Wiley-UAB UBCM Subject Collection

Total Page:16

File Type:pdf, Size:1020Kb

Wiley-UAB UBCM Subject Collection ACCÉS A EBOOKS DE WILEY 2017 ORGANIC CHEMISTRY Author Title URL on Wiley Online Library Laue Named Organic Reactions 2e http://onlinelibrary.wiley.com/book/10.1002/0470010428 Toda Separations and Reactions in Organic Supramolecular Chemistry http://onlinelibrary.wiley.com/book/10.1002/0470020261 Knipe Organic Reaction Mechanisms 2000 http://onlinelibrary.wiley.com/book/10.1002/0470021160 Tsuji Palladium Reagents and Catalysts - New Perspectives for the 21st Century http://onlinelibrary.wiley.com/book/10.1002/0470021209 Knipe Organic Reaction Mechanisms 2002 http://onlinelibrary.wiley.com/book/10.1002/0470022051 Patai Chemistry of Hydrazo, Azo and Azoxy Groups 2V Set http://onlinelibrary.wiley.com/book/10.1002/0470023414 Patai The Chemistry of Organic Compounds of Arsenic Antimony and Bismuth http://onlinelibrary.wiley.com/book/10.1002/0470023473 Chatgilialoglu Organosilanes in Radical Chemistry - Principles Methods and Applications http://onlinelibrary.wiley.com/book/10.1002/0470024755 Rappoport The Chemistry of Enamines 2 Pt Set http://onlinelibrary.wiley.com/book/10.1002/0470024763 Patai Supp C2 - The Chemistry of Triple Bonded Functional Groups http://onlinelibrary.wiley.com/book/10.1002/0470024771 Patai Chemistry of Organic Silicon Compounds 2V Set http://onlinelibrary.wiley.com/book/10.1002/0470025107 Hartley The Chemistry of Organophosphorus Compounds V 2 - Phosphine Oxides, Sulphides, Selenides and Tellurideshttp://onlinelibrary.wiley.com/book/10.1002/0470034424 Wuts Protective Groups in Organic Synthesis, Fourth Edition http://onlinelibrary.wiley.com/book/10.1002/0470053488 Lednicer New Drug Discovery & Development http://onlinelibrary.wiley.com/book/10.1002/0470068272 Knipe Organic Reaction Mechanisms 1999 http://onlinelibrary.wiley.com/book/10.1002/0470094028 Derouane Catalysts for Fine Chemical Synthesis - Microporous and Mesoporous Solid Catalysts V 4 http://onlinelibrary.wiley.com/book/10.1002/0470094214 Mikami New Frontiers in Asymmetric Catalysis http://onlinelibrary.wiley.com/book/10.1002/0470098007 Platz Reviews of Reactive Intermediate Chemistry http://onlinelibrary.wiley.com/book/10.1002/0470120827 Knipe Organic Reaction Mechanisms 1997 http://onlinelibrary.wiley.com/book/10.1002/0470845805 Fringuelli The Diels-Alder Reaction - Selected Practical Methods http://onlinelibrary.wiley.com/book/10.1002/0470845813 Tsuji Transition Metal Reagents and Catalysts - Innovations in Organic Synthesis http://onlinelibrary.wiley.com/book/10.1002/0470854766 Roberts Catalysts for Fine Chemical Synthesis - Hydrolysis Oxidation and Reduction V 1 http://onlinelibrary.wiley.com/book/10.1002/0470855800 Gielen Fluxional Organometallic and Coordination Compounds http://onlinelibrary.wiley.com/book/10.1002/0470858451 Knipe Organic Reaction Mechanisms 1998 http://onlinelibrary.wiley.com/book/10.1002/0470858583 Forster Interfacial Supramolecular Assemblies http://onlinelibrary.wiley.com/book/10.1002/0470861517 Roberts Catalysts for Fine Chemical Synthesis - Catalystsfor Carbon-Carbon Bond Formation V 3 http://onlinelibrary.wiley.com/book/10.1002/0470862017 Cragg A Practical Guide to Supramolecular Chemistry http://onlinelibrary.wiley.com/book/10.1002/047086656X Knipe Organic Reaction Mechanisms 2001 http://onlinelibrary.wiley.com/book/10.1002/0470866748 Craig Organometallic Compounds in the Environment 2e http://onlinelibrary.wiley.com/book/10.1002/0470867868 Negishi Handbook of Organopalladium Chemistry for Organic Synthesis, 2 volume set http://onlinelibrary.wiley.com/book/10.1002/0471212466 Seneci Solid-Phase Synthesis and Combinatorial Technologies http://onlinelibrary.wiley.com/book/10.1002/0471220396 Rauk Orbital Interaction Theory of Organic Chemistry, Second Edition http://onlinelibrary.wiley.com/book/10.1002/0471220418 