Debugging at Full Speed

Total Page:16

File Type:pdf, Size:1020Kb

Debugging at Full Speed Debugging at Full Speed Chris Seaton Michael L. Van De Vanter Michael Haupt Oracle Labs Oracle Labs Oracle Labs University of Manchester michael.van.de.vanter [email protected] [email protected] @oracle.com ABSTRACT Ruby; D.3.4 [Programming Languages]: Processors| Debugging support for highly optimized execution environ- run-time environments, interpreters ments is notoriously difficult to implement. The Truffle/- Graal platform for implementing dynamic languages offers General Terms an opportunity to resolve the apparent trade-off between Design, Performance, Languages debugging and high performance. Truffle/Graal-implemented languages are expressed as ab- Keywords stract syntax tree (AST) interpreters. They enjoy competi- tive performance through platform support for type special- Truffle, deoptimization, virtual machines ization, partial evaluation, and dynamic optimization/deop- timization. A prototype debugger for Ruby, implemented 1. INTRODUCTION on this platform, demonstrates that basic debugging services Although debugging and code optimization are both es- can be implemented with modest effort and without signifi- sential to software development, their underlying technolo- cant impact on program performance. Prototyped function- gies typically conflict. Deploying them together usually de- ality includes breakpoints, both simple and conditional, at mands compromise in one or more of the following areas: lines and at local variable assignments. The debugger interacts with running programs by insert- • Performance: Static compilers usually support debug- ing additional nodes at strategic AST locations; these are ging only at low optimization levels, and dynamic com- semantically transparent by default, but when activated can pilation may also be limited. observe and interrupt execution. By becoming in effect part • Functionality: Years of research on the topic have most of the executing program, these \wrapper" nodes are subject often given priority to optimization, resulting in de- to full runtime optimization, and they incur zero runtime bugging services that are incomplete and/or unreli- overhead when debugging actions are not activated. Condi- able. tions carry no overhead beyond evaluation of the expression, which is optimized in the same way as user code, greatly im- • Complexity: Debuggers usually require compiler sup- proving the prospects for capturing rarely manifested bugs. port, in particular the generation of additional infor- When a breakpoint interrupts program execution, the plat- mation the debugger might need when deciphering ex- form automatically restores the full execution state of the ecution state. This strategy can strongly couple their program (expressed as Java data structures), as if running respective implementations. in the unoptimized AST interpreter. This then allows full introspection of the execution data structures such as the • Inconvenience: Putting a system under observation by AST and method activation frames when in the interactive a debugger requires some form of \debug mode", for debugger console. example using the -Xdebug option when starting the 1 Our initial evaluation indicates that such support could Java Virtual Machine. be permanently enabled in production environments. As a consequence, debugging is seldom enabled in produc- tion environments. Defects that arise must be investigated Categories and Subject Descriptors in a separate development environment that differs enough D.2.5 [Software Engineering]: Debugging and Testing| from production that reproducing the issue may be hard. The VM Research Group at Oracle Labs proposes to elim- Permission to make digital or hard copies of all or part of this work for inate this conflict in optimized dynamic runtimes by making personal or classroom use is granted without fee provided that copies are not production-quality code debug-aware without adding over- made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components head. The basis for this proposal is Truffle [29], a newly of this work owned by others than ACM must be honored. Abstracting with developed platform for constructing high performance im- credit is permitted. To copy otherwise, or republish, to post on servers or to plementations of dynamic languages. A Truffle-based lan- redistribute to lists, requires prior specific permission and/or a fee. Request guage implementation is expressed as an abstract syntax tree permissions from [email protected]. 1 Dyla’14 June 09 - 11 2014, Edinburgh, United Kingdom Oracle and Java are registered trademarks of Oracle and/or its Copyright 2014 ACM 978-1-4503-2916-3/14/06 ...