(SN2) Reaction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elimination Reactions E1, E2, E1cb and Ei
Elimination Reactions Dr. H. Ghosh Surendranath College, Kol-9 ________________________________________________ E1, E2, E1cB and Ei (pyrolytic syn eliminations); formation of alkenes and alkynes; mechanisms (with evidence), reactivity, regioselectivity (Saytzeff/Hofmann) and stereoselectivity; comparison between substitution and elimination. Substitution Reactions Elimination Reactions Elimination happens when the nucleophile attacks hydrogen instead of carbon Strong Base favor Elimination Bulky Nucleophile/Base favor Elimination High Temperature favors Elimination We know- This equation says that a reaction in which ΔS is positive is more thermodynamically favorable at higher temperature. Eliminations should therefore be favoured at high temperature Keep in Mind---- Mechanism Classification E1 Mechanism- Elimination Unimolecular E1 describes an elimination reaction (E) in which the rate-determining step is unimolecular (1) and does not involve the base. The leaving group leaves in this step, and the proton is removed in a separate second step E2 Mechanism- Elimination Bimolecular E2 describes an elimination (E) that has a bimolecular (2) rate-determining step that must involve the base. Loss of the leaving group is simultaneous with removal of the proton by the base Bulky t-butoxide—ideal for promoting E2 as it’s both bulky and a strong base (pKaH = 18). Other Organic Base used in Elimination Reaction These two bases are amidines—delocalization of one nitrogen’s lone pair on to the other, and the resulting stabilization of the protonated amidinium ion, E1 can occur only with substrates that can ionize to give relatively stable carbocations—tertiary, allylic or benzylic alkyl halides, for example. E1-Elimination Reaction not possible here The role of the leaving group Since the leaving group is involved in the rate-determining step of both E1 and E2, in general, any good leaving group will lead to a fast elimination. -
Recent Advances in the Direct Nucleophilic Substitution of Allylic
SHORT REVIEW ▌25 Recentshort review Advances in the Direct Nucleophilic Substitution of Allylic Alcohols through SN1-Type Reactions AlejandroSN1 Reactions of Allylic Alcohols Baeza,* Carmen Nájera* Departamento de Química Orgánica and Instituto de Síntesis Orgánica, University of Alicante, Apdo.99, 03080 Alicante, Spain Fax +34(965)903549; E-mail: [email protected]; E-mail: [email protected] Received: 03.10.2013; Accepted after revision: 06.11.2013 Abstract: Direct nucleophilic substitution reactions of allylic alco- hols are environmentally friendly, since they generate only water as a byproduct, allowing access to new allylic compounds. This reac- tion has, thus, attracted the interest of the chemical community and several strategies have been developed for its successful accom- plishment. This review gathers the latest advances in this methodol- ogy involving SN1-type reactions. 1 Introduction 2SN1-Type Direct Nucleophilic Substitution Reactions of Allylic Alcohols 2.1 Lewis Acids as Catalysts Alejandro Baeza was born in Alicante (Spain) in 1979. He studied 2.2 Brønsted Acids as Catalysts chemistry at the University of Alicante and he received his M.Sc. (2003) and Ph. D. degrees (2006) from here under the supervision of 2.3 Other Promoters Prof. José Miguel Sansano and Prof. Carmen Nájera. He was a post- 3 Conclusions and Outlook doctoral researcher in Prof. Pfaltz’s research group (2007–2010). In 2010 he returned to Alicante and joined the research group of Prof. Key words: S 1 reaction, allylic substitution, carbocations, allylic N Carmen Nájera. His main research interests focus on the development alcohols, green chemistry of new environmentally friendly methodologies, especially in asym- metric synthesis. -
[3+2]-ANNULATION REACTIONS with NITROALKENES in the SYNTHESIS of AROMATIC FIVE-MEMBERED NITROGEN HETEROCYCLES Vladimir A. Motorn