Lin Principles and Applications of Asymmetric Synthesis http://onlinelibrary.wiley.com/book/10.1002/0471220426 Czarnik Solid Phase Organic Syntheses, Volume 1 http://onlinelibrary.wiley.com/book/10.1002/0471220434 Seeberger Solid Support Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries http://onlinelibrary.wiley.com/book/10.1002/0471220442 Padwa Synthetic Applications of Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Volumehttp://onlinelibrary.wiley.com/book/10.1002/0471221902 59 Ono The Nitro Group in Organic Synthesis http://onlinelibrary.wiley.com/book/10.1002/0471224480 Denmark Topics in Stereochemistry, Volume 23, Online Version http://onlinelibrary.wiley.com/book/10.1002/0471224499 Smith Compendium of Organic Synthetic Methods, Volume 9 http://onlinelibrary.wiley.com/book/10.1002/0471228222 Burgess Solid-Phase Organic Synthesis http://onlinelibrary.wiley.com/book/10.1002/0471228249 Brown The Pyrazines: Supplement I, Chemistry of Heterocyclic Compounds, Volume 58 http://onlinelibrary.wiley.com/book/10.1002/0471244295 Palmer Oxazoles: Synthesis, Reactions, and Spectroscopy, Part A http://onlinelibrary.wiley.com/book/10.1002/0471428035 Olah Hydrocarbon Chemistry, Second Edition http://onlinelibrary.wiley.com/book/10.1002/0471433489 Green Materials-Chirality: A Special Volume in the Topics in Stereochemistry Series, Online Version http://onlinelibrary.wiley.com/book/10.1002/0471471895 Brown Quinoxalines: Supplement II, Chemistry of Heterocyclic Compounds, Volume 61 http://onlinelibrary.wiley.com/book/10.1002/0471533408 Hoffman Organic Chemistry: An Intermediate Text, Second Edition http://onlinelibrary.wiley.com/book/10.1002/0471648736 Palmer Oxazoles: Synthesis, Reactions, and Spectroscopy, Part B http://onlinelibrary.wiley.com/book/10.1002/0471649295 Bakulev The Chemistry of 1,2,3-Thiadiazoles; Chemistry of Heterocyclic Compounds, Volume 62 http://onlinelibrary.wiley.com/book/10.1002/0471656992 Li Contemporary Drug Synthesis (Online Version) http://onlinelibrary.wiley.com/book/10.1002/0471686743 Juaristi Enantioselective Synthesis of Beta-Amino Acids, Second Edition http://onlinelibrary.wiley.com/book/10.1002/0471698482 Li Name Reactions in Heterocyclic Chemistry http://onlinelibrary.wiley.com/book/10.1002/0471704156 Orchin The Vocabulary and Concepts of Organic Chemistry, Second Edition http://onlinelibrary.wiley.com/book/10.1002/0471713740 Torrence Antiviral Drug Discovery for Emerging Diseases and Bioterrorism Threats http://onlinelibrary.wiley.com/book/10.1002/0471716715 Crabtree The Organometallic Chemistry of the Transition Metals, Fourth Edition http://onlinelibrary.wiley.com/book/10.1002/0471718769 Denisov Handbook of Free Radical Initiators http://onlinelibrary.wiley.com/book/10.1002/0471721476 Moss Reactive Intermediate Chemistry http://onlinelibrary.wiley.com/book/10.1002/0471721492 Brown Cinnolines and Phthalazines, Supplement II; Chemistry of Heterocyclic Compounds, Volume 64 http://onlinelibrary.wiley.com/book/10.1002/0471744123 Tidwell Ketenes, Second Edition http://onlinelibrary.wiley.com/book/10.1002/0471767670 Denmark Topics in Stereochemistry, Volume 25, Online Version http://onlinelibrary.wiley.com/book/10.1002/0471785156 Krause Organocopper Reagents in Organic Synthesis http://onlinelibrary.wiley.com/book/10.1002/3527600086 Bittner Organic Synthesis Workbook 2 http://onlinelibrary.wiley.com/book/10.1002/3527600132 Togni Catalytic Heterofunctionalization - From Hydroamination to Hydrozirconation http://onlinelibrary.wiley.com/book/10.1002/3527600159 Kobayashi Cycloaddition Reactions in Organic Synthesis http://onlinelibrary.wiley.com/book/10.1002/3527600256 Feringa Molecular Switches (E-Book) http://onlinelibrary.wiley.com/book/10.1002/3527600329 Adam Peroxode Chemistry - Mechanistic and Preparative Aspects of Oxygen Transfer - Research Report http://onlinelibrary.wiley.com/book/10.1002/3527600396 