$15.00 affiliates. Other names may be trademarks of their respective http://dx.doi.org/10.1145/2617548.2617550. owners. (AST) interpreter, to which the framework applies aggres- semantics. Based on type information obtained at run-time, sive dynamic optimizations including type specialization, in- AST nodes speculatively replace themselves in the AST with lining, and many other techniques. type-specialized variants [30]. Should the speculation be The group's recently developed implementation of Ruby [5] wrong, they replace themselves again with other specializa- has already shown promising results [28] and is now being tions, or with generic nodes that subsume the functionality integrated with the existing implementation of Ruby on the required for all possible types. JVM, JRuby [18]. As part of a larger inquiry into techniques Truffle interpreters perform best when running atop the for adding developer tool support to Truffle, the Ruby AST Graal VM [26]: a modified HotSpot Java VM that hosts was experimentally extended to include support for a sim- the Graal dynamic compiler. The Graal VM supports par- ple yet useful debugger, as well as for Ruby's built-in trac- tial evaluation of Truffle ASTs and generates efficient ma- ing facility. Both extensions exhibit essentially zero runtime chine code from them. Tree rewriting|e. g., in case of fail- overhead until enabled, at which time the debugging/tracing ing speculations|is possible for trees compiled into machine logic accrues overhead proportional to the specific function- code by means of dynamic deoptimization [9], which tran- ality needed. sitions control from a compiled machine code method back This strategy was first explored for the Self debugger [9], into the original AST interpreter and restores the source- where debugging support is tightly integrated with execu- level execution state. tion machinery. A significant consequence of this strategy is that the representation of logic implementing debugging 2.2 Ruby Truffle functionality becomes indiscernible from the representation Ruby [5] is a dynamically typed object-oriented language of ordinary application code and thus subject to all the op- with features inspired by Smalltalk and Perl. It is best timization capabilities the VM offers for application code. known in combination with the Rails web framework for The paper is structured as follows. The next section quick development of database-backed web applications, but describes the background for this experiment in more de- it is also applied in fields as diverse as bioinformatics [7] tail: the underlying Truffle platform, the Truffle-based im- and graphics processing [16]. Although generally considered plementation of Ruby (Ruby Truffle), the combination of a relatively slow language with little support from tradi- Ruby Truffle and JRuby (JRuby+Truffle), and the proto- tional large enterprise, it has powered significant parts of type Ruby debugger. In section3, we introduce our use extremely large scale applications, for example Twitter [14] of AST \wrapper" nodes in the debugger. Section4 gives and GitHub [11]. details about the implementation in the Truffle framework, The Truffle implementation of Ruby began as a new code and about the mechanisms of the underlying VM|including base, reusing only the JRuby parser. Truffle allows for rapid the Graal compiler|that it uses. In section5, we discuss implementation: after five months of development Ruby our implementation in comparison to alternatives, in terms Truffle ran the RubySpec test suite [25], passing about 50 % of impact on peak performance. Sections6 and7 discuss of the language tests, and ran unmodified micro benchmarks related work and conclude the paper. and small kernels from real applications. Ruby Truffle's im- plementation comprised about 19,000 lines of Java in 155 2. BACKGROUND classes. The prototype debugger was also implemented dur- The context for the experiment presented here is a project ing this period, allowing it to be used to support Ruby Truf- at the VM Research Group at Oracle Labs to develop a fle's development. Truffle-based implementation of the Ruby programming lan- guage. An initial implementation produced in less than six 2.3 JRuby+Truffle months demonstrated extremely high peak performance [28]. The Truffle-based implementation of Ruby has been li- During this period the group was also evaluating tech- censed for open source and merged into JRuby: an existing niques for extending the Truffle platform with support for Java-based implementation [18]. The original JRuby began developer tools. A goal for these extensions was to exhibit as a straightforward port of the standard Ruby interpreter zero peak temporal performance overhead when when de- from C to Java. It has since become arguably the most so- bugging is enabled but not in use, and minimal overhead phisticated implementation
Recommended publications
  • Tomasz Dąbrowski / Rockhard GIC 2016 Poznań WHAT DO WE WANT? WHAT DO WE WANT?