237 [3+2] - ANNULATION REACTIONS WIT H NITROALKENES IN THE SYNTHESIS OF AROMATIC FIVE - MEMBERED NITROGEN HETEROCYCLES DOI: http://dx.medra.org/ 10.17374/targets.2020.23.2 37 Vladimir A. Motornov, Sema L. Ioffe, Andrey A. Tabolin * N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia (e - mail: [email protected]) Abstract. [3+2] - A nnulation reactions are widely used for the synthesis of aromatic heterocycles. In recent years they have become attractive for the preparation of medicinally relevant heterocycles due to their broad substrate scope and availability of starting materials . A nnulations with nitroalkenes may lead to different products due to the ability of the nitro - group to act both as activating group and as leaving group. Ultimately this gives rise to the synthesis of multifunctional heterocyclic compounds, including nitro - substituted ones. The present review covers various annulation re actions with nitroalkenes leading to five - membered nitrogen - containing heterocyclic rings. Oxidative annulation, annulation/elimination and self - oxidative annulation pathways are discussed. Contents 1. Introduction 2. Classification of nitroalkene - b ased annulation reactions 3. A nnulations with nitroalkenes in the synthesis of five - membered rings 3.1. Synthesis of pyrroles 3.1.1. Barton - Zard pyrrole synthesis 3.1.2. Annulation with enamines 3.1.3. Annulation with azomethine ylides 3.2. Synthesis of pyrazoles 3.2.1. Nitroalkene - diazo comp o unds [3+2] - cycloadditions 3.2.2. Oxidative annulation of nitroalkenes with hydrazones 3.3. Synthesis of imidazoles and imidazo[1,2 - a]pyridines 3.4. Synthesis of indolizines and related heter ocycles 3.5. -
Solvatochromism, Solvents, Polarity, Pomiferin, Absorption
Physical Chemistry 2016, 6(2): 33-38 DOI: 10.5923/j.pc.20160602.01 Study in the Solvent Polarity Effects on Solvatochromic Behaviour of Pomiferin Erol Tasal1, Ebru Gungor2,*, Tayyar Gungor2 1Physics Department, Eskisehir Osmangazi University, Eskisehir, Turkey 2Energy Systems Engineering Department, Mehmet Akif Ersoy University, Burdur, Turkey Abstract Solvent polarity is very important considering the coulombic and dispersive interactions between the charge distribution in the solubility and the polarizability of the solvent. Therefore, the solvatochromic properties of pomiferin molecule in solvents of different polarities has been investigated. So, the electronic absorption of pomiferin molecule at room temperature was analyzed by using some physical parameters such as refractive index, dielectric constant, Kamlet–Taft parameters α (hydrogen bond donating ability) and β (hydrogen bond accepting ability). The absorption spectra were decomposed by using multiple peak analysis. It was obtained that some solvents indicated a good linearity for hydrogen-bond acceptor basicity parameter, refractive index and dielectric constant with respect to wavenumber. This showed that the hydrogen-bond acceptor basicity parameter is the most important parameter for both dissociation and complex formation reactions, and the hydrogen bonding acceptor ability and the induction-dispersive forces of solvent molecules have caused the bathochromic shift in absorption maxima of pomiferin molecule. Keywords Solvatochromism, Solvents, Polarity, Pomiferin, Absorption increased collagen expression in ex vivo hair follicles [23]. 1. Introduction Ultraviolet–visible (UV-Vis) spectroscopy is proven as a convenient technique to study electronic absorption Pomiferin molecule is known to exhibit solvatochromic properties of the molecule and to understand the solvent behavior and find various pharmaceutical applications. -
Chapter 23: Substituted Hydrocarbons and Their Reactions
736-773_Ch23-866418 5/9/06 3:37 PM Page 736 CHAPTER 23 Substituted Hydrocarbons and Their Reactions Chemistry 2.b, 2.d, 2.h, 3.a, 3.g, 8.c, 10.a, 10.b, 10.e I&E 1.b, 1.c, 1.j What You’ll Learn ▲ You will recognize the names and structures of several important organic functional groups. ▲ You will classify reactions of organic substances as sub- stitution, addition, elimina- tion, oxidation-reduction, or condensation and predict products of these reactions. ▲ You will relate the struc- tures of synthetic polymers to their properties. Why It’s Important Whether you are removing a sandwich from plastic wrap, taking an aspirin, or shooting baskets, you’re using organic materials made of substituted hydrocarbons. These com- pounds are in turn made of molecules whose atoms include carbon, hydrogen, and other elements. Visit the Chemistry Web site at chemistrymc.com to find links about substituted hydrocarbons and their reactions. The spooled threads shown in the photo are made from large organ- ic molecules called polymers. 