Tool to Study the Glycosylation Stereoselectivity of 2-Azidofuranoses, 2-Fluorofuranoses and Methyl Furanosyl Uronates Stefan van der Vorm, Thomas Hansen, Erwin R. van Rijssel, Rolf Dekkers, Jerre M. Madern, Herman S. Overkleeft, Dmitri V. Filippov, Gijsbert A. van der Marel, and Jeroen D. C. Code*[a] Abstract: The 3D shape of glycosyl oxocarbenium ions de- ic furanoses by using a combined computational and experi- termines their stability and reactivity and the stereochemical mental approach. Surprisingly, all furanosyl donors studied course of SN1 reactions taking place on these reactive inter- react in a highly stereoselective manner to provide the 1,2- mediates is dictated by the conformation of these species. cis products, except for the reactions in the xylose series. The nature and configuration of functional groups on the The 1,2-cis selectivity for the ribo-, arabino- and lyxo-config- carbohydrate ring affect the stability of glycosyl oxocarbeni- ured furanosides can be traced back to the lowest-energy 3E um ions and control the overall shape of the cations. We or E3 conformers of the intermediate oxocarbenium ions. herein map the stereoelectronic substituent effects of the The lack of selectivity for the xylosyl donors is related to the C2-azide, C2-fluoride and C4-carboxylic acid ester on the sta- occurrence of oxocarbenium ions adopting other conforma- bility and reactivity of the complete suite of diastereoisomer- tions. Introduction and they may in fact outweigh steric effects. For example, pro- tonated iminosugars, that is, carbohydrates having the endocy- Stereoelectonic effects dictate the shape and behaviour of clic oxygen replaced by a nitrogen, may change their confor- molecules.
    [Show full text]
  • Discovery, Characterization, and Development of Small
    DISCOVERY, CHARACTERIZATION, AND DEVELOPMENT OF SMALL MOLECULE INHIBITORS OF GLYCOGEN SYNTHASE Buyun Tang Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology, Indiana University June 2020 Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ______________________________________ Thomas D. Hurley, Ph.D., Chair ______________________________________ Peter J. Roach, Ph.D. April 30, 2020 ______________________________________ Millie M. Georgiadis, Ph.D. ______________________________________ Steven M. Johnson, Ph.D. ______________________________________ Jeffrey S. Elmendorf, Ph.D. ii © 2020 Buyun Tang iii Dedication I dedicate this work to my beloved family, my grandparents, my parents, and my brother. iv Acknowledgement First and foremost, I would like to express my deepest gratitude to my thesis advisor, Dr. Thomas D. Hurley. I am grateful to have him as my research mentor over the past four years. He has continuously guided, supported, and inspired me during my study at IUSM. His passion for science and devotion of mentorship offered me the best training experience I could ever receive in graduate school. His easygoing personality reminded me of all the wonderful times inside and outside of the lab. I remember him instructing me handling crystal instrument hand by hand, flying with me to San Diego for a conference, and driving me to a farm restaurant at Illinois. Dr. Hurley is not only an outstanding research mentor, but also a trustful friend. I deeply thank him for all his time, patience, and encouragement along my graduate training.
    [Show full text]
  • Increased Glycosidic Bond Stabilities in 4-C-Hydroxymethyl Linked Disaccharides ⇑ Gour Chand Daskhan, Narayanaswamy Jayaraman
    Carbohydrate Research 346 (2011) 2394–2400 Contents lists available at SciVerse ScienceDirect Carbohydrate Research journal homepage: www.elsevier.com/locate/carres Increased glycosidic bond stabilities in 4-C-hydroxymethyl linked disaccharides ⇑ Gour Chand Daskhan, Narayanaswamy Jayaraman Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India article info abstract Article history: Three new hydroxymethyl-linked non-natural disaccharide analogues, containing an additional methy- Received 25 May 2011 lene group in between the glycosidic linkage, were synthesized by utilizing 4-C-hydroxymethyl-a-D- Received in revised form 24 August 2011 glucopyranoside as the glycosyl donor. A kinetic study was undertaken to assess the hydrolytic stabilities Accepted 25 August 2011 of these new disaccharide analogues toward acid-catalyzed hydrolysis, at 60 °C and 70 °C. The studies Available online 2 September 2011 showed that the disaccharide analogues were stable, by an order of magnitude, than naturally-occurring disaccharides, such as, cellobiose, lactose, and maltose. The first order rate constants were lower than Keywords: that of methyl glycosides and the trend of hydrolysis rate constants followed that of naturally-occurring Acid hydrolysis disaccharides. -Anomer showed faster hydrolysis than the b-anomer and the presence of axial hydroxyl Carbohydrates a Disaccharide analogues group also led to faster hydrolysis among the disaccharide analogues. Energy minimized structures, Glycosidic bond derived through molecular modeling, showed that dihedral angles around the glycosidic bond in disac- Kinetics charide analogues were nearly similar to that of naturally-occurring disaccharides. Oxocarbenium ion Ó 2011 Elsevier Ltd. All rights reserved. 1. Introduction determined to be important, prior to heterolysis of C1–O1 bond.