Newkome Dendrimers & Dendrons - Concepts, Syntheses, Applications http://onlinelibrary.wiley.com/book/10.1002/3527600612 Brakmann Directed Molecular Evolution of Proteins - Or Howto Improve Enzymes for Biocatalysis http://onlinelibrary.wiley.com/book/10.1002/3527600647 Marek Titanium and Zirconium in Organic Synthesis http://onlinelibrary.wiley.com/book/10.1002/3527600671 Staab Azolides in Organic Synthesis and Biochemistry http://onlinelibrary.wiley.com/book/10.1002/3527600833 Coppola alpha-Hydroxy Acids in Enantioselective Syntheses http://onlinelibrary.wiley.com/book/10.1002/352760085X Zaragoza Dörwal Organic Synthesis on Solid Phase - Supports, Linkers, Reactions http://onlinelibrary.wiley.com/book/10.1002/3527600884 Rademacher Strukturen organischer Moleküle http://onlinelibrary.wiley.com/book/10.1002/3527601708 Tietze Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium http://onlinelibrary.wiley.com/book/10.1002/3527601716 Zollinger Diazo Chemistry I - Aromatic and Heteroaromatic Compounds http://onlinelibrary.wiley.com/book/10.1002/3527601724 Zollinger Diazo Chemistry II - Organometallic Compounds http://onlinelibrary.wiley.com/book/10.1002/3527601732 Stütz Iminosugars as Glycosidase Inhibitors - Nojirimycin and Beyond http://onlinelibrary.wiley.com/book/10.1002/3527601740 Astruc Modern Arene Chemistry - Concepts, Synthesis, and Applications http://onlinelibrary.wiley.com/book/10.1002/3527601767 Demeunynck DNA and RNA Binders - From Small Molecules to Drugs http://onlinelibrary.wiley.com/book/10.1002/3527601783 Reichardt Solvents and Solvent Effects in Organic Chemistry3e http://onlinelibrary.wiley.com/book/10.1002/3527601791 Eicher The Chemistry of Heterocycles - Structure, Reactions, Syntheses, and http://onlinelibrary.wiley.com/book/10.1002/352760183X Buchmeiser Polymeric Materials in Organic Synthesis
Recommended publications
  • A Focus on Vinyl Selenones
    molecules Review ReviewModern Synthetic Strategies with Organoselenium Reagents: Modern Synthetic Strategies with Organoselenium Reagents: AA FocusFocus onon VinylVinyl SelenonesSelenones Martina Palomba, Italo Franco Coelho Dias, Ornelio Rosati and Francesca Marini * Martina Palomba, Italo Franco Coelho Dias, Ornelio Rosati and Francesca Marini * Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), UniversityGroup of Catalysis, of Perugia, Synthesis Via del andLiceo, Organic 06123 GreenPerugia, Chemistry, Italy; [email protected] Department of Pharmaceutical (M.P.); Sciences, italo.francocoelhodias@studeUniversity of Perugia, Via delnti.unipg.it Liceo, 06123 (I.F.C.D.); Perugia, [email protected] Italy; [email protected] (O.R.) (M.P.); *[email protected] Correspondence: [email protected] (I.F.C.D.); [email protected] (O.R.) * Correspondence: [email protected] Abstract: In recent years, vinyl selenones were rediscovered as useful building blocks for new syn- Abstract: In recent years, vinyl selenones were rediscovered as useful building blocks for new thetic transformations. This review will highlight these advances in the field of multiple-bond-form- synthetic transformations. This review will highlight these advances in the field of multiple-bond- ing reactions, one-pot synthesis of carbo- and heterocycles, enantioselective construction of densely forming reactions, one-pot synthesis of carbo- and heterocycles, enantioselective construction of functionalized molecules, and total synthesis of natural products. densely functionalized molecules, and total synthesis of natural products. Keywords: selenium; domino reactions; heterocycles; natural products; spiro compounds; annula- Keywords: selenium; domino reactions; heterocycles; natural products; spiro compounds; annula- tions; enantioselective synthesis; organocatalysis tions; enantioselective synthesis; organocatalysis Citation: Palomba, M.; Dias, I.F.C.; Rosati, O.; Marini, F.
