Rails Download File from Path Ruby on Rails 2.1 - File Uploading
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rubyperf.Pdf
Ruby Performance. Tips, Tricks & Hacks Who am I? • Ezra Zygmuntowicz (zig-mun-tuv-itch) • Rubyist for 4 years • Engine Yard Founder and Architect • Blog: http://brainspl.at Ruby is Slow Ruby is Slow?!? Well, yes and no. The Ruby Performance Dichotomy Framework Code VS Application Code Benchmarking: The only way to really know performance characteristics Profiling: Measure don’t guess. ruby-prof What is all this good for in real life? Merb Merb Like most useful code it started as a hack, Merb == Mongrel + Erb • No cgi.rb !! • Clean room implementation of ActionPack • Thread Safe with configurable Mutex Locks • Rails compatible REST routing • No Magic( well less anyway ;) • Did I mention no cgi.rb? • Fast! On average 2-4 times faster than rails Design Goals • Small core framework for the VC in MVC • ORM agnostic, use ActiveRecord, Sequel, DataMapper or roll your own db access. • Prefer simple code over magic code • Keep the stack traces short( I’m looking at you alias_method_chain) • Thread safe, reentrant code Merb Hello World No code is faster then no code • Simplicity and clarity trumps magic every time. • When in doubt leave it out. • Core framework to stay small and simple and easy to extend without gross hacks • Prefer plugins for non core functionality • Plugins can be gems Key Differences • No auto-render. The return value of your controller actions is what gets returned to client • Merb’s render method just returns a string, allowing for multiple renders and more flexibility • PartController’s allow for encapsualted applets without big performance cost Why not work on Rails instead of making a new framework? • Originally I was trying to optimize Rails and make it more thread safe. -
Avaliação De Performance De Interpretadores Ruby
Universidade Federal de Santa Catarina Centro Tecnológico Curso de Sistemas de Informação Wilson de Almeida Avaliação de Performance de Interpretadores Ruby Florianópolis 2010 Wilson de Almeida Avaliação de Performance de Interpretadores Ruby Monograa apresentada ao Curso de Sistemas de Informação da UFSC, como requisito para a obten- ção parcial do grau de BACHAREL em Sistemas de Informação. Orientador: Lúcia Helena Martins Pacheco Doutora em Engenharia Florianópolis 2010 Almeida, Wilson Avaliação de Performance de Interpretadores Ruby / Wilson Al- meida - 2010 xx.p 1.Performance 2. Interpretadores.. I.Título. CDU 536.21 Wilson de Almeida Avaliação de Performance de Interpretadores Ruby Monograa apresentada ao Curso de Sistemas de Informação da UFSC, como requisito para a obten- ção parcial do grau de BACHAREL em Sistemas de Informação. Aprovado em 21 de junho de 2010 BANCA EXAMINADORA Lúcia Helena Martins Pacheco Doutora em Engenharia José Eduardo De Lucca Mestre em Ciências da Computação Eduardo Bellani Bacharel em Sistemas de Informação Aos meus pais e meu irmão. Aos familiares e amigos, em especial pra mi- nha eterna amiga Liliana, que está torcendo por mim de onde ela estiver. Agradecimentos Agradeço ao meu amigo, colega de curso, parceiro de trabalhos e orientador Eduardo Bellani, pelo encorajamento, apoio e seus ricos conselhos sobre o melhor direci- onamento deste trabalho. A professora Lúcia Helena Martins Pacheco pela orientação, amizade, e pela paciência, sem a qual este trabalho não se realizaria. Ao professor José Eduardo Delucca, por seus conselhos objetivos e pontuais. Todos os meus amigos que incentivaram e compreenderam a minha ausência nesse período de corrida atrás do objetivo de concluir o curso. -
Insert Here Your Thesis' Task
