Role of Jagged1 in the Enrichment of Cancer Stem Cells in HER2+ Breast Cancer Deep Shah Loyola University Chicago, Deep [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Role of Jagged1 in the Enrichment of Cancer Stem Cells in HER2+ Breast Cancer Deep Shah Loyola University Chicago, Deep Pharma2010@Yahoo.In Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2017 Role of Jagged1 in the Enrichment of Cancer Stem Cells in HER2+ Breast Cancer Deep Shah Loyola University Chicago, [email protected] Recommended Citation Shah, Deep, "Role of Jagged1 in the Enrichment of Cancer Stem Cells in HER2+ Breast Cancer" (2017). Dissertations. 2854. https://ecommons.luc.edu/luc_diss/2854 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. Copyright © 2017 Deep Shah LOYOLA UNIVERSITY CHICAGO ROLE OF JAGGED1 IN THE ENRICHMENT OF CANCER STEM CELLS IN HER2+ BREAST CANCER A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN MOLECULAR PHARMACOLOGY AND THERAPEUTICS BY DEEP S. SHAH CHICAGO, ILLINOIS DECEMBER 2017 TABLE OF CONTENTS LIST OF FIGURES .......................................................................................... v LIST OF TABLES ............................................................................................ vii LIST OF ABBREVIATIONS ............................................................................. viii CHAPTER I: INTRODUCTION ........................................................................ 1 Anatomy of the Human Breast ..................................................................... 1 Breast Cancer .............................................................................................. 2 Risk Factors for Breast Cancer .................................................................... 2 Breast cancer risk factors that are not under personal control. ................. 2 Genetic risk factors. ................................................................................ 3 Lifestyle-related breast cancer risk factors. ............................................... 4 Subtypes of Breast Cancer .......................................................................... 5 Luminal A. ................................................................................................. 6 Luminal B. ................................................................................................. 7 Triple Negative. ......................................................................................... 8 Normal Breast-Like. ................................................................................... 10 Human Epidermal Growth Factor Receptor 2 (HER2). .............................. 10 HER2+ Breast Cancer: Drug Resistance ..................................................... 16 HER2 Mutations. ....................................................................................... 16 Activation of Compensatory Signal Transduction Pathways. .................... 17 Receptor tyrosine kinases. ..................................................................... 17 Intracellular kinases. ............................................................................... 19 Defects in Apoptosis and Cell Cycle Control. ............................................ 20 Involvement of Host Factors that Modulate Drug Response. .................... 22 Conclusion ................................................................................................... 22 CHAPTER II: CANCER STEM CELLS (CSCs) AND NOTCH SIGNALING: A LITERATURE REVIEW ................................................................................ 25 The CSC Hypothesis .................................................................................... 25 Proposed Markers to Identify Breast CSCs. .............................................. 26 HER2+ Breast CSCs. ................................................................................ 29 EMT and CSCs. ........................................................................................ 31 CSCs and Tumor Microenvironment. ........................................................ 32 Notch Signaling: A Literature Review ........................................................... 34 Introduction. .............................................................................................. 34 Notch Signaling Pathway. ......................................................................... 35 Notch receptors. ..................................................................................... 35 Notch ligands. ......................................................................................... 36 Jagged1. ................................................................................................ 37 Canonical Notch Signaling Pathway. ......................................................... 38 Notch Signaling in Mammary Gland Development. ................................... 41 Notch Signaling in Cancer. ........................................................................ 43 Notch Signaling and Breast Cancer. ......................................................... 44 Notch Signaling and Breast CSCs. ............................................................ 46 Crosstalk of Notch Signaling with Other Signaling Pathways in Breast Cancer. ................................................................................................... 47 ii Conclusion ................................................................................................... 50 CHAPTER III: MATERIALS AND METHODS ................................................. 55 Cell Culture .................................................................................................. 55 Drugs, Chemicals, and Reagents ................................................................. 