736 Chapter 23 736-773_Ch23-866418 5/9/06 3:37 PM Page 737 DISCOVERY LAB Making Slime Chemistry 10.b n addition to carbon and hydrogen, most organic substances con- Itain other elements that give the substances unique properties. In this lab, you will work with an organic substance consisting of long carbon chains to which many ϪOH groups are bonded. How will the properties of this substance change when these groups react to form bonds called crosslinks between the chains? Safety Precautions Do not allow solutions or product to contact eyes or exposed skin. -
Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of Electrons Above and Below Its Sigma Bond Framework
Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product. -
AROMATIC NUCLEOPHILIC SUBSTITUTION-PART -2 Electrophilic Substitution
Dr. Tripti Gangwar AROMATIC NUCLEOPHILIC SUBSTITUTION-PART -2 Electrophilic substitution ◦ The aromatic ring acts as a nucleophile, and attacks an added electrophile E+ ◦ An electron-deficient carbocation intermediate is formed (the rate- determining step) which is then deprotonated to restore aromaticity ◦ electron-donating groups on the aromatic ring (such as -OH, -OCH3, and alkyl) make the reaction faster, since they help to stabilize the electron-poor carbocation intermediate ◦ Lewis acids can make electrophiles even more electron-poor (reactive), increasing the reaction rate. For example FeBr3 / Br2 allows bromination to occur at a useful rate on benzene, whereas Br2 by itself is slow). In fact, a substitution reaction does occur! (But, as you may suspect, this isn’t an electrophilic aromatic substitution reaction.) In this substitution reaction the C-Cl bond breaks, and a C-O bond forms on the same carbon. The species that attacks the ring is a nucleophile, not an electrophile The aromatic ring is electron-poor (electrophilic), not electron rich (nucleophilic) The “leaving group” is chlorine, not H+ The position where the nucleophile attacks is determined by where the leaving group is, not by electronic and steric factors (i.e. no mix of ortho– and para- products as with electrophilic aromatic substitution). In short, the roles of the aromatic ring and attacking species are reversed! The attacking species (CH3O–) is the nucleophile, and the ring is the electrophile. Since the nucleophile is the attacking species, this type of reaction has come to be known as nucleophilic aromatic substitution. n nucleophilic aromatic substitution (NAS), all the trends you learned in electrophilic aromatic substitution operate, but in reverse. -
Aprotic Solvents
1 Prioritised substance group: Aprotic solvents Responsible author Normunds Kadikis Email [email protected] Short Name of Institution VIAA, LV Phone Co-authors 1.1 Background Information In chemistry the solvents are qualitatively grouped into non-polar, polar aprotic, and polar protic solvents. A protic solvent is a solvent that has a hydrogen atom bound to oxygen (as in a hydroxyl group) or nitrogen (as in an amine group). In general terms, any solvent that contains a labile H+ is called a protic solvent. The molecules of such solvents readily donate protons (H+) to reagents. On the contrary, aprotic solvents cannot donate hydrogen as they do not have O-H or N-H bonds. The "a" means "without", and "protic" refers to protons or hydrogen atoms. Examples of non-polar solvents are benzene, toluene, chloroform, dichloromethane, etc. Examples of polar protic solvents are water, most alcohols, formic acid, ammonia, etc, In their turn, some common polar aprotic solvents are acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, etc. There are numerous aprotic solvents, and they are widely used in different applications - as pH regulators and in water treatment products, anti-freeze products, coating products, lubricants and greases, adhesives and sealants, air care products (scented candles, air freshening sprays, electric and non-electric fragrance diffusers), non-metal-surface treatment products, inks and toners, leather treatment products, polishes and waxes, washing and cleaning products. They are also used as laboratory chemicals in scientific research, in agriculture, forestry and fishing as well as in the formulation of mixtures and/or re-packaging. During the second prioritisation process within HBM4EU the ECHA and Germany proposed to include in the second list of priority substances four aprotic solvents that have a similar toxicological profile and a harmonised classification for reproductive toxicity: ▸ 1-methyl-2-pyrrolidone (NMP), ▸ 1-ethylpyrrolidin-2-one (NEP), ▸ N,N-dimethylacetamide (DMAC), ▸ N,N-dimethylformamide (DMF). -
Nucleophilic Substitution and Elimination Reactions
8 NUCLEOPHILIC SUBSTITUTION AND ELIMINATION REACTIONS substitution reactions involve the replacement of one atom or group (X) by another (Y): We already have described one very important type of substitution reaction, the halogenation of alkanes (Section 4-4), in which a hydrogen atom is re- placed by a halogen atom (X = H, Y = halogen). The chlorination of 2,2- dimethylpropane is an example: CH3 CH3 I I CH3-C-CH3 + C12 light > CH3-C-CH2Cl + HCI I I Reactions of this type proceed by radical-chain mechanisms in which the bonds are broken and formed by atoms or radicals as reactive intermediates. This 8-1 Classification of Reagents as Electrophiles and Nucleophiles. Acids and Bases mode of bond-breaking, in which one electron goes with R and the other with X, is called homolytic bond cleavage: R 'i: X + Y. - X . + R : Y a homolytic substitution reaction There are a large number of reactions, usually occurring in solution, that do not involve atoms or radicals but rather involve ions. They occur by heterolytic cleavage as opposed to homolytic cleavage of el~ctron-pairbonds. In heterolytic bond cleavage, the electron pair can be considered to go with one or the other of the groups R and X when the bond is broken. As one ex- ample, Y is a group such that it has an unshared electron pair and also is a negative ion. A heterolytic substitution reaction in which the R:X bonding pair goes with X would lead to RY and :X? R~:X+ :YO --' :x@+ R :Y a heterolytic substitution reaction A specific substitution reaction of this type is that of chloromethane with hydroxide ion to form methanol: In this chapter, we shall discuss substitution reactions that proceed by ionic or polar mechanisms' in which the bonds cleave heterolytically. -
Selective Depolymerization of Cellulose to Solubilized Carbohydrates in Aprotic Solvent Systems Introduction Results and Discussion Results and Discussion
4th International Conference on Thermochemical Biomass Conversion Science Bioeconomy Institute 2-5th November, 2015 Westin Chicago River North Arpa Ghosh, Robert C. Brown, Xianglan Bai Selective depolymerization of cellulose to solubilized carbohydrates in aprotic solvent systems Introduction Results and Discussion Results and Discussion Cellulose is the primary source of fermentable carbohydrates in biomass but it is inherently recalcitrant to Product Distribution of Cellulose Solvolysis in Non-catalytic Aprotic Solvents at Supercritical State: chemical and biological treatments. Effect of Reaction Conditions on LG Yields in 1,4-dioxane: (Published, [1]) Conventional method of enzymatic hydrolysis suffers from slow conversion rates, limited by inhibitors, involves costly enzyme production step. Temperature 350oC and 20 mg Cellulose LG Yields Correlated with Solvent Polarity Effect of Acid Concentration Effect of Mass loading of cellulose Effect of Temperature 40 50 70 60 Reaction time 8-16 min 0.25 mM 1 mg o 35 GVL 375 C Biomass/Cellulose Solid residue 60 50 100 Acetonitrile 40 10 mg 350oC 30 50 300oC 90 0.1 mM 40 25 MIBK Supercritical Polar Aprotic Solvent 80 Furfural THF 30 40 Acetone 20 mg 30 70 20 2 mM yield (%) Ethyl acetate 30 60 20 50 mg o 5-HMF 15 20 250 C 1,4-dioxane LGyield (%) LG LGyield (%) Solubilized Carbohydrates and 50 20 LGyield (%) 10 y = 0.9948x + 13.31 10 No acid 10 Minor Secondary Dehydration Products 40 R² = 0.867 10 Solubilized 5 30 0 0 0 Carbon yield (%) carbohydrates of DP >1 Hot and pressurized polar aprotic solvents can rapidly decompose cellulose to produce significantly high 20 0 0 5 10 15 0 2 4 0 5 10 10 AGF 0 5 10 15 20 25 Time of reaction (min) Time of reaction (min) Time of reaction (min) yields of solubilized carbohydrates (anhydrosugar levoglucosan is primary product). -