Insert here your thesis' task. Czech Technical University in Prague Faculty of Information Technology Department of Software Engineering Master's thesis New Ruby parser and AST for SmallRuby Bc. Jiˇr´ıFajman Supervisor: Ing. Marcel Hlopko 18th February 2016 Acknowledgements I would like to thank to my supervisor Ing. Marcel Hlopko for perfect coop- eration and valuable advices. I would also like to thank to my family for support. Declaration I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations stip- ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au- thorization (license) to utilize this thesis, including any and all computer pro- grams incorporated therein or attached thereto and all corresponding docu- mentation (hereinafter collectively referred to as the \Work"), to any and all persons that wish to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit purposes) that does not detract from its value. This authorization is not limited in terms of time, location and quan- tity. However, all persons that makes use of the above license shall be obliged to grant a license at least in the same scope as defined above with respect to each and every work that is created (wholly or in part) based on the Work, by modifying the Work, by combining the Work with another work, by including the Work in a collection of works or by adapting the Work (including trans- lation), and at the same time make available the source code of such work at least in a way and scope that are comparable to the way and scope in which the source code of the Work is made available. -
Aplikacija Za Pregled Tehnologij Spletnih Projektov Na Podlagi Avtomatske Analize Repozitorijev
Univerza v Ljubljani Fakulteta za računalništvo in informatiko Aljana Polanc Aplikacija za pregled tehnologij spletnih projektov na podlagi avtomatske analize repozitorijev DIPLOMSKO DELO VISOKOŠOLSKI STROKOVNI ŠTUDIJSKI PROGRAM PRVE STOPNJE RAČUNALNIŠTVO IN INFORMATIKA Mentor: doc. dr. Aleš Smrdel Ljubljana, 2016 Rezultati diplomskega dela so intelektualna lastnina avtorja in Fakultete za računalništvo in informatiko Univerze v Ljubljani. Za objavljanje ali iz- koriščanje rezultatov diplomskega dela je potrebno pisno soglasje avtorja, Fakultete za računalništvo in informatiko ter mentorja. Besedilo je oblikovano z urejevalnikom besedil LATEX. Fakulteta za računalništvo in informatiko izdaja naslednjo nalogo: Tematika naloge: V okviru diplomskega dela razvijte aplikacijo, ki bo služila za vzdrževanje ažurne evidence o tehnologijah pri različnih spletnih projektih. Aplikacija mora omogočiti avtomatsko periodično pregledovanje vseh aktivnih projek- tov znotraj nekega podjetja in posodabljanje podatkov o uporabljenih teh- nologijah za vsakega izmed projektov. V ta namen najprej analizirajte teh- nologije, ki se uporabljajo pri izdelavi sodobnih spletnih projektov, nato pa realizirajte aplikacijo, ki se mora biti sposobna povezati z repozitorijem pro- jektov, prebrati vse projekte in na podlagi analize datotek projektov razbrati tehnologije, ki so uporabljene pri posameznem projektu. Za vsak projekt mora aplikacija razbrati uporabljene programske jezike, orodja, knjižnice ter razvijalce, ki sodelujejo pri posameznem projektu. Razvijte tudi spletni vme- snik, ki bo omogočal prikaz podatkov o projektih in tehnologijah znotraj ne- kega podjetja ter nadroben prikaz tehnologij uporabljenih pri posameznem projektu. Razvijte tudi administrativni spletni vmesnik, ki bo omogočal do- polnjevanje in popravljanje avtomatsko pridobljenih podatkov. Pri razvoju aplikacije izberite najprimernejše tehnologije na strani odjemalca in na strani strežnika. Uspešnost delovanja razvite aplikacije testirajte na nekem repozi- toriju projektov. -
Supporting C Extensions for Dynamic Languages an Abbreviated Version of [10]
High-Performance Language Composition: Supporting C Extensions for Dynamic Languages An abbreviated version of [10]. Grimmer Matthias1, Chris Seaton2, Thomas W¨urthinger2 and Hanspeter M¨ossenb¨ock1 1 Johannes Kepler University, Linz, Austria fgrimmer,[email protected] 2 Oracle Labs fchris.seaton,[email protected] Abstract. Many dynamic languages such as Ruby offer functionality for writing parts of applications in a lower-level language such as C. These C extension modules are usually written against the API of an interpreter, which provides access to the higher-level language's internal data struc- tures. Alternative implementations of the high-level languages often do not support such C extensions because implementing the same API as in the original implementations is complicated and limits performance. In this paper we describe a novel approach for modular composition of languages that allows dynamic languages to support C extensions through interpretation. We propose a flexible and reusable cross-language mechanism that allows composing multiple language interpreters. This mechanism allows us to efficiently exchange runtime data across different interpreters and also enables the dynamic compiler of the host VM to inline and optimize programs across multiple language boundaries. We evaluate our approach by composing a Ruby interpreter with a C interpreter. We run existing Ruby C extensions and show how our system executes combined Ruby and C modules on average over 3× faster than the conventional implementation of Ruby with native C extensions. 