56 RNA Interference and Transfection Reagents .............................................. 57 Antibodies .................................................................................................... 58 Western Blot Analysis .................................................................................. 59 Flow Cytometry ............................................................................................ 62 Cell Sorting ................................................................................................... 64 Aldefluor Assay ............................................................................................ 65 Mammosphere Assay ................................................................................... 66 Preparation of Methyl Cellulose Based Mammosphere Medium ............... 66 Mammosphere Assay Protocol .................................................................. 66 In Vivo Study ................................................................................................ 68 Immunohistochemical Staining of Human HER2+ Breast Tumors ............... 69 Real-Time PCR ............................................................................................ 70 Statistical Analysis ........................................................................................ 72 CHAPTER IV: HYPOTHESIS AND SPECIFIC AIMS ...................................... 74 CHAPTER V: RESULTS ................................................................................. 78 Specific Aim 1-Determine Whether Surface Expression of Jagged1 Is Critical for the Formation of CSCs ............................................................. 78 Aim 1A-Determine Whether Jagged1-High Subpopulation Upon Lapatinib Treatment Results in an Increase in the Formation of CSCs as Compared to Jagged1-Low Subpopulation in the Absence of Lapatinib Treatment. CSCs Would be Assessed by Mammosphere Forming Efficiency, Aldehyde Dehydrogenase Activity and the Levels of CD44 High/CD24 Low. ..................................................................................... 90 Jagged1-high subpopulation shows enhanced mammosphere formation upon HER2 inhibition, as compared to Jagged1-low subpopulation in the absence of HER2 inhibition. ............................ 90 Jagged1-high subpopulation upon HER2 inhibition shows an enhancement of aldehyde dehydrogenase positive CSCs, as compared to Jagged1-low subpopulation in the absence of HER2 inhibition. .......................................................................................... 92 Upon HER2 inhibition, Jagged1-high subpopulation doesn’t show a significant change in the levels of CD44 high/CD24 low CSCs, as compared to Jagged1-low subpopulation in the absence of HER2 inhibition. .......................................................................................... 93 Aim 1B-Assess Whether Jagged1 is Necessary for Lapatinib Mediated Enrichment of Mammospheres in the HER2+ Subtype of Breast Cancer. ................................................................................................... 100 Jagged1 is necessary for lapatinib mediated enrichment of mammospheres. ............................................................................... 100 Aim 1C-Measure the degree of Notch activation in Jagged1-high subpopulation upon lapatinib treatment and in the Jagged1-low iii subpopulation in the absence of lapatinib treatment. ............................. 104 The Jagged1-high subpopulation in the presence of lapatinib mediated HER2 inhibition has higher Notch activation, as compared to the Jagged1-low subpopulation, in the absence of HER2 inhibition. .........................................................................................
Recommended publications
  • Doctorat De L'université De Toulouse
    HÈSE En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Université Toulouse III - Paul Sabatier Discipline : Biochimie Présentée et soutenue par Violette GAUTIER Le 18 décembre 2012 Développement de méthodes quantitatives sans marquage pour l’étude protéomique des cellules endothéliales JURY Dr. Philippe Marin, IGF/CNRS (Montpellier) – Rapporteur Dr Thierry Rabilloud, iRTSV/LCBM/CNRS (Grenoble) - Rapporteur Dr Sarah Cianferani-Sanglier, IPHC/CNRS (Strasbourg) - Examinatrice Dr. Bernard Monsarrat, IPBS/CNRS (Toulouse) - Directeur de thèse Dr. Anne Gonzalez de Peredo, IPBS/CNRS (Toulouse) – Co-directrice de thèse Pr. Jean-François Arnal, Université Paul Sabatier (Toulouse) - Président Ecole doctorale : Biologie - Santé - Biotechnologies Unité de recherche : Institut de Pharmacologie et de Biologie Structurale (UMR5089, CNRS) Directeurs de Thèse : Bernard Monsarrat, Anne Gonzalez de Peredo Rapporteurs : Philippe Marin, Thierry Rabilloud RESUME La compréhension du fonctionnement des systèmes biologiques, dont les protéines sont les principaux effecteurs, est un défi majeur en biologie. La protéomique est aujourd’hui l’outil incontournable pour l’étude des protéines. Au cours de ma thèse, j’ai donc utilisé différentes approches protéomiques pour répondre à plusieurs questions biologiques autour des cellules endothéliales, concernant l’étude de mécanismes fonctionnels de protéines d’intérêt ainsi que des processus inflammatoires au sein de ces cellules. Ces différentes études ont nécessité la mise en place et l’optimisation de méthodes de quantification sans marquage (« label free ») essentielles à la fois pour la caractérisation de complexes protéiques et pour l’analyse de protéomes entiers. Cette thèse décrit ainsi dans un premier temps l’utilisation de telles approches pour l’analyse de complexes immunopurifiés dans laquelle un enjeu important consiste souvent à discriminer de façon non ambiguë les composants bona fide du complexe par rapport aux contaminants non-spécifiques.