    [Show full text]
  • Tetrahedron Symposia-In-Print
    Tetrahedron 74 (2018) 4875–4878 Tetrahedron Symposia-in-Print Tetrahedron Symposia-in-Print comprise collections of original research papers covering timely areas of organic chemistry. Each symposium is organized by a Symposium Editor who will invite authors, active in the selected field, to submit original articles covering cur- rent research, complete with experimental sections. These papers will be rapidly reviewed and processed for publication by the Symposium Editor under the usual refereeing system. Authors who have not already been invited, and who may have obtained recent significant results in the area of the announced symposium, may also submit contributions for Editorial consideration and possible inclusion. Before submitting such papers authors should send an abstract to the Symposium Editor for preliminary evaluation. Firm deadlines for receipt of papers will allow sufficient time for completion and presentation of ongoing work without loss of the freshness and timeliness of the research results. Symposia-in-Print—already published 1. Recent trends in organic photochemistry, Albert Padwa, Ed. Tetra- 22. Selectivity and synthetic applications of radical reactions, Bernd hedron 1981, 37, 3227–3420. Giese, Ed. Tetrahedron 1985, 41, 3887–4302. 2. New general synthetic methods, E. J. Corey, Ed. Tetrahedron 1981, 23. Recent aspects of organoselenium chemistry, Dennis Liotta, Ed. 37, 3871–4119. Tetrahedron 1985, 41,4727–4890. 3. Recent developments in polycyclopentanoid chemistry, Leo A. 24. Application of newer organometallic reagents to the total Paquette, Ed. Tetrahedron 1981, 37, 4357–4559. synthesis of natural products, Martin Semmelhack, Ed. 4. Biradicals, Josef Michl, Ed. Tetrahedron 1982, 38,733–867. Tetrahedron 1985, 41,5741–5900. 5.
    [Show full text]
  • 5 -7 -9 -11 Organoselenium Chemistry.' Redox Chemistry Of
    J. Am. Chem. SOC.1987, 109, 5549-5551 5549 <- <- 1;1P B solid state or solution above 183K solution below183K Figure 1. Evolution of the (PP3)Rh fragment on going from (PP,)RhH to (PP3)Rh+. within 2 h. The compound 6 in turn adds H2 (1 atm) to reform II 2. Finally, 2 quickly exchanges H, with C2H4to give [(PP3)- Rh(C2H,)](S0,CF,)" (7) whose 31PNMR spectrum with an AB,X spin system closely resembles that of 2. This result is reasonable because of the analogy between the binding of H2 and olefins to metals. It has been previously argued that both steric and electronic factors must be finely "tuned" on a metal fragment to permit the formation of an q2-H2adductla The geometric change of the (PP,)Rh fragment from C,, to C,, symmetry (Figure 1) is ac- companied by a certain variation of the fragmental frontier or- bitals. Likely the key to understand the mechanism of the present cis-dihydride - q2-dihydrogen interconversion may be found in the orbital control operated by the (PP,)Rh fragment. Supplementary Material Available: Analytical data and ex- perimental (80 MHz) and computed 'H NMR spectrum of [(PP,)Rh(HD)] (O,CCF,) (2 pages). Ordering information is given on any current masthead page. (10) The compound, which is a nonconductor in CH3CN and C2HSN02, exists in solution as a 1:l mixture of two isomers most likely due to the triflate ligand (IR 1310 cm-' (s), v (SO) of coordinated triflate). 31P(1HJNMR (CD3COCD,, 298 K) AB2CX system, isomer 1: 6 PA 112.33, 6 PB52.06, 6 Pc 24.70; isomer 2: 6 PA 104.15, 6 PB 52.06, 6 PA 112.33, 6 PB52.06, 6 Pc 2 52 24.70; isomer 2: 6 PA 104.15, 6 PB 52.06, 6 Pc 16.52 (JpApB= 27.0 Hz, JpApC = 14.2 HZ, JpBpc = 34.3 HZ, JpARh = 119.7 HZ, JpB~h= 132.1 HZ, JpC~h =140.9 Hz).