    WHY (M)RUBY SHOULD BE YOUR NEXT SCRIPTING LANGUAGE? Tomasz Dąbrowski / Rockhard GIC 2016 Poznań WHAT DO WE WANT? WHAT DO WE WANT? • fast iteration times • easy modelling of complex gameplay logic & UI • not reinventing the wheel • mature tools • easy to integrate WHAT DO WE HAVE? MY PREVIOUS SETUP • Lua • not very popular outside gamedev (used to be general scripting language, but now most applications seem to use python instead) • even after many years I haven’t gotten used to its weird syntax (counting from one, global variables by default, etc) • no common standard - everybody uses Lua differently • standard library doesn’t include many common functions (ie. string.split) WHAT DO WE HAVE? • as of 2016, Lua is still a gold standard of general game scripting languages • C# (though not scripting) is probably even more popular because of the Unity • Unreal uses proprietary methods of scripting (UScript, Blueprints) • Squirrel is also quite popular (though nowhere near Lua) • AngelScript, Javascript (V8), Python… are possible yet very unpopular choices • and you can always just use C++ MY CRITERIA POPULARITY • popularity is not everything • but using a popular language has many advantages • most problems you will encounter have already been solved (many times) • more production-grade tools • more documentation, tutorials, books, etc • most problems you will encounter have already been solved (many times) • this literally means, that you will be able to have first prototype of anything in seconds by just copying and pasting code • (you can
    [Show full text]
  • Rubyperf.Pdf
    Ruby Performance. Tips, Tricks & Hacks Who am I? • Ezra Zygmuntowicz (zig-mun-tuv-itch) • Rubyist for 4 years • Engine Yard Founder and Architect • Blog: http://brainspl.at Ruby is Slow Ruby is Slow?!? Well, yes and no. The Ruby Performance Dichotomy Framework Code VS Application Code Benchmarking: The only way to really know performance characteristics Profiling: Measure don’t guess. ruby-prof What is all this good for in real life? Merb Merb Like most useful code it started as a hack, Merb == Mongrel + Erb • No cgi.rb !! • Clean room implementation of ActionPack • Thread Safe with configurable Mutex Locks • Rails compatible REST routing • No Magic( well less anyway ;) • Did I mention no cgi.rb? • Fast! On average 2-4 times faster than rails Design Goals • Small core framework for the VC in MVC • ORM agnostic, use ActiveRecord, Sequel, DataMapper or roll your own db access. • Prefer simple code over magic code • Keep the stack traces short( I’m looking at you alias_method_chain) • Thread safe, reentrant code Merb Hello World No code is faster then no code • Simplicity and clarity trumps magic every time. • When in doubt leave it out. • Core framework to stay small and simple and easy to extend without gross hacks • Prefer plugins for non core functionality • Plugins can be gems Key Differences • No auto-render. The return value of your controller actions is what gets returned to client • Merb’s render method just returns a string, allowing for multiple renders and more flexibility • PartController’s allow for encapsualted applets without big performance cost Why not work on Rails instead of making a new framework? • Originally I was trying to optimize Rails and make it more thread safe.
    [Show full text]
  • Feather-Weight Cloud OS Developed Within 14 Man-Days Who Am I ?
    Mocloudos Feather-weight Cloud OS developed within 14 man-days Who am I ? • Embedded Software Engineer • OSS developer • Working at Monami-ya LLC. • Founder/CEO/CTO/CFO/and some more. Some My Works • Realtime OS • TOPPERS/FI4 (dev lead) • TOPPERS/HRP (dev member) • OSS (C) JAXA (C) TOPPERS Project • GDB (committer / write after approval) • mruby (listed in AUTHOR file) • Android-x86 (develop member) Wish • Feather-weight cloud OS. • Runs on virtualization framework. • Works with VM based Light-weight Language like Ruby. Wish • Construct my Cloud OS within 14 man-days My First Choice • mruby - http://www.mruby.org/ • Xen + Stubdom - http://www.xen.org/ What’s mruby • New Ruby runtime. http://github.com/mruby/mruby/ • Created by Matz. GitHub based CI development. • Embedded systems oriented. • Small memory footprint. • High portability. (Device independent. ISO C99 style.) • Multiple VM state support (like Lua). • mrbgem - component model. mrbgem • Simple component system for mruby. • Adds/modifies your feature to mruby core. • By writing C lang source or Ruby script. • Linked statically to core runtime. • Easy to validate whole runtime statically. Stubdom • “Stub” for Xen instances in DomU. • IPv4 network support (with LWIP stack) • Block devices support. • Newlib based POSIX emulation (partly) • Device-File abstraction like VFS. Stubdom • This is just a stub. • The implementation is half baked. • More system calls returns just -1 (error) • No filesystems My Additional Choice • FatFs : Free-beer FAT Filesystem • http://elm-chan.org/fsw/ff/00index_e.html • Very permissive license. • So many example uses including commercial products. My Hacks • Writing several glue code as mrbgems. • Xen’s block device - FatFs - Stubdom • Hacking mrbgems to fit poor Stubdom API set.