    [Show full text]
  • Updates on the Role of Molecular Alterations and NOTCH Signalling in the Development of Neuroendocrine Neoplasms
    Journal of Clinical Medicine Review Updates on the Role of Molecular Alterations and NOTCH Signalling in the Development of Neuroendocrine Neoplasms 1,2, 1, 3, 4 Claudia von Arx y , Monica Capozzi y, Elena López-Jiménez y, Alessandro Ottaiano , Fabiana Tatangelo 5 , Annabella Di Mauro 5, Guglielmo Nasti 4, Maria Lina Tornesello 6,* and Salvatore Tafuto 1,* On behalf of ENETs (European NeuroEndocrine Tumor Society) Center of Excellence of Naples, Italy 1 Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy 2 Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK 3 Cancer Cell Metabolism Group. Centre for Haematology, Immunology and Inflammation Department, Imperial College London, London W12 0HS, UK 4 SSD Innovative Therapies for Abdominal Metastases—Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS—Fondazione “G. Pascale”, 80131 Naples, Italy 5 Department of Pathology, Istituto Nazionale Tumori, IRCCS—Fondazione “G. Pascale”, 80131 Naples, Italy 6 Unit of Molecular Biology and Viral Oncology, Department of Research, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy * Correspondence: [email protected] (M.L.T.); [email protected] (S.T.) These authors contributed to this paper equally. y Received: 10 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of rare malignancies, mainly originating from hormone-secreting cells, which are widespread in human tissues. The identification of mutations in ATRX/DAXX genes in sporadic NENs, as well as the high burden of mutations scattered throughout the multiple endocrine neoplasia type 1 (MEN-1) gene in both sporadic and inherited syndromes, provided new insights into the molecular biology of tumour development.
    [Show full text]
  • Tumor Initiating but Differentiated Luminal-Like Breast Cancer Cells Are Highly Invasive in the Absence of Basal-Like Activity
    Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity Jiyoung Kima, René Villadsena, Therese Sørlieb,c, Louise Fogha, Signe Z. Grønlunda,d, Agla J. Fridriksdottira, Irene Kuhne, Fritz Rankf,1, Vera Timmermans Wielengaf, Hiroko Solvangb,g, Paul A. W. Edwardsh, Anne-Lise Børresen-Daleb,i, Lone Rønnov-Jessend, Mina J. Bisselle,2, and Ole William Petersena,2 aDepartment of Cellular and Molecular Medicine, Centre for Biological Disease Analysis and Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; bDepartment of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Montebello 0310, Oslo, Norway; cCancer Stem Cell Innovation Center, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway; dCell and Developmental Biology, Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; eLife Sciences Division, Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Pathology, Rigshospitalet, DK-2100 Copenhagen Ø, Denmark; gDepartment of Biostatistics, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway; hDepartment of Pathology and Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0X2, United Kingdom; and iK. G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Clinical Medicine, University of Oslo, 0318 Oslo, Norway Contributed by Mina J. Bissell, February 28, 2012 (sent for review January 10, 2012) The majority of human breast cancers exhibit luminal epithelial these contradictions is the concept of tumor cell plasticity, i.e., the differentiation. However, most aggressive behavior, including possibility that differentiated luminal cells must acquire basal-like invasion and purported cancer stem cell activity, are considered traits to become malignant (10–14).
