Research Article

Total Page:16

File Type:pdf, Size:1020Kb

Research Article Indonesian J. Pharm. Vol. 24 No 1 : 22 – 29 ISSN-p : 0126-1037 Research Article IDENTIFICATION OF BAWANG SABRANG (Eleutherine americana Merr. ex K. Heyne) IN INDONESIA BASED ON CHROMOSOME CHARACTERS Budi Setiadi Daryono1*, Wenny Deisshinta Rahmadani1, and Sudarsono2 1Genetic Laboratory, ABSTRACT Biology Faculty, Bawang Sabrang (Eleutherine americana Merr. ex K. Universitas Gadjah Mada Heyne) is a plant belongs to Iris family (Iridaceae). Genetic study Jl. Teknika Selatan, Sekip of the Eleutherine species should be investigated to yield valuable Utara, Yogyakarta 55281, information for breeding program. The aim of this research was to Indonesia determine chromosome characters as a preliminary research on 2 Department of the genetic characterization of Bawang Sabrang. Squash method Pharmaceutical Biology, on the root tips was used for chromosome preparation of this Faculty of Pharmacy plant. The results showed that the time of cell division and Universitas Gadjah Mada prometaphase stages of Bawang Sabrang were occurred at about 55281,Indonesia 08.00-08.30 a.m. and 08.20 a.m., respectively. Chromosome number of Bawang Sabrang was 2n=12 and the karyotype Submitted: 17-07-2012 Revised: 29-09-2012 consisted of 8 (4 pairs) of metacentric chromosomes, 2 (1 pair) Accepted: 06-10-2012 submetacentric chromosomes and 2 (1 pair) subtelocentric chromosomes which have the longest of total length *Corresponding author chromosomes. Therefore, the karyotype formula of Bawang SAT Budi Setiadi Daryono Sabrang was 2n=12=8m+2sm+2st . Besides that, on the pair of subtelocentric chromosomes there was a satellite at each of the Email : chromosome. Analysis of chromosome characters exhibited that [email protected]. the long of total length chromosomes was about 1.687 ± 0.111 µm ac.id to 5.320 ± 0.716 µm. Based on the R value ( 3,65 ± 0,41), it revealed that there was variation of chromosome size on this Eleutherine species in Indonesia. Moreover, data of the chromosome characters is important to complete the database of Bawang Sabrang as a potential medicinal herb in Indonesia Keywords: Bawang Sabrang, Eleutherine americana, chromosome, karyotype INTRODUCTION Ph.D.). This plant has a quite a lot of local Iridaceae is one of family which most of names; for example in Kalimantan it is known the members are perennial herbs. One of its as bawang Sabrang or bawang Tiwai (Heyne, 1988). member, which is neither well known nor Morphology of this plant has bright red beneficial understand yet but has been underground storage organs of bulb like onion. examined is from the genus Eleutherine. This plant also has a pseudo-trunked, green According to Govaerts (2006), this genus sword-shaped leaves that overlap each other consists of 13 species. Most researchers transversely at the base which the apical and examine more Eleutherine species in the the base are pointed. Its inflorescence is southern America and southern Africa. This is definite composite; rhipidia shaped, white because they are scattered in these areas. color, and have 6 petaloid tepals which are However, Goldblatt (1991) reported that the arranged in a double circle. origin habitat of this plant is still unknown. Bawang Sabrang is a wild plant, but in One of its members growing in Indonesia, Java it is being kept as ornamental plants, especially in Borneo and Java is Eleutherine cultivated, and naturalized. Bawang Sabrang can americana Merr. ex K. Heyne. Currently, it is grow well in the altitude of 600 to 1500m said that Eleutherine bulbosa is the revised name above sea level, in the cool and cold areas as in of Eleutherine americana Merr. ex K. Heyne mountains. This plant is vegetative (personal discussion with Peter Goldblatt, reproductive using bulbs. Although it can grow 22 Volume 24 Issue 1 (2013) Budi Setiadi, et al. well in Indonesia, however cultivation of determine the active mitotic time. Stages Bawang Sabrang is still low. Cultivation is preparation chromosome is as follows: generally done in the household scale, Sample Preparation: Bawang Sabrang obtained meanwhile it has many benefits. Therefore, to from Pontianak, West Kalimantan. First, the improve the cultivation and also to preserve the bulb of bawang Sabrang soaked in a Petri dish fill germ plasma of the plant in both quantity and with aquadest to germinate the root. Roots will quality, conservation efforts are required. One grow ± 3 days after soaking and will be able to of the initial steps that can be done to realized use in sample preparation; Root cutting: Pieces it by knowing its genetic characterization, are taken from the root tip of the meristem because it can be further known its genetic region, which is ± 3 mm from the root at the identity. estimated mitotic time. At this research, Research on the molecular and cytology pretreatment were not been done because it of this plant has been done, but not