    [Show full text]
  • Insert Here Your Thesis' Task
    Insert here your thesis' task. Czech Technical University in Prague Faculty of Information Technology Department of Software Engineering Master's thesis New Ruby parser and AST for SmallRuby Bc. Jiˇr´ıFajman Supervisor: Ing. Marcel Hlopko 18th February 2016 Acknowledgements I would like to thank to my supervisor Ing. Marcel Hlopko for perfect coop- eration and valuable advices. I would also like to thank to my family for support. Declaration I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations stip- ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au- thorization (license) to utilize this thesis, including any and all computer pro- grams incorporated therein or attached thereto and all corresponding docu- mentation (hereinafter collectively referred to as the \Work"), to any and all persons that wish to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit purposes) that does not detract from its value. This authorization is not limited in terms of time, location and quan- tity. However, all persons that makes use of the above license shall be obliged to grant a license at least in the same scope as defined above with respect to each and every work that is created (wholly or in part) based on the Work, by modifying the Work, by combining the Work with another work, by including the Work in a collection of works or by adapting the Work (including trans- lation), and at the same time make available the source code of such work at least in a way and scope that are comparable to the way and scope in which the source code of the Work is made available.
    [Show full text]
  • Cross-Platform Mobile Software Development with React Native Pages and Ap- Pendix Pages 27 + 0
    Cross-platform mobile software development with React Native Janne Warén Bachelor’s thesis Degree Programme in ICT 2016 Abstract 9.10.2016 Author Janne Warén Degree programme Business Information Technology Thesis title Number of Cross-platform mobile software development with React Native pages and ap- pendix pages 27 + 0 The purpose of this study was to give an understanding of what React Native is and how it can be used to develop a cross-platform mobile application. The study explains the idea and key features of React Native based on source literature. The key features covered are the Virtual DOM, components, JSX, props and state. I found out that React Native is easy to get started with, and that it’s well-suited for a web programmer. It makes the development process for mobile programming a lot easier com- pared to traditional native approach, it’s easy to see why it has gained popularity fast. However, React Native still a new technology under rapid development, and to fully under- stand what’s happening it would be good to have some knowledge of JavaScript and per- haps React (for the Web) before jumping into React Native. Keywords React Native, Mobile application development, React, JavaScript, API Table of contents 1 Introduction ..................................................................................................................... 1 1.1 Goals and restrictions ............................................................................................. 1 1.2 Definitions and abbreviations ................................................................................
    [Show full text]
  • Internationalization in Ruby 2.4
    Internationalization in Ruby 2.4 http://www.sw.it.aoyama.ac.jp/2016/pub/IUC40-Ruby2.4/ 40th Internationalization and Unicode Conference Santa Clara, California, U.S.A., November 3, 2016 Martin J. DÜRST [email protected] Aoyama Gakuin University © 2016 Martin J. Dürst, Aoyama Gakuin University Abstract Ruby is a purely object-oriented scripting language which is easy to learn for beginners and highly appreciated by experts for its productivity and depth. This presentation discusses the progress of adding internationalization functionality to Ruby for the version 2.4 release expected towards the end of 2016. One focus of the talk will be the currently ongoing implementation of locale-aware case conversion. Since Ruby 1.9, Ruby has a pervasive if somewhat unique framework for character encoding, allowing different applications to choose different internationalization models. In practice, Ruby is most often and most conveniently used with UTF-8. Support for internationalization facilities beyond character encoding has been available via various external libraries. As a result, applications may use conflicting and confusing ways to invoke internationalization functionality. To use case conversion as an example, up to version 2.3, Ruby comes with built-in methods for upcasing and downcasing strings, but these only work on ASCII. Our implementation extends this to the whole Unicode range for version 2.4, and efficiently reuses data already available for case-sensitive matching in regular expressions. We study the interface of internationalization functions/methods in a wide range of programming languages and Ruby libraries. Based on this study, we propose to extend the current built-in Ruby methods, e.g.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Toward Understanding And