    [Show full text]
  • Alagille Watson Syndrome (JAG1) Sequencing & Deletion/Duplication
    Lab Dept: Anatomic Pathology Test Name: ALAGILLE WATSON SYNDROME (JAG1) SEQUENCING General Information Lab Order Codes: JAG1 Synonyms: Alagille Watson Syndrome; Cholestasis with Peripheral Pulmonary Stenosis; Arteriohepatic Dysplasia; Syndromatic Hepatic Ductular Hypoplasia; ALGS1 CPT Codes: Sequencing: 81407 – Molecular pathology Level 8 Deletion/Duplication- High Density Targeted Array 81406 – Molecular pathology Level 7 Test Includes: Analysis of bi-directional sequencing. Also includes a targeted array CGH analysis with exon-level resolution to evaluate for a deletion or duplication of one exon of this gene. Logistics Test Indications: Alagille Syndrome is one of the major forms of chronic liver disease in children and is an autosomal dominant disorder with high penetrance but variable expressivity. The main clinical findings include cholestatis due to bile duct paucity, a characteristic facial appearance, and cardiovascular, eye and skeletal abnormalities. Cardiovascular findings include tetralogy of Fallot or singular manifestations thereof, peripheral pulmonary artery stenosis, atrial and/or ventricular septal defects, and coarction of the aorta. Butterfly vertebra is the most common skeletal finding. Other findings include narrowing of interpeduncular spaces in the lumbar spine, spina bifida occulta, and short fingers and ulnae. Facial features consist of broad forehead, triangular face, prominent zygomatic arch and moderate hypertelorism. Posterior embryotoxon and retinal pigmentary changes are common opthalmological findings. ALGS1 is caused by mutations in the JAG1 gene. It encodes jagged-1, a ligand for the Notch receptors. Notch proteins are transmembrane receptors and are components of signaling pathways important for cell fate. JAG1 is expressed in the developing heart and other structures affected in Alagille syndrome. Over 90% of patients with Alagille syndrome have a mutation in the JAG1 gene.
    [Show full text]
  • Applying Machine Learning to Breast Cancer Gene Expression Data to Predict Survival Likelihood Pegah Tavangar Thesis Submitted T
    Applying Machine Learning to Breast Cancer Gene Expression Data to Predict Survival Likelihood Pegah Tavangar Thesis submitted to the University of Ottawa in partial Fulfillment of the requirements for the Master of Science in Chemistry and Biomolecular Sciences Department of Chemistry and Biomolecular Sciences Faculty of Science University of Ottawa © Pegah Tavangar, Ottawa, Canada, 2020 Abstract Analyzing the expression level of thousands of genes will provide additional information beneficial in improving cancer therapy or synthesizing a new drug. In this project, the expression of 48807 genes from primary human breast tumors cells was analyzed. Humans cannot make sense of such a large volume of gene expression data from each person. Therefore, we used Machine Learning as an automated system that can learn from the data and be able to predict results from the data. This project presents the use of Machine Learning to predict the likelihood of survival in breast cancer patients using gene expression profiling. Machine Learning techniques, such as Logistic Regression, Support Vector Machines, Random Forest, and different Feature Selection techniques were used to find essential genes that lead to breast cancer or help a patient to live longer. This project describes the evaluation of different Machine Learning algorithms to classify breast cancer tumors into two groups of high and low survival. ii Acknowledgments I would like to thank Dr. Jonathan Lee for providing me the opportunity to work with him on an exciting project. I would like to recognize the invaluable counsel that you all provided during my research. It was my honor to work with some other professors in the Faculty of Medicine, such as Dr.
    [Show full text]
  • Identification of New Substrates and Physiological Relevance
    Université de Montréal The Multifaceted Proprotein Convertases PC7 and Furin: Identification of New Substrates and Physiological Relevance Par Stéphanie Duval Biologie Moléculaire, Faculté de médecine Thèse présentée en vue de l’obtention du grade de Philosophiae doctor (Ph.D) en Biologie moléculaire, option médecine cellulaire et moléculaire Avril 2020 © Stéphanie Duval, 2020 Résumé Les proprotéines convertases (PCs) sont responsables de la maturation de plusieurs protéines précurseurs et sont impliquées dans divers processus biologiques importants. Durant les 30 dernières années, plusieurs études sur les PCs se sont traduites en succès cliniques, toutefois les fonctions spécifiques de PC7 demeurent obscures. Afin de comprendre PC7 et d’identifier de nouveaux substrats, nous avons généré une analyse protéomique des protéines sécrétées dans les cellules HuH7. Cette analyse nous a permis d’identifier deux protéines transmembranaires de fonctions inconnues: CASC4 et GPP130/GOLIM4. Au cours de cette thèse, nous nous sommes aussi intéressé au rôle de PC7 dans les troubles comportementaux, grâce à un substrat connu, BDNF. Dans le chapitre premier, je présenterai une revue de la littérature portant entre autres sur les PCs. Dans le chapitre II, l’étude de CASC4 nous a permis de démontrer que cette protéine est clivée au site KR66↓NS par PC7 et Furin dans des compartiments cellulaires acides. Comme CASC4 a été rapporté dans des études de cancer du sein, nous avons généré des cellules MDA- MB-231 exprimant CASC4 de type sauvage et avons démontré une diminution significative de la migration et de l’invasion cellulaire. Ce phénotype est causé notamment par une augmentation du nombre de complexes d’adhésion focale et peut être contrecarré par la surexpression d’une protéine CASC4 mutante ayant un site de clivage optimale par PC7/Furin ou encore en exprimant une protéine contenant uniquement le domaine clivé N-terminal.