Aromatic Substitution Reactions: an Overview
Review Article Published: 03 Feb, 2020 SF Journal of Pharmaceutical and Analytical Chemistry Aromatic Substitution Reactions: An Overview Kapoor Y1 and Kumar K1,2* 1School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon, Haryana, India 2School of Pharmacy and Technology Management, SVKM’s NMIMS University, Hyderabad, Telangana, India Abstract The introduction or replacement of substituent’s on aromatic rings by substitution reactions is one of the most fundamental transformations in organic chemistry. On the basis of the reaction mechanism, these substitution reactions can be divided into electrophilic, nucleophilic, radical, and transition metal catalyzed. This article also focuses on electrophilic and nucleophilic substitution mechanisms. Introduction The replacement of an atom, generally hydrogen, or a group attached to the carbon from the benzene ring by another group is known as aromatic substitution. The regioselectivity of these reactions depends upon the nature of the existing substituent and can be ortho, Meta or Para selective. Electrophilic Aromatic Substitution (EAS) reactions are important for synthetic purposes and are also among the most thoroughly studied classes of organic reactions from a mechanistic point of view. A wide variety of electrophiles can effect aromatic substitution. Usually, it is a substitution of some other group for hydrogen that is of interest, but this is not always the case. For example, both silicon and mercury substituent’s can be replaced by electrophiles. The reactivity of a particular electrophile determines which aromatic compounds can be successfully substituted. Despite the wide range of electrophilic species and aromatic ring systems that can undergo substitution, a single broad mechanistic picture encompasses most EAS reactions. -
Aromatic Nucleophilic Substitution Reaction
Aromatic Nucleophilic Substitution Reaction DR. RAJENDRA R TAYADE ASSISTANT PROFESSOR DEPARTMENT OF CHEMISTRY INSTITUTE OF SCIENCE, NAGPUR Principles There are four principal mechanisms for aromatic nucleophilic substitution which are similar to that of aliphatic nucleophilic substitution. (SN1, SN2, SNi, SET Mechanism) 1. SNAr Mechanism- addition / elimination CF3, CN, CHO, COR, COOH, Br, Cl, I Common Activating Groups for NAS Step [1] Addition of the nucleophile (:Nu–) to form a carbanion Addition of the nucleophile (:Nu–) forms a resonance-stabilized carbanion with a new C – Nu bond— three resonance structures can be drawn. • Step is rate-determining • Aromaticity of the benzene ring is lost Step [2] loss of the leaving group re-forms the aromatic ring. • This step is fast because the aromaticity of the benzene ring is restored. ? Explain why a methoxy group (CH3O) increases the rate of electrophilic aromatic substitution, but decreases the rate of nucleophilic aromatic substitution. 2.ArSN1 Mechanism- elimination /addition • This mechanism operates in the reaction of diazonium salts with nucleophiles. •The driving force resides in the strength of the bonding in the nitrogen molecule that makes it a particularly good leaving group. 3.Benzyne Mechanism- elimination /addition Step [1] Elimination of HX to form benzyne Elimination of H and X from two adjacent carbons forms a reactive benzyne intermediate Step [2] Nucleophilic addition to form the substitution product Addition of the nucleophile (–OH in this case) and protonation form the substitution product Evidence for the Benzyne Mechanism Trapping in Diels/Alder Reaction O O B E N Z Y N E C C O O O D i e l s / A l d e r O N H 3 N N Dienophile Diene A d d u c t Substrate Modification – absence of a hydrogens LG Substituent Substituent No Reaction Base Isotopic Labeling LG Nu H Nu Structure of Benzyne • The σ bond is formed by overlap of two sp2 hybrid orbitals.