yet in didn’t show much different; Fixation Root: tip Indonesia. One of the research on the cytology is inserted to the bottle flacon that has been Bawang Sabrang which was done by Goldblatt filled with glacial acetic acid 45% (45ml glacial and Snow (1991), states that the number of acetic acid added with 55 ml aquadest). Then chromosome Eleutherine americana (syn. the root tip of the snippet is stored at a Eleutherine bulbosa) is 2n = 12. Moreover, temperature of 4°C for 15 minutes. After that, research on the chemical constituents from the root-tips washed by aquadest; Hydrolysis by Eleutherine Americana in China has resulted 9 HCl : After fixation, the root-tips hydrolyzed compounds (Liu et al., 2009). It was reported by chloride acid (HCL) 1N (1 ml chloride acid that naphthoquinones, anthraquinones and plus 11 ml aquadest) and then than inserted in naphthalene was isolated from the Bulbs of the the incubator at a temperature of 55 ° C for 5 plant (Mahabusarakam, 2010). Whereas, an minutes. After that, the root-tips washed by active compound from the bulb of Eleutherine aquadest.; Tint : After fixation and hydrolysis, americana L. Merr. collected from East the root-tips cleaned and colored using aceto- Kalimantan, Indonesia, was tested for its orcein 1% (1gr orcein synthetic acid in 100 ml antidermatophyte and antimelanogenesis acetate 45%) and stored at room temperature activity (Kusuma et al., 2010). Therefore, the for 24 hours.; Squashing: Root- tips were object used of this research were to study the placed in a colored glass objects. Aceto-orcein mitotic time, the number of chromosome of the excess around the ends of the root-tips Bawang Sabrang, and the chromosome characters cleaned with clean tissue paper to avoid the that includes the shape and size of the preparation for the dirty. Then the root-tips chromosome. Data of the chromosome dropped by glycerol and covered with glass characters is expected to study a potential of cover: Labeling: To seal the glass cover, use Bawang Sabrang as a medicinal herb in paint nail clear glass cover on the sidewalk. The Indonesia. sample is stored in the box preparation and placed in the refrigerator at a temperature of 4º METHODOLOGY C until observed; Observation by Light Materials Microscope : Observation of mitotic phases Plant used in this research was Bawang and chromosomes number of bawang Sabrang Sabrang plants (Eleutherine americana Merr. ex K. are using a light microscope. After getting a Heyne) collected from Lambungmangkurat good preparation, picture were taken by digital University, South Kalimantan and herbal camera and microphotograph camera. nursery in Yogyakarta, Indonesia. Data Analyze Method Chromosome is calculated at the time of Preparation of chromosome was using observation and the results of the images have squash method on the plant root-tip (Jahier et formatted in digital. The number of al., 1996). It was conducted at 08.00-14.00 chromosome is calculated from the root of WIB, started with 30 minutes time interval to three different plants of Bawang Sabrang, each with two or three recycling cell that is on a Volume 24 Issue 1 (2013) 23 Identification of Bawang Sabrang prometaphase. Measurement the length of both chromosomes move toward the metaphase chromosomes short arm (p) and long arm (q) plate or division area. This phase takes place using a computer program, AutoCAD Map quickly so that it is become the most difficult 2000i. Measurement of Centromere Index was phase found during the observation. At this obtained to determine chromosomes form. The phase the form of the chromosomes are most making of Ideogram is done by Corel Draw X3 excellent, in the form of sister chromatid and based on the short arm length (p) and of long scattered in the cells, so this is most appropriate arm length (q) chromosome. To create a time to observe the chromosomes morphology, karyotype is done by cropping chromosome amount and size. images with Magnetic lasso tool in the The further phase is the metaphase. At application program, Adobe Photoshop CS2. this phase the chromosomes has been on metaphase plate in equator region, so that the RESULTS AND DISCUSSION chromosomes appears in a line and gather in Bawang Sabrang usually forms a large the middle of the cell. Position of the homolog clump. It is originally wild plants but can also chromosome in metaphase plate is random. At be kept as ornamental plants and medicinal the end of this phase, the spindle thread made plants in the house yard. Beside it can grow on prophase will be attached to the centromere. well in cool and cold region, Bawang Sabrang At the next stage, chromosomes also has capability to grow in hot areas such as centromere that has been attached by the in urban areas. spindle thread will split along the chromosome arms and vertically toward the threads spindle, Mitotic Time and Cell Cycle so that each similar chromatid will be On this research, chromosome separated.