    [Show full text]
  • 9-Azido Analogs of Three Sialic Acid Forms for Metabolic Remodeling Of
    Supporting Information 9-Azido Analogs of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans Bo Cheng,†,‡ Lu Dong,†,§ Yuntao Zhu,†,‡ Rongbing Huang,†,‡ Yuting Sun,†,‖ Qiancheng You,†,‡ Qitao Song,†,§ James C. Paton, ∇ Adrienne W. Paton,∇ and Xing Chen*,†,‡,§,⊥,# †College of Chemistry and Molecular Engineering, ‡Beijing National Laboratory for Molecular Sciences, §Peking−Tsinghua Center for Life Sciences,‖Academy for Advanced Interdisciplinary Studies, ⊥Synthetic and Functional Biomolecules Center, and #Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China ∇Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia Page S1 Table of Contents: Scheme S1.……………………………………………………….........……………. S3 Figure S1……………………………………………………..………..……………. S3 Figure S2……………………………………………………..………..…………… S4 Figure S3……………………………………………………..………..…………… S4 Figure S4……………………………………………………..………..…………… S5 Figure S5……………………………………………………..………..…………… S6 Figure S6……………………………………………………..………..…………….S7 Figure S7……………………………………………………..………..…………….S8 Figure S8……………………………………………………..………..…………….S9 Experimental Procedures……………………………….…........…………....S10-S27 Table S1………………………………………………..………..…………….S28-S48 Supporting Reference……………………………………………….......………...S49 Page S2 Scheme S1. Synthesis of 9AzNeu5Gc Figure S1: a, b, c, d) Representative scatter plots (FSC vs. SSC) and histograms of flow cytometry analysis
    [Show full text]
  • Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and Over 10,000 Cases Fengju Chen1, Yiqun Zhang1, Don L
    Published OnlineFirst February 9, 2018; DOI: 10.1158/1078-0432.CCR-17-3378 Biology of Human Tumors Clinical Cancer Research Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases Fengju Chen1, Yiqun Zhang1, Don L. Gibbons2,3, Benjamin Deneen4,5,6,7, David J. Kwiatkowski8,9, Michael Ittmann10, and Chad J. Creighton1,11,12,13 Abstract Purpose: The Cancer Genome Atlas data resources represent of immune infiltrates were most strongly manifested within a an opportunity to explore commonalities across cancer types class representing 13% of cancers. Pathway-level differences involving multiple molecular levels, but tumor lineage and involving hypoxia, NRF2-ARE, Wnt, and Notch were manifested histology can represent a barrier in moving beyond differences in two additional classes enriched for mesenchymal markers and relatedtocancertype. miR200 silencing. Experimental Design: On the basis of gene expression data, we Conclusions: All pan-cancer molecular classes uncovered classified 10,224 cancers, representing 32 major types, into 10 here, with the important exception of the basal-like breast molecular-based "classes." Molecular patterns representing tissue cancer class, involve a wide range of cancer types and would or histologic dominant effects were first removed computation- facilitate understanding the molecular underpinnings of ally, with the resulting classes representing emergent themes cancers beyond tissue-oriented domains. Numerous biolog- across tumor lineages. ical processes associated with cancer in the laboratory Results: Key differences involving mRNAs, miRNAs, proteins, setting were found here to be coordinately manifested and DNA methylation underscored the pan-cancer classes. One across large subsets of human cancers.