    [Show full text]
  • Characterization of Glycosyl Dioxolenium Ions and Their Role in Glycosylation Reactions
    ARTICLE https://doi.org/10.1038/s41467-020-16362-x OPEN Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions Thomas Hansen 1,4, Hidde Elferink2,4, Jacob M. A. van Hengst1, Kas J. Houthuijs 2, Wouter A. Remmerswaal 1, Alexandra Kromm2, Giel Berden 3, Stefan van der Vorm 1, Anouk M. Rijs 3, Hermen S. Overkleeft1, Dmitri V. Filippov1, Floris P. J. T. Rutjes2, Gijsbert A. van der Marel1, Jonathan Martens3, ✉ ✉ ✉ Jos Oomens 3 , Jeroen D. C. Codée 1 & Thomas J. Boltje 2 1234567890():,; Controlling the chemical glycosylation reaction remains the major challenge in the synthesis of oligosaccharides. Though 1,2-trans glycosidic linkages can be installed using neighboring group participation, the construction of 1,2-cis linkages is difficult and has no general solution. Long-range participation (LRP) by distal acyl groups may steer the stereoselectivity, but contradictory results have been reported on the role and strength of this stereoelectronic effect. It has been exceedingly difficult to study the bridging dioxolenium ion intermediates because of their high reactivity and fleeting nature. Here we report an integrated approach, using infrared ion spectroscopy, DFT computations, and a systematic series of glycosylation reactions to probe these ions in detail. Our study reveals how distal acyl groups can play a decisive role in shaping the stereochemical outcome of a glycosylation reaction, and opens new avenues to exploit these species in the assembly of oligosaccharides and glycoconju- gates to fuel biological research. 1 Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands. 2 Radboud University Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
    [Show full text]
  • Controlling the Stereoselectivity of Glycosylation Via Solvent Effects
    Canadian Journal of Chemistry Controlling the Stereoselectivity of Glycosylation via Solvent Effects Journal: Canadian Journal of Chemistry Manuscript ID cjc-2016-0417.R1 Manuscript Type: Invited Review Date Submitted by the Author: 16-Sep-2016 Complete List of Authors: Kafle, Arjun; University of New Mexico Liu, Jun; University of New Mexico Cui, Lina; University of New Mexico, Chemistry and Chemical Biology; University Draftof New Mexico, UNM Comprehensive Cancer Center Glycosylation, Stereoselectivity, Synthesis, Solvent effect, Carbohydrate Keyword: chemistry https://mc06.manuscriptcentral.com/cjc-pubs Page 1 of 29 Canadian Journal of Chemistry Controlling the Stereoselectivity of Glycosylation via Solvent Effects Arjun Kafle, Jun Liu, and Lina Cui* Address: Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, U.S.A. Corresponding author: e-mail: [email protected]; Tel: 505-277-6519; Fax: 505-277-2609 Invited Review Dedicated to Prof. David R. Bundle onDraft the occasion of his retirement (Special Issue for Prof. Bundle) 1 https://mc06.manuscriptcentral.com/cjc-pubs Canadian Journal of Chemistry Page 2 of 29 Abstract: This review covers a special topic in carbohydrate chemistry – solvent effects on the stereoselectivity of glycosylation reactions. Obtaining highly stereoselective glycosidic linkages is one of the most challenging tasks in organic synthesis, as it is affected by various controlling factors. One of the least understood factors is the effect of solvents. We have described the known solvent effects while providing both general rules and specific examples. We hope this review will not only help fellow researchers understand the known aspects of solvent effects and use that in their experiments, moreover we expect more studies on this topic will be started and continued to expand our understanding of the mechanistic aspects of solvent effects in glycosylation reactions.