1 Introduction Most programming languages offer functionality for calling routines in modules that are written in another language. There are multiple reasons why program- mers want to do this, including to run modules already written in another lan- guage, to achieve higher performance than is normally possible in the primary language, or generally to allow different parts of the system to be written in the most appropriate language. -
Development of Benchmarking Suite for Various Ruby Implementations
MASARYKOVA UNIVERZITA FAKULTA}w¡¢£¤¥¦§¨ INFORMATIKY !"#$%&'()+,-./012345<yA| Development of benchmarking suite for various Ruby implementations BACHELOR THESIS Richard Ludvigh Brno, Spring 2015 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Richard Ludvigh Advisor: RNDr. Adam Rambousek ii Acknowledgement I would like to thank my supervisor RNDr. Adam Rambousek who has supported me throughout my thesis. I would also like to thank my advisor Ing. Václav Tunka for advice and consultation regarding technical aspects of work as well as guidance and feedback through- out my thesis. Access to the CERIT-SC computing and storage facilities provided under the programme Center CERIT Scientific Cloud, part of the Op- erational Program Research and Development for Innovations, reg. no. CZ. 1.05/3.2.00/08.0144, is greatly appreciated. iii Abstract Ruby is a modern, dynamic, pure object-oriented programming lan- guage. It has multiple implementations which provide different per- formance. The aim of this bachelor thesis is to provide a container- based tool to benchmark and monitor those performance differences inside an isolated environment. iv Keywords Ruby, JRuby, Rubinius, MRI, Docker, benchmarking, performance v Contents 1 Introduction ............................3 2 State of the art ...........................4 3 Ruby performance ........................6 3.1 Introduction to Ruby ....................6 3.2 Ruby implementations ...................7 3.2.1 MRI or CRuby . .7 3.2.2 JRuby . .7 3.2.3 Rubinius . -
Optimizing Ruby on Rails for Performance and Scalability
DEGREE PROJECT IN COMPUTER SCIENCE 120 CREDITS, SECOND CYCLE STOCKHOLM, SWEDEN 2016 Optimizing Ruby on Rails for performance and scalability KIM PERSSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION Optimizing Ruby on Rails for performance and scalability Optimering av Ruby on Rails för prestanda och skalbarhet KIM PERSSON [email protected] Degree project in Computer Science Master’s Programme Computer Science Supervisor: Stefano Markidis Examiner: Jens Lagergren Employer: Slagkryssaren AB February 2016 Abstract Web applications are becoming more and more popular as the bound- aries of what can be done in a browser are pushed forward. Ruby on Rails is a very popular web application framework for the Ruby pro- gramming language. Ruby on Rails allows for rapid prototyping and development of web applications but it suffers from performance prob- lems with large scale applications. This thesis focuses on optimization of a Ruby on Rails application to improve its performance. We performed three optimizations to a benchmark application that was developed for this project. First, we removed unnecessary modules from Ruby on Rails and optimized the database interaction with Active Record which is the default object re- lational mapping (ORM) in Ruby on Rails. It allows us to fetch and store models in the database without having to write database specific query code. These optimizations resulted in up to 36% decrease in ap- plication response time. Second, we implemented a caching mechanism for JavaScript Object Notation (JSON) representation of models in the optimized application. This second optimization resulted in a total of 96% response time decrease for one of the benchmarks. -
