Inter-Language Collaboration in an Object-Oriented Virtual Machine Bachelor’S Thesis
Inter-language Collaboration in an Object-oriented Virtual Machine Bachelor’s Thesis MATTHIAS SPRINGER, Hasso Plattner Institute, University of Potsdam TIM FELGENTREFF, Hasso Plattner Institute, University of Potsdam (Supervisor) TOBIAS PAPE, Hasso Plattner Institute, University of Potsdam (Supervisor) ROBERT HIRSCHFELD, Hasso Plattner Institute, University of Potsdam (Supervisor) Multi-language virtual machines have a number of advantages. They allow software developers to use soft- ware libraries that were written for different programming languages. Furthermore, language implementors do not have to bother with low-level VM functionality and their implementation can benefit from optimiza- tions in existing virtual machines. MagLev is an implementation of the Ruby programming language on top of the GemStone/S virtual machine for the Smalltalk programming language. In this work, we present how software components written in both languages can interact. We show how MagLev unifies the Smalltalk and the Ruby object model, taking into account Smalltalk meta classes, Ruby singleton classes, and Ruby modules. Besides, we show how we can call Ruby methods from Smalltalk and vice versa. We also present MagLev’s concept of bridge methods for implementing Ruby method calling conventions. Finally, we compare our solution to other language implementations and virtual machines. Additional Key Words and Phrases: Virtual Machines, Ruby, Smalltalk, MagLev, Language Implementation 1. MULTI-LANGUAGE VIRTUAL MACHINES Multi-language virtual machines are virtual machines that support the execution of source code written in multiple languages. According to Vraný [Vraný 2010], we have to distinguish multi-lanuguage virtual machines from interpreters and native code execution. Languages inside multi-language virtual machines are usually compiled to byte code and share the same object space.
[Show full text]