Recommended publications
  • Taxonomy, Geographic Distribution, Conservation and Species Boundaries in Calydorea Azurea Group (Iridaceae: Tigridieae)1 Introd
    BALDUINIA, n. 64, p. 19-33, 04-XI-2018 http://dx.doi.org/10.5902/2358198035734 TAXONOMY, GEOGRAPHIC DISTRIBUTION, CONSERVATION AND SPECIES BOUNDARIES IN CALYDOREA AZUREA GROUP (IRIDACEAE: TIGRIDIEAE)1 LEONARDO PAZ DEBLE2 ANABELA SILVEIRA DE OLIVEIRA DEBLE3 FABIANO DA SILVA ALVES4 LUIZ FELIPE GARCIA5 SABRINA ARIANE OVIEDO REFIEL LOPES6 ABSTRACT For this study were performed observations in populations of Calydorea azurea Klatt and allied taxa, along of the ecosystems of the Río de La Plata Grasslands, geographic extent where occur this group. For the complementation of the data were examined collections deposited in the principal herbaria of southern Brazil, Uruguay and Argentina, and were analyzed image of types and others collections available. All studied species were photographed and its populations geo-referenced. It are recognized six species: C. alba Roitman & Castillo, C. azurea, C. charruana Deble, C. luteola (Klatt) Baker, C. minima Roitman & Castillo and C. riograndensis Deble. C. azurea is cited for Brazil, C. charruana is added to Argentinian flora, C. luteola has its taxonomic delimitation established, and its occurrence is extended up to the northern Uruguay. The geographic distribution of C. riograndensis is reestablished, in view of three collections mentioned in the protologue are identified as belonging at others species. All species studied are described, illustrated through of photos, being presented data about geographic distribution, ecology and conservation. Keywords: Basin of Rio de La Plata; Bulbous; Ecology; Grasslands Ecosystems; Pampa Biome. RESUMO [Taxonomia, distribuição geográfica, conservação e limites entre as espécies no grupo de Calydorea azurea (Iridaceae: Tigridieae)]. Para este estudo foram feitas observações na natureza de populações de Calydorea azurea Klatt e táxons afins, ao longo dos ecossistemas campestres do entorno da Bacia do Prata, espaço geográfico onde se distri- bui o grupo em estudo.
    [Show full text]
  • Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades.
    [Show full text]
  • TELOPEA Publication Date: 13 October 1983 Til
    Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance.