    [Show full text]
  • The Action of Tetramethylurea and Hexamethylphosphoramide
    The action of tetramethylurea and hexamethylphosphoramide blended with other solvents on the dissolution of coal by Timothy Lee Ward A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering Montana State University © Copyright by Timothy Lee Ward (1984) Abstract: Tetramethylurea (TMU) and hexamethylphosphoramide (HMPA) were blended with a number of other solvents to determine the solvent action and effectiveness of the blends on extraction of coal as compared with that of unblended TMU/HMPA (TMU and HMPA In a 50/50 mixture). Dissolution to more than 41% was observed using 33% tetralin blended with 67% TMU/HMPA on Kittaning coal at 320°F, compared to a maximum of 40.7% dissolution observed with unblended TMU/HMPA. It was found that aromatic/hydroaromatic solvents such as tetralin, napthalene, and l-me-napthaIene, which are relatively inert toward coal at temperatures below 350°F, could be blended up to 80% by volume with TMU/HMPA without significantly reducing the ultimate dissolving power below that of unblended TMU/HMPA. Use of 80% decalin and 80% limonene blended with TMU/HMPA resulted in substantially lower extraction than unblended TMU/HMPA. Isopropyl alcohol, when blended with TMU/HMPA in amounts greater than 10%, was found to result in a substantial decrease in dissolving ability. The apparent dissolution rate for a blend of 80% tetralin and 20% TMU/HMPA is lower than for unblended TMU/HMPA, however the ultimate dissolution attained is approximately equal. At 320°F much of the ultimately attainable dissolution with TMU/HMPA and 80% tetralin blended with TMU/HMPA occurs within 5 minutes, with slow or even retrogressive dissolution after that.
    [Show full text]
  • 1 General Aspects of the Glycosidic Bond Formation Alexei V
    j1 1 General Aspects of the Glycosidic Bond Formation Alexei V. Demchenko 1.1 Introduction Since the first attempts at the turn of the twentieth century, enormous progress has been made in the area of the chemical synthesis of O-glycosides. However, it was only in the past two decades that the scientificworldhadwitnessedadramatic improvement the methods used for chemical glycosylation. The development of new classes of glycosyl donors has not only allowed accessing novel types of glycosidic linkages but also led to the discovery of rapid and convergent strategies for expeditious oligosaccharide synthesis. This chapter summarizes major prin- ciples of the glycosidic bond formation and strategies to obtain certain classes of compounds, ranging from glycosides of uncommon sugars to complex oligosac- charide sequences. 1.2 Major Types of O-Glycosidic Linkages There are two major types of O-glycosides, which are, depending on nomen- clature, most commonly defined as a-andb-, or 1,2-cis and 1,2-trans glycosides. The 1,2-cis glycosyl residues, a-glycosides for D-glucose, D-galactose, L-fucose, D-xylose or b-glycosides for D-mannose, L-arabinose, as well as their 1,2-trans counter- parts (b-glycosides for D-glucose, D-galactose, a-glycosides for D-mannose,etc.),are equally important components in a variety of natural compounds. Representative examples of common glycosides are shown in Figure 1.1. Some other types of glycosides, in particular 2-deoxyglycosides and sialosides, can be defined neither as 1,2-cis nor as 1,2-trans derivatives, yet are important targets because of their com- mon occurrence as components of many classes of natural glycostructures.
    [Show full text]
  • Glycogen, Branched Polymer of Glucose Serves As a Major Repository of Carbon and Energy in Many Organisms Form Bacteria to Highe
    STRUCTURE AND REGULATION OF YEAST GLYCOGEN SYNTHASE Sulochanadevi Baskaran Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology Indiana University August 2010 Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Thomas D. Hurley, Ph.D., Chair Anna A. DePaoli-Roach, Ph.D. Doctoral Committee Millie M. Georgiadis, Ph.D. Peter J. Roach, Ph.D. May 19, 2010 William J. Sullivan Jr., Ph.D. ii Dedication I dedicate this work to my family, friends and mentors, for their support, encouragement, inspiration and guidance. iii Acknowledgements The work presented here is a result of the collaborative effort of many people and it is my pleasure to thank everyone who made this possible. First and foremost, I am indebted to my advisor, Dr. Thomas Hurley, for his invaluable scientific guidance, enthusiastic supervision and encouragement throughout my thesis research work. I am very grateful for his support, patience and his efforts in explaining and teaching me the concepts of macromolecular crystallography. I will always be thankful to him for teaching me the most important factor that is required for scientific research - perseverance. I would like to express my sincere gratitude to my committee members Drs. Peter Roach, Anna DePaoli-Roach, Millie Georgiadis and William Sullivan for their time, support, guidance and helpful suggestions. I am thankful to lab colleagues Dr. Samantha Perez-Miller, Dr. Heather Larson, Dr. Jianzhong Zhou, Dr. Lillian González-Segura, Ram Vanam, Jason Braid, Lili Zang, Bibek Parajuli, Dr.
    [Show full text]