Identification of Volcanic Rootless Cones, Ice Mounds, and Impact 3 Craters on Earth and Mars: Using Spatial Distribution As a Remote 4 Sensing Tool
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado by Peter W
Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado By Peter W. Lipman Pamphlet to accompany Geologic Investigations Series I–2799 dacite Ceobolla Creek Tuff Nelson Mountain Tuff, rhyolite Rat Creek Tuff, dacite Cebolla Creek Tuff Rat Creek Tuff, rhyolite Wheeler Geologic Monument (Half Moon Pass quadrangle) provides exceptional exposures of three outflow tuff sheets erupted from the San Luis caldera complex. Lowest sheet is Rat Creek Tuff, which is nonwelded throughout but grades upward from light-tan rhyolite (~74% SiO2) into pale brown dacite (~66% SiO2) that contains sparse dark-brown andesitic scoria. Distinctive hornblende-rich middle Cebolla Creek Tuff contains basal surge beds, overlain by vitrophyre of uniform mafic dacite that becomes less welded upward. Uppermost Nelson Mountain Tuff consists of nonwelded to weakly welded, crystal-poor rhyolite, which grades upward to a densely welded caprock of crystal-rich dacite (~68% SiO2). White arrows show contacts between outflow units. 2006 U.S. Department of the Interior U.S. Geological Survey CONTENTS Geologic setting . 1 Volcanism . 1 Structure . 2 Methods of study . 3 Description of map units . 4 Surficial deposits . 4 Glacial deposits . 4 Postcaldera volcanic rocks . 4 Hinsdale Formation . 4 Los Pinos Formation . 5 Oligocene volcanic rocks . 5 Rocks of the Creede Caldera cycle . 5 Creede Formation . 5 Fisher Dacite . 5 Snowshoe Mountain Tuff . 6 Rocks of the San Luis caldera complex . 7 Rocks of the Nelson Mountain caldera cycle . 7 Rocks of the Cebolla Creek caldera cycle . 9 Rocks of the Rat Creek caldera cycle . 10 Lava flows premonitory(?) to San Luis caldera complex . .11 Rocks of the South River caldera cycle . -
Source to Surface Model of Monogenetic Volcanism: a Critical Review
Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres. -
Columbus Crater HLS2 Hangout: Exploration Zone Briefing
Columbus Crater HLS2 Hangout: Exploration Zone Briefing Kennda Lynch1,2, Angela Dapremont2, Lauren Kimbrough2, Alex Sessa2, and James Wray2 1Lunar and Planetary Institute/Universities Space Research Association 2Georgia Institute of Technology Columbus Crater: An Overview • Groundwater-fed paleolake located in northwest region of Terra Sirenum • ~110 km in diameter • Diversity of Noachian & Hesperian aged deposits and outcrops • High diversity of aqueous mineral deposits • Estimated 1.5 km depth of sedimentary and/or volcanic infill • High Habitability and Biosignature Preservation Potential LZ & Field Station Latitude: 194.0194 E Longitude: 29.2058 S Altitude: +910 m SROI #1 RROI #1 LZ/HZ SROI #4 SROI #2 SROI #5 22 KM HiRISE Digital Terrain Model (DTM) • HiRISE DTMs are made from two images of the same area on the ground, taken from different look angles (known as a stereo-pair) • DTM’s are powerful research tools that allow researchers to take terrain measurements and model geological processes • For our traversability analysis of Columbus: • The HiRISE DTM was processed and completed by the University of Arizona HiRISE Operations Center. • DTM data were imported into ArcMap 10.5 software and traverses were acquired and analyzed using the 3D analyst tool. • A slope map was created in ArcMap to assess slope values along traverses as a supplement to topography observations. Slope should be ≤30°to meet human mission requirements. Conclusions Traversability • 9 out of the 17 traverses analyzed met the slope criteria for human missions. • This region of Columbus Crater is traversable and allows access to regions of astrobiological interest. It is also a possible access point to other regions of Terra Sirenum. -
DID MARS EVER HAVE a LIVELY UNDERGROUND SCENE? Joseph
Third Conference on Early Mars (2012) 7060.pdf DID MARS EVER HAVE A LIVELY UNDERGROUND SCENE? Joseph. R. Michalski, Natural History Mu- seum, London, UK and Planetary Science Institute, Tucson, AZ, USA. [email protected] Introduction: Prokaryotes comprise more than are investigating environments that might never have 50% of the Earth’s organic carbon, and the amount of been inhabited on a planet that is very much habitable. prokaryote biomass in the deep subsurface is 10-15 Spectroscopic results over the last 5-10 years have times the combined mass of prokaryotes that inhabit revealed significant diversity, abundance, and distribu- the oceans and terrestrial surface combined [1]. We do tion of alteration minerals that formed from aqueous not know when the first life occurred on Earth, but the processes on ancient Mars (recently