    [Show full text]
  • Riqueza Y Distribución Geográfica De La Tribu Tigridieae
    Disponible en www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 86 (2015) 80-98 www.ib.unam.mx/revista/ Biogeografía Riqueza y distribución geográfica de la tribu Tigridieae (Iridaceae) en Norteamérica Richness and geographic distribution of the tribe Tigridieae (Iridaceae) in North America Guadalupe Munguía-Linoa,c, Georgina Vargas-Amadoa, Luis Miguel Vázquez-Garcíab y Aarón Rodrígueza,* a Instituto de Botánica, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Apartado postal 139, 45105 Zapopan, Jalisco, México b Centro Universitario Tenancingo, Universidad Autónoma del Estado de México, Ex Hacienda de Santa Ana, Km 1.5 carretera Tenancingo-Villa Guerrero, 52400 Tenancingo, Estado de México, México c Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Universidad de Guadalajara, Apartado postal 139, 45105 Zapopan, Jalisco, México Recibido el 28 de enero de 2014; aceptado el 24 de octubre de 2014 Resumen La tribu Tigridieae (Iridoideae: Iridaceae) es un grupo americano y monofilético. Sus centros de diversificación se localizan en México y la parte andina de Sudamérica. El objetivo del presente trabajo fue analizar la riqueza y distribución de Tigridieae en Norteamérica. Para ello, se utilizó una base de datos con 2,769 registros georreferenciados. Mediante sistemas de información geográfica (SIG) se analizó la riqueza deTigridieae por división política, ecorregión y una cuadrícula de 45×45 km. Tigridieae está representada por 66 especies y 7 subespecies. De estas, 54 especies y 7 subespecies son endémicas. Tigridia es el género más diverso con 43 especies y 6 subespecies. La riqueza de taxa se concentra en México en los estados de Oaxaca, México y Jalisco.
    [Show full text]
  • Eleutherine Bulbosa (Mill.) Urb. (Iridaceae) a New Distributional Record to the Flora of Eastern Ghats, India
    ISSN (Online): 2349 -1183; ISSN (Print): 2349 -9265 TROPICAL PLANT RESEARCH 5(3): 303–305, 2018 The Journal of the Society for Tropical Plant Research DOI: 10.22271/tpr.2018.v5.i3.038 Short communication Eleutherine bulbosa (Mill.) Urb. (Iridaceae): A new distributional record to the flora of Eastern Ghats, India R. Prameela1*, J. Swamy2 and M. Venkaiah3 1Department of Botany, M.R. Degree College, Vizianagaram, Andhra Pradesh-535002, India 2Botanical Survey of India, Deccan Regional Centre, Hyderabad, Telangana-500048, India 3 Department of Botany, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India *Corresponding Author: [email protected] [Accepted: 20 November 2018] [Cite as: Prameela R, Swamy J & Venkaiah M (2018) Eleutherine bulbosa (Mill.) Urb. (Iridaceae): A new distributional record to the flora of Eastern Ghats, India. Tropical Plant Research 5(3): 303–305] The family Iridaceae Juss. contains 70 genera and 2000 species having a cosmopolitan distribution, with the highest diversity in Southern Africa, East Mediterranean, Central and South America (Mabberley 2008). The genus Eleutherine Herb. is a member of the new world tribe Tigridieae of Iridaceae and comprises low-growing bulbous plants with pleated lanceolate leaves and small white, evening-blooming flowers (Goldblatta & Snow 1991), and comprises four species. Eleutherine angusta Ravenna native range is Mato Grosso do Sul (Brazil) to Paraguay of South America. E. bulbosa (Mill.) Urb. is distributed in Mexico, Caribbean, and Central and South America; it is introduced and cultivated in several parts of Africa and Asia, and now naturalized in Indochina, Philippines, and in some parts of India. E. citriodora (Ravenna) Ravenna from northern Argentina, and E.