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Toward Understanding and Dealing with Failures in Cloud-Scale Systems A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Peng Huang Committee in charge: Professor Yuanyuan Zhou, Chair Professor Tara Javidi Professor Ranjit Jhala Professor George Porter Professor Stefan Savage 2016 Copyright Peng Huang, 2016 All rights reserved. The Dissertation of Peng Huang is approved and is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION To my parents, brother and fiancée for their unconditional love and support. iv EPIGRAPH Quis custodiet ipsos custodes? (But who can watch the watchmen?) Juvenal Anything that can go wrong, will go wrong. Murphy’s law Those who fail to learn from the mistakes are doomed to repeat them. George Santayana In the middle of the night, [...] He would awaken and find himeself wondering if one of the machines had stopped working for some new, unknown reason. Or he would wake up thinking about the latest failure, the one whose cause they’d been looking for a whole week and sitll hadn’t found. The bogeyman—la machine—was there in his bedroom. Tracy Kidder, The Soul of a New Machine v TABLE OF CONTENTS SignaturePage...................................... .................. iii Dedication ......................................... .................. iv Epigraph........................................... .................. v TableofContents
    [Show full text]
  • C. Elegans and CRISPR/Cas Gene Editing to Study BAP1 Cancer-Related Mutations and Cisplatin Chemoresistance
    C. elegans and CRISPR/Cas gene editing to study BAP1 cancer-related mutations and cisplatin chemoresistance Carmen Martínez Fernández TESI DOCTORAL UPF / 2020 Thesis supervisor Dr. Julián Cerón Madrigal Modeling Human Diseases in C. elegans Group. Gene, Disease, and Therapy Program. IDIBELL. Department of Experimental and Health Sciences Para aquellos que aún perviven en el amor, la alegría y la perseverancia. Acknowledgments En primer lugar, quiero agradecer a mis padres, María del Mar y Fran, por darme vuestro amor y apoyo incondicional en todas las decisiones que he tomado en estos 27 años. Y a mi hermana, Helena, por tener el corazón más grande del planeta, a juego con sus labios y su frente, y tenerme siempre en él. No os lo digo, pero os quiero mucho. A mi familia, porque sois la mejor que me ha podido tocar: a mi abuelo Paco, a mi abuela Carmen y mi a abuela Maru. A vosotros, Caki y Padrino, titos y titas. A mis primos, primitas y primito =) Os quiero mucho a todos! Mención especial a Julián, ¡lo hemos conseguido!. Gracias por el apoyo. Gracias por la motivación que desprendes, aunque a veces sea difícil de encontrar. Gracias también por echarme del país y por dejarme empezar a aprender contigo. No ha sido fácil, pero sin duda, volvería a repetir. A Curro, Karinna, Xènia y Montse, porque fuisteis mis primeros labmates. Esos nunca se olvidan. A la segunda ronda, David, Dimitri, LLuís y Jeremy. ¡Lo que une Cerón lab, no lo separará nae! En especial, quería agradecer a XS, Mex y Dim.
    [Show full text]
  • Anton Davydov ·
    Anton Davydov Software Architect phone: +7(968) 663-81-28 email: [email protected] github: github.com/davydovanton site: davydovanton.com About Helping business solve problems, grow technical culture and developers understand business. Active OpenSource activist and contributor. Hanami and dry-rb core developer. I’m trying to be on the cutting edge of technology. Besides I have communication skills and meet deadlines. I’m interested in distributed systems, data evolution, communication between different services, architecture problems and functional programming. Profession experience JUNE 2020 - CURRENT TIME, CONSULTING, SOLUTION ARCHITECT Worked as an independent solution architect with different clients. I helped with getting business requirements and logic, detecting the importance of each business feature. Also, I designed a technical solution based on business requirements, current implementation, and available technical and non-technical resources. I helped with migration from monolith to SOA and helped with understanding and researching around necessary infrastructure for SOA. I worked on several major tasks at this time: - Got necessary requirements, designed and helped with implementation for a new version of billing for internal employees; - Got necessary requirements and designed solution for item synchronization in orders; - Designed a new implementation for roles in the company based on ABAC paradigm; Domains: Ecommerce, advertising, billing and accounting, integration with different systems, SOA. Database: postgresql, redis, big query, kafka, rabbitmq, elastic search, prometheus. Languages: ruby, javascript, node.js, go, elixir, java. JULY 2019 - MARCH 2020, TOPTAL, BACKEND ARCHITECT I developed, researched, documented and managed migration to service-oriented architecture while I was working in toptal. I researched technologies and practices which toptal are using for migrating to the service and build new architecture.