summarized by first evidence is found in some of the oldest preserved Ehlmann et al. [6]). The mineralogy and context of rocks dating to 3.5 or, as much as 3.8 Ga [2]. While the these altered deposits indicates that deep hydrothermal concept of a “tree of life” breaks down in the Archean processes have operated on Mars, and might have per- [3], it seems likely that the most primitive ancestors of sisted from the Noachian into the Hesperian or later. In all life on Earth correspond to thermophile this work, I consider the implications of recent results chemoautotrophs. Perhaps these are the only life forms for the habitability of the subsurface, the occurrence of that survived intense heat flow during the Late Heavy groundwater, and the possibility to access materials Bombardment or perhaps they actually represent the representing subsurface biological processes. -
A Unique Volcanic Field in Tharsis, Mars: Monogenetic Cinder Cones and Lava Flows As Evidence for Hawaiian Eruptions
42nd Lunar and Planetary Science Conference (2011) 1379.pdf A UNIQUE VOLCANIC FIELD IN THARSIS, MARS: MONOGENETIC CINDER CONES AND LAVA FLOWS AS EVIDENCE FOR HAWAIIAN ERUPTIONS. P. Brož1 and E. Hauber2, 1Institute of Geophysics ASCR, v.v.i., Prague, Czech Republic, [email protected], 2Institut für Planetenforschung, DLR, Berlin, Germany, [email protected]. Introduction: Most volcanoes on Mars that have Data: We use images from several cameras, i.e. been studied so far seem to be basaltic shield volca- Context Camera (CTX), High Resolution Stereo Cam- noes, which can be very large with diameters of hun- era (HRSC), and High Resolution Imaging Science dreds of kilometers [e.g., 1] or much smaller with di- Experiment (HiRISE) for morphological analyses. ameters of several kilometers only [2]. Few Viking Topographic information (e.g., heights and slope an- Orbiter-based studies reported the possible existence gles) were determined from single shots of the Mars of cinder cones [3,4] or stratovolcanoes [5-7], and only Orbiter Laser Altimeter (MOLA) in a GIS environ- the advent of higher-resolution data led to the tentative ment, and from stereo images (HRSC, CTX) and de- interpretation of previously unknown edifices as cinder rived gridded digital elevation models (DEM). cones [8] or rootless cones [9]. The identification of Morphometry: For comparison between the cinder cones can constrain the nature of eruption proc- cones and terrestrial morphological analogues (i.e. esses and, indirectly, our understanding of the nature cinder cones [10]) we determined some basic mor- of parent magmas (e.g., volatile content). Here we re- phometric properties and their ratios (e.g., crater di- port on our observation of a unique cluster of possible ameter [WCR] vs. -
The Science Behind Volcanoes
The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. -
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
SPORADIC GROUNDWATER UPWELLING in DEEP MARTIAN CRATERS: EVIDENCE for LACUSTRINE CLAYS and CARBONATES. J. R. Michalski1,2, A. D. Rogers3, S
SPORADIC GROUNDWATER UPWELLING IN DEEP MARTIAN CRATERS: EVIDENCE FOR LACUSTRINE CLAYS AND CARBONATES. J. R. Michalski1,2, A. D. Rogers3, S. P. Wright4, P. Niles5, and J. Cuadros1, 1Natural History Museum, London, UK 2Planetary Science Institute, Tucson, AZ, USA. 3SUNY Stony Brook, Stony Brook, NY, USA. 4University of New Mexico, Albuquerque, NM, USA. 5NASA Johnson Space Cen- ter, Houston, TX, USA. Introduction: While the surface of Mars may eralogy of deep impact craters was investigated using have had an active hydrosphere early in its history [1], TES, THEMIS, and CRISM data. it is likely that this water retreated to the subsurface Results: We identified ~40 craters of interest in the early on due to loss of the magnetic field and early northern hemisphere, the majority of which occur in atmosphere [2]. This likely resulted in the formation of western Arabia Terra – a potential upwelling zone of two distinct aqueous regimes for Mars from the Late interest [4]. Most of these craters do not contain obvi- Noachian onward: one dominated by redistribution of ous evidence for intra-crater aqueous activity, but surface ice and occasional melting of snow/ice [3], and ~10% contain interior channels and possible lacustrine one dominated by groundwater activity [4]. The exca- features. Most of the craters of interest are blanketed vation of alteration minerals from deep in the crust by by dust, which limits the possibilities for investigating impact craters points to an active, ancient, deep hydro- the mineralogy of intracrater deposits. thermal system [5]. Putative sapping features [6] may One clear exception is McLaughlin Crater (338.6 occur where the groundwater breached the surface. -