    [Show full text]
  • Dissertação-Mestrado YURI-PPG
    PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA COORDENAÇÃO DE TECNOLOGIA E INOVAÇÃO LABORATÓRIO DE BIOPROSPECÇÃO E BIOTECNOLOGIA ESTUDO FITOQUÍMICO E BIOATIVIDADE DE Eleutherine bulbosa (MILLER) URB. Yuri de Souza Andrade Pastor Almeida Manaus – AM Julho, 2016 Yuri de Souza Andrade Pastor Almeida ESTUDO FITOQUÍMICO E BIOATIVIDADE DE Eleutherine bulbosa (MILLER) URB. Orientador(a): Dra. Cecilia Veronica Nunez Dissertação apresentada à Coordenação do Programa Integrado de Pós-Graduação em Botânica do INPA, como parte dos requisitos para obtenção do título de Mestre em Botânica. Manaus - AM Julho, 2016 ii iii iv v À minha amada família, meus pais Eneida e Lauro, e meu irmão Igor, por serem os eternos pilares da minha vida, e aos verdadeiros e preciosos amigos que fiz nesta longa caminhada chamada vida, dedico esta dissertação. vi AGRADECIMENTOS Agradeço primeiramente à DEUS, pelas inúmeras coisas boas que possuo em minha vida e por sempre contar com sua força na hora dos mais diversos desafios. Agradeço à minha família, em especial aos meus pais e meu irmão. À minha mãe Eneida, eterna companheira e apoiadora, por nunca me deixar faltar nada e sempre me incentivar a crescer na vida, a ela devo uma gratidão eterna. Ao meu pai Lauro, que mesmo longe atualmente, me apoiou e me deu amor, e me ensinou que, na vida, pensamento positivo é tudo, e que no fim tudo dá certo. Ao meu irmão Igor, que sempre me estendeu a mão sem questionar, que sempre esteve lá quando eu mais precisei, um segundo pai, uma pessoa que sei que posso contar pelo resto de minha vida.
    [Show full text]
  • Three New Species of Cypella (Iridaceae) from South America, and Taxonomic Delimitation of C
    Phytotaxa 236 (2): 101–120 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.2.1 Three new species of Cypella (Iridaceae) from South America, and taxonomic delimitation of C. suffusa Ravenna LEONARDO PAZ DEBLE1,5*, FABIANO DA SILVA ALVES2,5, ANDRÉS GONZÁLEZ3 & ANABELA SILVEIRA DE OLIVEIRA DEBLE4,5 1Curso de Ciências da Natureza, Universidade Federal do Pampa, Av. 21 de Abril 80, Dom Pedrito, Rio Grande do Sul, 96450-000, Brazil; e-mail: [email protected] 2Curso de Ciências Biológicas, Universidade da Região da Campanha (URCAMP), Praça Getúlio Vargas 47, Alegrete, 97542-570, Rio Grande do Sul, Brazil. 3Facultad de Agronomía, Universidad de la República, Avda. E. Garzón 780, Montevideo, Uruguay, CP 12.900. 4Curso Superior Tecnólogo em Gestão Ambiental, Universidade da Região da Campanha.BR 293, KM 238, Dom Pedrito, Rio Grande do Sul, 96450-000, Brazil. 5Núcleo de Estudos Botânicos Balduíno Rambo, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, 97105-900, Brazil. *author for correspondence Abstract Three new species of Cypella are described and illustrated for the complex of grasslands ecosystems of Rio de La Plata: C. aurinegra, C. guttata and C. ravenniana. The former is endemic to the region of the Taquari river, southern Cerro Largo Department, Uruguay, and is closely related to Cypella fucata and C. luteogibbosa, but can be distinguished from these species by its yellow flowers stained with dark-purple, narrower outer tepals, smaller inner tepals, shorter adaxial crests of style branches, slender filaments, and seeds with smooth testa.
    [Show full text]
  • Evaluation of Allelopathic Potentials from Medicinal Plant Species in Phnom Kulen National Park, Cambodia by the Sandwich Method
    sustainability Article Evaluation of Allelopathic Potentials from Medicinal Plant Species in Phnom Kulen National Park, Cambodia by the Sandwich Method Yourk Sothearith 1,2 , Kwame Sarpong Appiah 1, Takashi Motobayashi 1,* , Izumi Watanabe 3 , Chan Somaly 2, Akifumi Sugiyama 4 and Yoshiharu Fujii 1,* 1 Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; [email protected] (Y.S.); [email protected] (K.S.A.) 2 Ministry of Environment, Morodok Techcho (Lot 503) Tonle Bassac, Phnom Penh 12301, Cambodia; [email protected] 3 Laboratory of Environmental Toxicology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; [email protected] 4 Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto 611-0011, Japan; [email protected] * Correspondence: [email protected] (T.M.); [email protected] (Y.F.) Abstract: Phnom Kulen National Park, in north-western Cambodia, has huge richness in biodiversity and medicinal value. One hundred and ninety-five (195) medicinal plant species were collected from the national park to examine allelopathic potentials by using the sandwich method, a specific bioassay for the evaluation of leachates from plants. The study found 58 out of 195 medicinal plant species showed significant inhibitory effects on lettuce radicle elongation as evaluated by standard deviation variance based on the normal distribution. Three species including Iris pallida (4% of control), Parabarium micranthum (7.5% of control), and Peliosanthes teta (8.2% of control) showed Citation: Sothearith, Y.; Appiah, K.S.; strong inhibition of lettuce radicle elongation less than 10% of the control.