Rubinius Rubini Us Rubini.Us Rubini.Us Rubini.Us Rubinius History and Design Goals
Rubinius Rubini us Rubini.us rubini.us http:// rubini.us Rubinius http://godfat.org/slide/2008-12-21-rubinius.pdf History and Design Goals Architecture and Object Model History and Design Goals Architecture and Object Model Evan Phoenix February of 2006 RubySpec MSpec Engine Yard C VM Shotgun C VM Shotgun C++ VM CxxTest LLVM History and Design Goals Architecture and Object Model Reliable, Rock Solid Code Reliable, Rock Solid Code Full Test Coverage 健康 Clean, Readable Code Clean, Readable Code Little Lines in Each File Clean, Readable Code Macro, Code Generator, Rake Task Clean, Readable Code CMake Clean, Readable Code CMake Clean, Readable Code C++ Object to Ruby Object 1 to 1 Mapping 清新 健康 清新 Modern Techniques Modern Techniques Pluggable Garbage Collectors Modern Techniques Pluggable Garbage Collectors • Stop-and-Copy Modern Techniques Pluggable Garbage Collectors • Stop-and-Copy • Mark-and-Sweep Modern Techniques Optimizers Modern Techniques Git, Rake, LLVM Squeak the Smalltalk-80 Implementation Squeak Slang Squeak • Alan Kay • Dan Ingalls • Adele Goldberg Smalltalk Xerox PARC Smalltalk Object-Oriented (differ from Simula and C++) Smalltalk GUI Smalltalk MVC History and Design Goals Architecture and Object Model Real Machine C++ Virtual Machine Real Machine kernel/bootstrap C++ Virtual Machine Real Machine kernel/platform kernel/bootstrap C++ Virtual Machine Real Machine kernel/common kernel/platform kernel/bootstrap C++ Virtual Machine Real Machine kernel/delta kernel/common kernel/platform kernel/bootstrap C++ Virtual Machine Real -
Debugging at Full Speed
Debugging at Full Speed Chris Seaton Michael L. Van De Vanter Michael Haupt Oracle Labs Oracle Labs Oracle Labs University of Manchester michael.van.de.vanter [email protected] [email protected] @oracle.com ABSTRACT Ruby; D.3.4 [Programming Languages]: Processors| Debugging support for highly optimized execution environ- run-time environments, interpreters ments is notoriously difficult to implement. The Truffle/- Graal platform for implementing dynamic languages offers General Terms an opportunity to resolve the apparent trade-off between Design, Performance, Languages debugging and high performance. Truffle/Graal-implemented languages are expressed as ab- Keywords stract syntax tree (AST) interpreters. They enjoy competi- tive performance through platform support for type special- Truffle, deoptimization, virtual machines ization, partial evaluation, and dynamic optimization/deop- timization. A prototype debugger for Ruby, implemented 1. INTRODUCTION on this platform, demonstrates that basic debugging services Although debugging and code optimization are both es- can be implemented with modest effort and without signifi- sential to software development, their underlying technolo- cant impact on program performance. Prototyped function- gies typically conflict. Deploying them together usually de- ality includes breakpoints, both simple and conditional, at mands compromise in one or more of the following areas: lines and at local variable assignments. The debugger interacts with running programs by insert- • Performance: Static compilers -
Specialising Dynamic Techniques for Implementing the Ruby Programming Language
SPECIALISING DYNAMIC TECHNIQUES FOR IMPLEMENTING THE RUBY PROGRAMMING LANGUAGE A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2015 By Chris Seaton School of Computer Science This published copy of the thesis contains a couple of minor typographical corrections from the version deposited in the University of Manchester Library. [email protected] chrisseaton.com/phd 2 Contents List of Listings7 List of Tables9 List of Figures 11 Abstract 15 Declaration 17 Copyright 19 Acknowledgements 21 1 Introduction 23 1.1 Dynamic Programming Languages.................. 23 1.2 Idiomatic Ruby............................ 25 1.3 Research Questions.......................... 27 1.4 Implementation Work......................... 27 1.5 Contributions............................. 