Igneous Activity and Volcanism Homework
DATE DUE: Name: Ms. Terry J. Boroughs Geology 300 Section: IGNEOUS ROCKS AND IGNEOUS ACTIVITY Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC vocabulary where applicable! Provide concise, but detailed answers to essay and fill-in questions. TURN IN YOUR 882 –ES SCANTRON AND ANSWER SHEET ONLY! MULTIPLE CHOICE QUESTIONS: 1. Gabbro and Granite a. Have a similar mineral composition b. Have a similar texture c. Answers A. and B. d. Are in no way similar 2. Which of the factors listed below affects the melting point of rock and sediment? a. Composition of the material d. Water content b. The confining pressure e. All of the these c. Only composition of the material and the confining pressure 3. Select the fine grained (aphanitic) rock, which is composed mainly of sodium-rich plagioclase feldspar, amphibole, and biotite mica from the list below: a. Basalt b. Andesite c. Granite d. Diorite e. Gabbro 4. __________ is characterized by extremely coarse mineral grains (larger than 1-inch)? a. Pumice b. Obsidian c. Granite d. Pegmatite 5. Basalt exhibits this texture. a. Aphanitic b. Glassy c. Porphyritic d. Phaneritic e. Pyroclastic 6. Rocks that contain crystals that are roughly equal in size and can be identified with the naked eye and don’t require the aid of a microscope, exhibits this texture: a. Aphanitic b. Glassy c. Porphyritic d. Phaneritic e. Pyroclastic 7. The texture of an igneous rock a. Is controlled by the composition of magma. b. Is the shape of the rock body c. Determines the color of the rock d. -
3D Seismic Imaging of the Shallow Plumbing System Beneath the Ben Nevis 2 Monogenetic Volcanic Field: Faroe-Shetland Basin 3 Charlotte E
ArticleView metadata, text citation and similar papers at core.ac.uk Click here to download Article text Ben Nevis Paperbrought to you by CORE MASTER.docx provided by Aberdeen University Research Archive Plumbing systems of monogenetic edifices 1 3D seismic imaging of the shallow plumbing system beneath the Ben Nevis 2 Monogenetic Volcanic Field: Faroe-Shetland Basin 3 Charlotte E. McLean1*; Nick Schofield2; David J. Brown1, David W. Jolley2, Alexander Reid3 4 1School of Geographical and Earth Sciences, Gregory Building, University of Glasgow, G12 8QQ, UK 5 2Department of Geology and Petroleum Geology, University of Aberdeen AB24 3UE, UK 6 3Statoil (U.K.) Limited, One Kingdom Street, London, W2 6BD, UK 7 *Correspondence ([email protected]) 8 Abstract 9 Reflective seismic data allows for the 3D imaging of monogenetic edifices and their 10 corresponding plumbing systems. This is a powerful tool in understanding how monogenetic 11 volcanoes are fed and how pre-existing crustal structures can act as the primary influence 12 on their spatial and temporal distribution. This study examines the structure and lithology of 13 host-rock as an influence on edifice alignment and provides insight into the structure of 14 shallow, sub-volcanic monogenetic plumbing systems. The anticlinal Ben Nevis Structure 15 (BNS), located in the northerly extent of the Faroe-Shetland Basin, NE Atlantic Margin, was 16 uplifted during the Late Cretaceous and Early Palaeocene by the emplacement of a laccolith 17 and a series of branching sills fed by a central conduit. Seismic data reveals multiple 18 intrusions migrated up the flanks of the BNS after its formation, approximately 58.4 Ma 19 (Kettla-equivalent), and fed a series of scoria cones and submarine volcanic cones. -
Explosive Lava‐Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups Christopher W
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09006, doi:10.1029/2009JE003546, 2010 Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups Christopher W. Hamilton,1 Sarah A. Fagents,1 and Lionel Wilson2 Received 16 November 2009; revised 11 May 2010; accepted 3 June 2010; published 16 September 2010. [1] Volcanic rootless constructs (VRCs) are the products of explosive lava‐water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age‐dating of their host lava surfaces, and thermodynamic modeling of lava‐substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near‐surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25–27°N, 170–171°E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of ∼2000 km2. These VRCs preferentially occur where lava is ∼60 m thick. Crater size‐frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near‐surface substrate was partially desiccated, but that the depth to the midlatitude ice table was ]42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (∼35°) between 75 and 250 Ma, with obliquity excursions descending to ∼25–32°. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).