    [Show full text]
  • The Effects of Dietary Eleutherine Bulbosa on the Growth, Leukocyte Profile, and Digestive Enzyme Activity of the Striped Catfish Pangasianodon Hypophthalmus
    NUSANTARA BIOSCIENCE ISSN: 2087-3948 Vol. 10, No. 1, pp. 47-52 E-ISSN: 2087-3956 February 2018 DOI: 10.13057/nusbiosci/n100107 The effects of dietary Eleutherine bulbosa on the growth, leukocyte profile, and digestive enzyme activity of the striped catfish Pangasianodon hypophthalmus RUDY AGUNG NUGROHO1,, MEYLIANAWATI1, ODETA FEBRI ASOKAWATI1, YANTI PUSPITA SARI1, ESTI HANDAYANI HARDI2 1Laboratory of Animal Physiology, Development, and Molecular, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Mulawarman. Jl. Barong Tongkok No. 4, Gunung Kelua, Samarinda 75123, East Kalimantan, Indonesia. Tel.: +62-541-749140, email [email protected], [email protected] 2Microbiology Laboratory, Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Mulawarman. Samarinda 75123, East Kalimantan, Indonesia. Manuscript received: 8 January 2018. Revision accepted: 21 February 2018. Abstract. Nugroho RA, Meylianawati, Asokawati OF, Sari YP, Hardi EH. 2018. The effects of dietary Eleutherine bulbosa on the growth, leukocyte profile, and digestive enzymes activity of Pangasianodon hypophthalmus. Nusantara Bioscience 10: 47-52. This study was conducted to examine the effects of Eleutherine bulbosa (Mill.) Urb extract (EAE) on the average weekly gain (AWG), specific growth rate (SGR), feed efficiency (FE), digestive enzyme (amylase, lipase, protease) activity, total and differential leukocyte counts, and phagocytosis activity of the striped catfish (Pangasianodon hypophthalmus). Four groups of fish with three replicates were fed 15 (P1), 30 (P2), 45 (P3), and 60 (P4) g kg-1of EAE in a basal diet and compared with control (C) fish without EAE at a rate 3% of body weight for 4 weeks. At the end of the trial, the results showed that fish fed EAE above 15 g kg-1 in the diet significantly increased AWG, while SGR, FE, lipase, protease, and neutrophil, and lymphocyte activity were not affected by any dietary concentration of EAE.
    [Show full text]
  • Diversity of Non-Structural Carbohydrates in the Underground Organs of Five Iridaceae Species from the Cerrado
    South African Journal of Botany 96 (2015) 105–111 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Short communication Diversity of non-structural carbohydrates in the underground organs of five Iridaceae species from the Cerrado (Brazil) V.O. Almeida a,R.V.Carneiroa, M.A.M. Carvalho b, R.C.L. Figueiredo-Ribeiro b,M.G.Moraesa,⁎ a Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Caixa Postal 131, Goiânia, GO 74001-970, Brazil b Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, Caixa Postal 68041, São Paulo, SP 04045-972, Brazil article info abstract Article history: South America has a great diversity in some tribes of the Iridaceae family. Most of the Iridaceae are geophytes, Received 7 April 2014 with underground organs bearing buds and reserve compounds, which favor their occurrence in seasonal Received in revised form 23 October 2014 environments, such as the Cerrado. Non-structural carbohydrates (NSC) are the main reserves in geophytes, Accepted 23 October 2014 essential to support phenological events, and protect plants against abiotic stresses. NSC may also reflect Available online xxxx taxonomic relationships among plant groups. The objective of this study was to determine the contents and fi Edited by: AR Magee composition of NSC in underground organs of ve Iridaceae species from the Cerrado (Cipura paludosa, Cipura xanthomelas, Trimezia cathartica, Trimezia juncifolia and Sisyrinchium vaginatum), representing the tribes Keywords: Tigridieae, Trimezieae and Sisyrinchieae. Soluble carbohydrates and total fructose in oligo and polysaccharide Raffinose fractions, and the starch contents were determined, and sugar composition was analyzed by HPAEC-PAD.