    [Show full text]
  • Development of Benchmarking Suite for Various Ruby Implementations
    MASARYKOVA UNIVERZITA FAKULTA}w¡¢£¤¥¦§¨ INFORMATIKY !"#$%&'()+,-./012345<yA| Development of benchmarking suite for various Ruby implementations BACHELOR THESIS Richard Ludvigh Brno, Spring 2015 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Richard Ludvigh Advisor: RNDr. Adam Rambousek ii Acknowledgement I would like to thank my supervisor RNDr. Adam Rambousek who has supported me throughout my thesis. I would also like to thank my advisor Ing. Václav Tunka for advice and consultation regarding technical aspects of work as well as guidance and feedback through- out my thesis. Access to the CERIT-SC computing and storage facilities provided under the programme Center CERIT Scientific Cloud, part of the Op- erational Program Research and Development for Innovations, reg. no. CZ. 1.05/3.2.00/08.0144, is greatly appreciated. iii Abstract Ruby is a modern, dynamic, pure object-oriented programming lan- guage. It has multiple implementations which provide different per- formance. The aim of this bachelor thesis is to provide a container- based tool to benchmark and monitor those performance differences inside an isolated environment. iv Keywords Ruby, JRuby, Rubinius, MRI, Docker, benchmarking, performance v Contents 1 Introduction ............................3 2 State of the art ...........................4 3 Ruby performance ........................6 3.1 Introduction to Ruby ....................6 3.2 Ruby implementations ...................7 3.2.1 MRI or CRuby . .7 3.2.2 JRuby . .7 3.2.3 Rubinius .
    [Show full text]
  • Optimizing Ruby on Rails for Performance and Scalability
    DEGREE PROJECT IN COMPUTER SCIENCE 120 CREDITS, SECOND CYCLE STOCKHOLM, SWEDEN 2016 Optimizing Ruby on Rails for performance and scalability KIM PERSSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION Optimizing Ruby on Rails for performance and scalability Optimering av Ruby on Rails för prestanda och skalbarhet KIM PERSSON [email protected] Degree project in Computer Science Master’s Programme Computer Science Supervisor: Stefano Markidis Examiner: Jens Lagergren Employer: Slagkryssaren AB February 2016 Abstract Web applications are becoming more and more popular as the bound- aries of what can be done in a browser are pushed forward. Ruby on Rails is a very popular web application framework for the Ruby pro- gramming language. Ruby on Rails allows for rapid prototyping and development of web applications but it suffers from performance prob- lems with large scale applications. This thesis focuses on optimization of a Ruby on Rails application to improve its performance. We performed three optimizations to a benchmark application that was developed for this project. First, we removed unnecessary modules from Ruby on Rails and optimized the database interaction with Active Record which is the default object re- lational mapping (ORM) in Ruby on Rails. It allows us to fetch and store models in the database without having to write database specific query code. These optimizations resulted in up to 36% decrease in ap- plication response time. Second, we implemented a caching mechanism for JavaScript Object Notation (JSON) representation of models in the optimized application. This second optimization resulted in a total of 96% response time decrease for one of the benchmarks.
    [Show full text]
  • Rubinius Rubini Us Rubini.Us Rubini.Us Rubini.Us Rubinius History and Design Goals
    Rubinius Rubini us Rubini.us rubini.us http:// rubini.us Rubinius http://godfat.org/slide/2008-12-21-rubinius.pdf History and Design Goals Architecture and Object Model History and Design Goals Architecture and Object Model Evan Phoenix February of 2006 RubySpec MSpec Engine Yard C VM Shotgun C VM Shotgun C++ VM CxxTest LLVM History and Design Goals Architecture and Object Model Reliable, Rock Solid Code Reliable, Rock Solid Code Full Test Coverage 健康 Clean, Readable Code Clean, Readable Code Little Lines in Each File Clean, Readable Code Macro, Code Generator, Rake Task Clean, Readable Code CMake Clean, Readable Code CMake Clean, Readable Code C++ Object to Ruby Object 1 to 1 Mapping 清新 健康 清新 Modern Techniques Modern Techniques Pluggable Garbage Collectors Modern Techniques Pluggable Garbage Collectors • Stop-and-Copy Modern Techniques Pluggable Garbage Collectors • Stop-and-Copy • Mark-and-Sweep Modern Techniques Optimizers Modern Techniques Git, Rake, LLVM Squeak the Smalltalk-80 Implementation Squeak Slang Squeak • Alan Kay • Dan Ingalls • Adele Goldberg Smalltalk Xerox PARC Smalltalk Object-Oriented (differ from Simula and C++) Smalltalk GUI Smalltalk MVC History and Design Goals Architecture and Object Model Real Machine C++ Virtual Machine Real Machine kernel/bootstrap C++ Virtual Machine Real Machine kernel/platform kernel/bootstrap C++ Virtual Machine Real Machine kernel/common kernel/platform kernel/bootstrap C++ Virtual Machine Real Machine kernel/delta kernel/common kernel/platform kernel/bootstrap C++ Virtual Machine Real
    [Show full text]