    [Show full text]
  • Stereoselective Reactions of Organoselenium Compounds
    Organoselenium Chemistry Authors: Fateh V. Singh, Thomas Wirth Address: VIT University, Chennai Campus, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India Cardiff University, School of Chemistry, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom Email: [email protected] 1 1. Introduction Organoselenium chemistry has been established as valuable research area in synthetic and medicinal chemistry.1-11 After the discovery of the selenoxide elimination reaction in early 1970s,12-14 organoselenium reagents received the great success in organic synthesis including asymmetric synthesis.15-18 More commonly, synthetic transformations such as selenenylations, selenocyclizations and 2,3-sigmatropic rearrangements have been successfully achieved using these reagents under mild reaction conditions.19-33 The application of these reagents in catalysis makes them more suitable reagents in organic synthesis.34-39 Several books,1-7, 41-43 book chapters8-11, 44-48 and review articles49-64 have been published to explain the utility of organoselenium reagents in synthesis. This chapter highlights the application of organoselenium reagents in organic synthesis including asymmetric synthesis. 2. Organoselenium Reagents As Electrophiles Organoselenium reagents play different roles in organic reactions but mainly known for their electrophilic behaviour. The electrophilic selenium species can be generated by the cleavage of the Se-Se bond of diselenides and can be used to activate the olefinic double bonds. Due to their electrophilic character, selenium electrophiles react with olefinic double bonds to form three membered seleniranium ion intermediate. Furthermore, the seleniranium ion intermediate can be employed to achieve various selenenylation reactions with different nucleophiles. 2.1. Selenenylation Reactions 2 Selenium electrophiles have been successfully used to achieve various selenylation reactions such as selenylation of olefins, arenes and other organic species.
    [Show full text]
  • 3.3.11 Synthesis of Lysergic Acid Diethylamide by Vollhardt...67
    Copyright by Jason Anthony Deck 2007 The Dissertation Committee for Jason Anthony Deck certifies that this is the approved version of the following dissertation: Studies Towards the Total Synthesis of Condylocarpine and Studies Towards the Enantioselective Synthesis of (+)-Methyl Lysergate Committee: Stephen F. Martin, Supervisor Philip D. Magnus Michael J. Krische Richard A. Jones Sean M. Kerwin Studies Towards the Total Synthesis of Condylocarpine and Studies Towards the Enantioselective Synthesis of (+)-Methyl Lysergate by Jason Anthony Deck, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2007 Studies Towards the Total Synthesis of Condylocarpine and Studies Towards the Enantioselective Synthesis of (+)-Methyl Lysergate Publication No. _______ Jason Anthony Deck, PhD The University of Texas at Austin, 2007 Supervisor: Stephen F. Martin An iminium ion cascade sequence was designed and its implementation attempted to form the pentacyclic core structure of the natural product condylocarpine. Trapping of the transient Pictet-Spengler-type spiroindolenium ion with a latent nucleophile would form two of the five rings of condylocarpine in a regioselective manner. Progress towards the first fully stereocontrolled synthesis of a lysergic acid derivative has been described. The route utilizes intermediates with the appropriate oxidation state for the target, and the two stereocenters are installed via asymmetric catalysis. The d ring and second stereocenter were simultaneously formed via an unprecedented microwave heated asymmetric ring closing metathesis (ARCM). iv Table of Contents List of Figures.....................................................................................................