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]
  • Multiomics of Azacitidine-Treated AML Cells Reveals Variable And
    Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome Kevin K. Leunga, Aaron Nguyenb, Tao Shic, Lin Tangc, Xiaochun Nid, Laure Escoubetc, Kyle J. MacBethb, Jorge DiMartinob, and James A. Wellsa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; bEpigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158; cDepartment of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121; and dDepartment of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140 Contributed by James A. Wells, November 19, 2018 (sent for review August 23, 2018; reviewed by Rebekah Gundry, Neil L. Kelleher, and Bernd Wollscheid) Myelodysplastic syndromes (MDS) and acute myeloid leukemia of DNA methyltransferases, leading to loss of methylation in (AML) are diseases of abnormal hematopoietic differentiation newly synthesized DNA (10, 11). It was recently shown that AZA with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA treatment of cervical (12, 13) and colorectal (14) cancer cells methyltransferase inhibitor widely used to treat MDS and AML, can induce interferon responses through reactivation of endoge- yet the impact of AZA on the cell-surface proteome has not been nous retroviruses. This phenomenon, termed viral mimicry, is defined. To identify potential therapeutic targets for use in com- thought to induce antitumor effects by activating and engaging bination with AZA in AML patients, we investigated the effects the immune system. of AZA treatment on four AML cell lines representing different Although AZA treatment has demonstrated clinical benefit in stages of differentiation. The effect of AZA treatment on these AML patients, additional therapeutic options are needed (8, 9).
    [Show full text]
  • Notch Signaling in Breast Cancer: a Role in Drug Resistance
    cells Review Notch Signaling in Breast Cancer: A Role in Drug Resistance McKenna BeLow 1 and Clodia Osipo 1,2,3,* 1 Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA; [email protected] 2 Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60513, USA 3 Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60513, USA * Correspondence: [email protected]; Tel.: +1-708-327-2372 Received: 12 September 2020; Accepted: 28 September 2020; Published: 29 September 2020 Abstract: Breast cancer is a heterogeneous disease that can be subdivided into unique molecular subtypes based on protein expression of the Estrogen Receptor, Progesterone Receptor, and/or the Human Epidermal Growth Factor Receptor 2. Therapeutic approaches are designed to inhibit these overexpressed receptors either by endocrine therapy, targeted therapies, or combinations with cytotoxic chemotherapy. However, a significant percentage of breast cancers are inherently resistant or acquire resistance to therapies, and mechanisms that promote resistance remain poorly understood. Notch signaling is an evolutionarily conserved signaling pathway that regulates cell fate, including survival and self-renewal of stem cells, proliferation, or differentiation. Deregulation of Notch signaling promotes resistance to targeted or cytotoxic therapies by enriching of a small population of resistant cells, referred to as breast cancer stem cells, within the bulk tumor; enhancing stem-like features during the process of de-differentiation of tumor cells; or promoting epithelial to mesenchymal transition. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance through reduction or elimination of breast cancer stem cells. However, Notch inhibitors have yet to be clinically approved for the treatment of breast cancer, mainly due to dose-limiting gastrointestinal toxicity.
    [Show full text]
  • Spatially Restricted JAG1-Notch Signaling in Human Thymus Provides Suitable DC Developmental Niches
    Article Spatially restricted JAG1-Notch signaling in human thymus provides suitable DC developmental niches Enrique Martín-Gayo,1* Sara González-García,1* María J. García-León,1 Alba Murcia-Ceballos,1 Juan Alcain,1 Marina García-Peydró,1 Luis Allende,2 Belén de Andrés,3 María L. Gaspar,3 and María L. Toribio1 1Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain 2Immunology Department, i+12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain 3Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain A key unsolved question regarding the developmental origin of conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively) resident in the steady-state thymus is whether early thymic progenitors (ETPs) could escape T cell fate constraints imposed normally by a Notch-inductive microenvironment and undergo DC development. By modeling DC generation in bulk Downloaded from and clonal cultures, we show here that Jagged1 (JAG1)-mediated Notch signaling allows human ETPs to undertake a myeloid transcriptional program, resulting in GATA2-dependent generation of CD34+ CD123+ progenitors with restricted pDC, cDC, and monocyte potential, whereas Delta-like1 signaling down-regulates GATA2 and impairs myeloid development. Progressive com- mitment to the DC lineage also occurs intrathymically, as myeloid-primed CD123+ monocyte/DC and common DC progenitors, equivalent to those previously identified in the bone marrow, are resident in the normal human thymus. The identification of + a discrete JAG1 thymic medullary niche enriched for DC-lineage cells expressing Notch receptors further validates the human jem.rupress.org thymus as a DC-poietic organ, which provides selective microenvironments permissive for DC development.
    [Show full text]