28 1.6 Publications.............................. 29 1.7 Thesis Structure............................ 31 2 Characteristics of Dynamic Languages 35 2.1 Ruby.................................. 35 2.2 Ruby on Rails............................. 36 2.3 Case Study: Idiomatic Ruby..................... 37 2.4 Summary............................... 49 3 3 Implementation of Dynamic Languages 51 3.1 Foundational Techniques....................... 51 3.2 Applied Techniques.......................... 59 3.3 Implementations of Ruby....................... 65 3.4 Parallelism and Concurrency..................... 72 3.5 Summary............................... 73 4 Evaluation Methodology 75 4.1 Evaluation Philosophy -
Lightweight Method Dispatch On
Lightweight Method Dispatch on MRI Koichi Sasada <[email protected]> EURUKO2015 Koichi Sasada A programmer from Japan Koichi is a Programmer •MRI committer since 2007/01 • Original YARV developer since 2004/01 • YARV: Yet Another RubyVM • Introduced into Ruby (MRI) 1.9.0 and later • Generational/incremental GC for 2.x “Why I wouldn’t use rails for a new company” by Jared Friedman “The ruby interpreter is just a volunteer effort. Between 2007- 2012, there were a number of efforts to fix the interpreter and make it fast (Rubinius, Jruby, YARV, etc) But lacking backers with staying power, the volunteers got bored and some of the efforts withered. JRuby is still active and recent versions are showing more promise with performance, but it’s been a long road.” Quoted from http://blog.jaredfriedman.com/2015/09/15/why-i- wouldnt-use-rails-for-a-new-company/ (September 15, 2015) Koichi is an Employee Koichi is a member of Heroku Matz team Mission Design Ruby language and improve quality of MRI Heroku employs three full time Ruby core developers in Japan named “Matz team” Heroku Matz team Matz Designer/director of Ruby Nobu Quite active committer Ko1 Internal Hacker Matz Title collector • He has so many (job) title • Japanese teacher • Chairman - Ruby Association • Fellow - NaCl • Chief architect, Ruby - Heroku • Research institute fellow – Rakuten • Chairman – NPO mruby Forum • Senior researcher – Kadokawa Ascii Research Lab • Visiting professor – Shimane University • Honorable citizen (living) – Matsue city • Honorable member – Nihon Ruby no Kai -
Load Testing of Containerised Web Services
UPTEC IT 16003 Examensarbete 30 hp Mars 2016 Load Testing of Containerised Web Services Christoffer Hamberg Abstract Load Testing of Containerised Web Services Christoffer Hamberg Teknisk- naturvetenskaplig fakultet UTH-enheten Load testing web services requires a great deal of environment configuration and setup. Besöksadress: This is especially apparent in an environment Ångströmlaboratoriet Lägerhyddsvägen 1 where virtualisation by containerisation is Hus 4, Plan 0 used with many moving and volatile parts. However, containerisation tools like Docker Postadress: offer several properties, such as; application Box 536 751 21 Uppsala image creation and distribution, network interconnectivity and application isolation that Telefon: could be used to support the load testing 018 – 471 30 03 process. Telefax: 018 – 471 30 00 In this thesis, a tool named Bencher, which goal is to aid the process of load testing Hemsida: containerised (with Docker) HTTP services, is http://www.teknat.uu.se/student designed and implemented. To reach its goal Bencher automates some of the tedious steps of load testing, including connecting and scaling containers, collecting system metrics and load testing results to name a few. Bencher’s usability is verified by testing a number of hypotheses formed around different architecture characteristics of web servers in the programming language Ruby. With a minimal environment setup cost and a rapid test iteration process, Bencher proved its usability by being successfully used to verify the hypotheses in this thesis. However, there is still need for future work and improvements, including for example functionality for measuring network bandwidth and latency, that could be added to enhance process even further. To conclude, Bencher fulfilled its goal and scope that were set for it in this thesis.