    [Show full text]
  • A Green Alternative for Obtaining Potentially Active Compounds †
    Proceedings Eco-Friendly Catalytic Aminoselenation of Alkenes: A Green Alternative for Obtaining Potentially Active Compounds † Luana S. Gomes 1,*, Rafaella G. Angelino 1, José S. S. Neto 2, Iris di Leo 3, Claudio Santi 3 and Vanessa Nascimento 1 1 Supraselen Laboratory, Department of Organic Chemistry, Federal Fluminense University (UFF), Rio de Janeiro 24220-008, Brazil; [email protected] (R.G.A.); [email protected] (V.N.) 2 Department of Organic Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil; [email protected] 3 Department of Pharmaceutical Sciences, University of Perugia, 06125 Perugia, Italy; [email protected] (I.d.L.); [email protected] (C.S.) * Correspondence: [email protected] † Presented at the 1st International Electronic Conference on Catalysis Sciences, 10–30 November 2020; Available online: https://eccs2020.sciforum.net. Published: 9 November 2020 Abstract: In this work, a new ecological approach to the selenofunctionalization of alkenes has been described using I2 as catalyst, DMSO as oxidant, under microwave irradiation (MW) in a solvent- and metal-free method. The general idea is to combine organoselenium compounds and triazole nuclei to obtain molecules capable of becoming a powerful class due to their potential pharmacological activity. However, most methods that involve the functionalization of alkenes are generally mediated by the use of transition metals or reagents in large stoichiometric quantities. Thus, the development of direct, clean and environmentally appropriate procedures, which are in accordance with the principles of green chemistry, for the synthesis of these compounds remains highly desirable. Thus, the present work developed the synthesis of β-amino selenides with only 20 minutes of reaction time, following the conditions previously mentioned.
    [Show full text]
  • Selenium-Epoxy ‘Click’ Reaction and Se-Alkylation—Efficient Access to Organo-Selenium and Selenonium Compounds
    Communication Selenium-Epoxy ‘Click’ Reaction and Se-Alkylation—Efficient Access to Organo-Selenium and Selenonium Compounds Taejun Eom and Anzar Khan * Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3290-4859 Received: 3 September 2020; Accepted: 29 September 2020; Published: 5 October 2020 Abstract: This work establishes the ‘click’ nature of the base-catalyzed oxirane ring opening reaction by the selenolate nucleophile. The ‘click’-generated ß-hydroxy selenide can be alkylated to afford cationic selenium species. Hemolytic studies suggest that selenonium cations do not lyse red blood cells even at high concentrations. Overall, these results indicate the future applicability of the developed organo-selenium chemistry in the preparation of a new class of cationic materials based on the seleno-ether motif. Keywords: ‘click’ chemistry; oxirane ring opening reaction; organo-selenium; organo-selenonium 1. Introduction Selenium was discovered in early 1800 [1,2]. The chemistry of organo-selenium nucleophiles, however, only began in 1973 with Sharpless and Lauers’ report on the preparation of phenylselenolate and its application in converting epoxides into allylic alcohols [3]. Since then a wide range of reactions based on nucleophilic selenium reagents have been developed for use in organic synthesis [1,2]. Inspired by Sharpless’ selenium reagent and the growing interest in organoselenium materials [4], we began to examine the full scope of the ring opening reaction of epoxides by the selenolates in context of ‘click’ chemistry—another area of research pioneered by Sharpless [5]. ‘Click’ chemistry entails modular and wide in scope reactions that can be carried out under simple experimental conditions and produce quantitative yields and inoffensive byproducts [6].
    [Show full text]
  • Osaka University Knowledge Archive : OUKA
    STUDIES ON THE DEVELOPMENT OF NEW SYNTHETIC Title REACTIONS USING SELENIUM AND ORGANOSELENIUM COMPOUNDS Author(s) 前多, 肇 Citation Issue Date Text Version ETD URL https://doi.org/10.11501/3129006 DOI 10.11501/3129006 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University STUDIES ON THE DEVELOPMENT OF NEW SYNTHETIC REACTIONS USING SELENIUM AND ORGANOSELENIUM COMPOUNDS (-lz I/ )/ JB' * U<N'Jfi'ec •l! u '/ ttAtlig lt Al v> 6 \fiISIAJSX ljlJ;trN cD ea patJE ec Pfi vs}- 6 liJl 9,fiaS) HAJIME MAEDA OSAKA UNIVERSITY 1997 Contents General lntroduction ... 1 Chapter 1. Reaction of 2,6-Xylyl Isoselenocyanate wtth Organolithium Compounds 1-2.1-1. Results Introduction and Discussion ...3 . ..e4 1-4.1-3. ExperimentalSection Conclusion ... ...10 10 1-5. References andNotes ... 17 Chapter 2. Selenium-Assisted Carbonylation of Organolithium Compounds with Carbon Monoxide and Its Application 2-1. Selenium-Assisted Carbonylation of Acidic Hydrocarbons with Carbon Monoxide 2-1-1. Introduction ' ... 24 2-1-2. Results and Discussion ... 24 2-1-3. Conclusion ... 30 2-1-4. ExperimentalSection ... 30 2-1-5. References andNotes ... 37 2-2. Selenium-Assisted Carbonylation of 2-Arylpropionitriles with Carbon Monoxide 2-2-1. Introduction ... 41 2-2-2. Results andDiscussion ... 42 2-2-3. Conclusion ... 44 2-2-4. ExperimentalSection ... 44 2-2-5. References ' andNotes ... 48 2-3. Synthesis of Selenoimidates via Selenoimidoylation of Organolithium Compounds with Selenium and Isocyanides 2-3-1. Introduction ... 55 2-3-2. Results and Discussion ... 55 2-3-3. Conclusion ... 60 2-3-4. ExperimentalSection ..