    [Show full text]
  • Antimicrobial Effect of Medicinal Plants Used in Traditional Indonesian Medicine
    CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE Faculty of Tropical AgriSciences Department of Crop Sciences and Agroforestry Antimicrobial effect of medicinal plants used in traditional Indonesian medicine DOCTORAL THESIS Author: Andreas Romulo Supervisor: prof. Ing. Ladislav Kokoška, Ph.D. 2018 ACKNOWLEDGMENT I would like to express my gratitude towards my exceptional supervisor prof. Ladislav Kokoška, Ph.D. for his sincere guidance, encouragement, and patience over the last three years. Thank you for giving me the opportunity to do research in the Laboratory of Ethnobotany and Ethnopharmacology. Your continuous support, insightful comments, suggestion, and critical analysis of the research and writing of this dissertation were essential for completion of my study and the success of my future career. I would like to thank Ing. Johana Rondevaldová, Ph.D. for the support and helpful assistance in laboratory research and academic background, as well as to my fellow labmates, Ing. Markéta Houdková and Ing. Marie Netopilová who helped and contributed in the experiment. My special thanks to Ing. Klára Urbanová, Ph.D. and Ing. Pavel Nový, Ph.D. for their sincere help, guidance, and suggestion during the analysis of the essential oil. Finally, I would like to thank to my beloved parents and friends for their continues support, encouragement, and pray. I am so grateful to have you all. This research was financially supported by Erasmus Mundus project ALFABET (Asia: Life, Food, Agriculture, Biology, Economics, Technology) [55207], Czech University of Life Sciences Prague Grant Agency project CIGA [20175001] and Internal Grant Agency project IGA [20175020]. II CERTIFICATION I, Andreas Romulo, submitted this dissertation for Ph.D.
    [Show full text]
  • 1 CV: Snow 2018
    1 NEIL SNOW, PH.D. Curriculum Vitae CURRENT POSITION Associate Professor of Botany Curator, T.M. Sperry Herbarium Department of Biology, Pittsburg State University Pittsburg, KS 66762 620-235-4424 (phone); 620-235-4194 (fax) http://www.pittstate.edu/department/biology/faculty/neil-snow.dot ADJUNCT APPOINTMENTS Missouri Botanical Garden (Associate Researcher; 1999-present) University of Hawaii-Manoa (Affiliate Graduate Faculty; 2010-2011) Au Sable Institute of Environmental Studies (2006) EDUCATION Ph.D., 1997 (Population and Evolutionary Biology); Washington University in St. Louis Dissertation: “Phylogeny and Systematics of Leptochloa P. Beauv. sensu lato (Poaceae: Chloridoideae)”. Advisor: Dr. Peter H. Raven. M.S., 1988 (Botany); University of Wyoming. Thesis: “Floristics of the Headwaters Region of the Yellowstone River, Wyoming”. Advisor: Dr. Ronald L. Hartman B.S., 1985 (Botany); Colorado State University. Advisor: Dr. Dieter H. Wilken PREVIOUS POSITIONS 2011-2013: Director and Botanist, Montana Natural Heritage Program, Helena, Montana 2007-2011: Research Botanist, Bishop Museum, Honolulu, Hawaii 1998-2007: Assistant then Associate Professor of Biology and Botany, School of Biological Sciences, University of Northern Colorado 2005 (sabbatical). Project Manager and Senior Ecologist, H. T. Harvey & Associates, Fresno, CA 1997-1999: Senior Botanist, Queensland Herbarium, Brisbane, Australia 1990-1997: Doctoral student, Washington University in St. Louis; Missouri Botanical Garden HERBARIUM CURATORIAL EXPERIENCE 2013-current: Director
    [Show full text]