    [Show full text]
  • Encyclopediaof INORG ANIC CHEMISTRY
    Encyclopedia of INORG ANIC CHEMISTRY Second Edition Editor-in-Chief R. Bruce King University of Georgia, Athens, GA, USA Volume IX T-Z WILEY Contents VOLUME I Ammonolysis 236 Ammoxidation 236 Amphoterism 236 Ab Initio Calculations Analytical Chemistry of the Transition Elements 236 Acceptor Level Ancillary Ligand 248 Acetogen Anderson Localization 248 Acid Catalyzed Reaction Angular Overlap Model 248 7r-Acid Ligand Anion 249 Acidity Constants Antiaromatic Compound 249 Acidity: Pauling's Rules 2 Antibonding 250 Acids & Acidity 2 Antiferromagnetism 250 Actinides: Inorganic & Coordination Chemistry 2 Antigen 250 Actinides: Organometallic Chemistry 33 Antimony: Inorganic Chemistry 250 Activated Complex 59 Antimony: Organometallic Chemistry 258 Activation 59 Antioxidant 266 Activation Parameters 59 Antiport 266 Activation Volume 60 Antistructure 266 Active Site 60 Antitumor Activity 266 Adamson's Rules 60 Apoprotein 266 Addition Compound 60 Aqua 267 Agostic Bonding 60 Arachno Cluster 267 Alkali Metals: Inorganic Chemistry 61 Arbuzov Rearrangement 267 Alkali Metals: Organometallic Chemistry 84 Archaea 267 Alkalides 94 Arene Complexes 267 Alkaline Earth Metals: Inorganic Chemistry 94 Arsenic: Inorganic Chemistry 268 Alkaline Earth Metals: Organometallic Chemistry 116 Arsenic: Organoarsenic Chemistry 288 Alkane Carbon-Hydrogen Bond Activation 147 Arsine & As-donor Ligands 308 Alkene Complexes 153 Associative Substitution 309 Alkene Metathesis 154 Asymmetrie Synthesis 309 Alkene Polymerization 154 Asymmetrie Synthesis by Homogeneous Catalysis
    [Show full text]
  • AMERICAN CHEMICAL SOCIETY DIVISION of ORGANIC CHEMISTRY EXECUTIVE COMMITTEE Office of the Secretary-Treasurer COUNCILORS Roger Adams Laboratory Paul G
    AMERICAN CHEMICAL SOCIETY DIVISION OF ORGANIC CHEMISTRY EXECUTIVE COMMITTEE Office of the Secretary-Treasurer COUNCILORS Roger Adams Laboratory Paul G. Gassman, Chairman University of Illinois Edward M. Burgess Albert I. Meyers, Chairman-Elect Urbana, Illinois 61801 Michael Cava Peter Beak, Secretary-Treasurer Norman A. LeBel Walter S. Trahanovsky, Secretary-Treasurer-Elect Ernest W enkert Leon Mandell, Symposium Executive Officer Robert M. Coates ALTERNATE COUNCILORS David A. Evans Koji Nakanishi Albert Padwa Leo A. Paquette Stuart Staley Martin Semmelhack Jacob Szmuszkovicz Edel Wasserman MEMBERS OF THE DIVISION OF ORGANIC CHEMISTRY: You are cordially invited to attend the Woodward Memorial Symposium which will be held in conjunction with the National ACS meeting in New York City, August 23-28, 1981. The Symposium will begin on Monday morning, August 24, and continue through Friday morningi August 28. The Symposium will feature ~e following speakers: __ _ D. Arigoni G. Closs D. Evans J. Meinwald E. Wenkert D.H.R. Barton E.J. Corey C.S. Foote H. Reich F. Westheimer J. Berson D.J. Cram R. Hoffmann R. Schlessinger F. Wudl R. Breslow S. Danishefsky Y. Kishi R. Stevens H.E. Zimmerman H .C. Brown W. Dauben J . Knowles G. Stork G. Buchi A.E. Eschenmoser J.M. Lehn H. Wasserman Although the Organic Division will not be scheduling contributed papers for this meeting, program chairmen in other divisions have indicated a willingness to accept our papers in their programs. Requests for hotel reservations should be withheld until publication of the preliminary program in Chemical and Engineering News. FUTURE DIVISIONAL PROGRAMS June 21-15, 1981.
    [Show full text]
  • Autism, Chemicals, Probable Cause and Mitigation: a New Examination
    : Open A sm cc ti e u s Schofield, Autism Open Access 2016, 6:3 s A DOI: 10.4172/2165-7890.1000184 Autism - Open Access ISSN: 2165-7890 Review Article Open Access Autism, Chemicals, Probable Cause and Mitigation: A New Examination Keith Schofield* Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA Abstract This extensive overview has addressed in a scientific manner the probable cause of autism. Although seemingly an impossible task, an important clue has always been autism’s triggered growth from the late 90s. This triggering eliminated genetics as a major cause and redirected it to changes in the anthropogenic environment. Global availability for ingestion by women of child-bearing years of all neurotoxic chemicals has been reviewed and potential changes examined. Surprisingly, these simple criteria eliminate almost everything except the neurotoxic metal elements. These are all present in recent blood analyses of pregnant women and also in the fetal cord with some at risk level concentrations. However, the two predominant neurotoxic elements that clearly stand out are Al and Hg. Furthermore, isotopically labeled experiments on animals coupled to fetal autopsies indicate that these in 3+ + + the forms of Al , HgCH3 and HgC2H5 can penetrate the usually tight blood/brain barrier and enter the brain with now known half-lives. Normally, these elements are controlled and neutralized by brain seleno-cysteine proteins. However, an overloading burden has become plausible in current times and even a temporary failure leaves the fetal brain vulnerable. For the first time, the burden is seen to arise not from a single source, but from the combination of medicine and diet.
    [Show full text]
  • Inorganometallic Chemistry - Bogdan Marciniec, Piotr Pawluc and Cezary Pietraszuk
    INORGANIC AND BIO-INORGANIC CHEMISTRY – Vol. I - Inorganometallic Chemistry - Bogdan Marciniec, Piotr Pawluc and Cezary Pietraszuk INORGANOMETALLIC CHEMISTRY Bogdan Marciniec, Piotr Pawluc and Cezary Pietraszuk Adam Mickiewicz University, Grunwaldzka, Poznan, Poland Keywords: transition metal, cluster, ligand, ceramics, thin film, arsine, stibine, bismutine, sellenoether, silyl complex, stannyl complex, telluroether, germyl complex, boryl complex, catalysis, inorganometallics, silicometallics, dehydrocoupling Contents 1. Definition of inorganometallic vs. organometallic chemistry 2. Inorganometallic Compounds Containing Transition Metal (TM) – Main Group Metal (E) Bond – Synthesis, Structure and Reactivity 2.1. Inorganometallic Complexes of TM with Group 13 Elements 2.1.1. Inorganometallic Complexes of TM with Boron 2.1.2. Inorganometallic Complexes of TM with Heavier Elements of Group 13 2.2. Inorganometallic Complexes of TM with Group 14 Elements 2.3. Inorganometallic Complexes of TM with Group 15 Elements 2.4. Inorganometallic Complexes of TM with Group 16 Elements 3. Inorganometallic clusters 4. Inorganometallics and catalysis 5. Special applications of TM-E compounds 5.1. Inorganometallics as Precursors of Optoelectronic Materials 5.2. Inorganometallic Ceramics Glossary Bibliography Biographical Sketches Summary The aim of this chapter is to introduce the area called inorganometallic chemistry as a specific field of non-metal (other then H, C, N, O, S and halogen) and metalloid – metal element chemistry with potential significance to the organometallic chemistry observed in the secondUNESCO half of the 20th century. However, – inEOLSS order to make the rational choice of the main group element in this chapter we focus on the d-block - p-block elements bonding involving predominately the TM elements of the groups 3 – 12 including lanthanides and main group 13 - 16 (excluding C, O and essentially S, N and P) elements.
    [Show full text]