AMERICAN CHEMICAL SOCIETY DIVISION of ORGANIC CHEMISTRY EXECUTIVE COMMITTEE Office of the Secretary-Treasurer COUNCILORS Roger Adams Laboratory Paul G

Total Page:16

File Type:pdf, Size:1020Kb

AMERICAN CHEMICAL SOCIETY DIVISION of ORGANIC CHEMISTRY EXECUTIVE COMMITTEE Office of the Secretary-Treasurer COUNCILORS Roger Adams Laboratory Paul G AMERICAN CHEMICAL SOCIETY DIVISION OF ORGANIC CHEMISTRY EXECUTIVE COMMITTEE Office of the Secretary-Treasurer COUNCILORS Roger Adams Laboratory Paul G. Gassman, Chairman University of Illinois Edward M. Burgess Albert I. Meyers, Chairman-Elect Urbana, Illinois 61801 Michael Cava Peter Beak, Secretary-Treasurer Norman A. LeBel Walter S. Trahanovsky, Secretary-Treasurer-Elect Ernest W enkert Leon Mandell, Symposium Executive Officer Robert M. Coates ALTERNATE COUNCILORS David A. Evans Koji Nakanishi Albert Padwa Leo A. Paquette Stuart Staley Martin Semmelhack Jacob Szmuszkovicz Edel Wasserman MEMBERS OF THE DIVISION OF ORGANIC CHEMISTRY: You are cordially invited to attend the Woodward Memorial Symposium which will be held in conjunction with the National ACS meeting in New York City, August 23-28, 1981. The Symposium will begin on Monday morning, August 24, and continue through Friday morningi August 28. The Symposium will feature ~e following speakers: __ _ D. Arigoni G. Closs D. Evans J. Meinwald E. Wenkert D.H.R. Barton E.J. Corey C.S. Foote H. Reich F. Westheimer J. Berson D.J. Cram R. Hoffmann R. Schlessinger F. Wudl R. Breslow S. Danishefsky Y. Kishi R. Stevens H.E. Zimmerman H .C. Brown W. Dauben J . Knowles G. Stork G. Buchi A.E. Eschenmoser J.M. Lehn H. Wasserman Although the Organic Division will not be scheduling contributed papers for this meeting, program chairmen in other divisions have indicated a willingness to accept our papers in their programs. Requests for hotel reservations should be withheld until publication of the preliminary program in Chemical and Engineering News. FUTURE DIVISIONAL PROGRAMS June 21-15, 1981. The 27th National Organic Symposium, Nashville, Tennessee. The Organic Symposium will feature the award of the Roger Adams Medal to Nelson J. Leonard. The speakers will be O.L. Chapman, S. Hanessian, C. Heathcock, K.N. Houk, H. House, A. Kende, N.J. Leonard, J.C. Martin, L. Paquette, W.C. Still, B. Trost. The Symposium Executive Officer is Leon Mandell, Department of Chemistry, Emory University, Atlanta, GA 30322. The local Chairman is Howard E. Smith, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235. March 28-April 2, 1982. 183rd National Meeting of the American Chemical Society, Las Vegas, Nevada. Program chairman will be Walter Trahanovsky, Iowa State University, Ames, Iowa 50011. A Symposium on Organoselenium Chemistry and Synthesis is being organized by Hans Reich, Dept. of Chemistry, University of Wisconsin, Madison, WI 53706; invited papers only. OTHER MEETINGS OF INTEREST June 1-5, 1981. The International Conference on Phosphorus Chemistry will be held in Durham, North Carolina. L.D. Quin, - Dept.-0-f Chemistry,- Duk Univ..ersit.y, Dui:.ham.,-1~.Jor.th Carolina, is chairmaIL.OLthe or..ganizing_committe_e. August 2-6, 1981. The First IUP AC Symposium on Organometallic Chemistry Directed toward Organic Synthesis will be held in Fort Collins, Colorado. J .K. Stille, Dept. of Chemistry, Colorado State University, Fort Collins, Colorado is the chairman of the organizing committee. BOOK DISCOUNT FOR MEMBERS A coupon is enclosed which will provide a substantial discount on the purchase of books from Academic Press, Holden Day, Marcel Dekker, Plenum, and Pergamon Publishing companies. To obtain the discount, sign the enclosed coupon and include it with prepayment in an order to the publisher's· address as indicated. Four discount coupons per member are available and are enclosed. Discounts and publishers included are: Academic Press, Inc., 250/o discount. Orders must be directed to Mr. Fred Haight, Academic Press, Inc., 111 5th Ave., New York, NY 10003. Holden Day, Inc., 250/o discount. Holden Day, Inc., 500 Sandsome St., San Francisco, CA 94111. Marcel Dekker, Inc., 300/o discount. Marcel Dekker, Inc., 270 Madison Ave., New York, NY 10016. Plenum Press, Inc., 250/o discount. Plenum Publishing Company, 227 W. 17th St., New York, NY 10011. Pergamon Press, Inc., 250/o discount. Orders must be directed to Ms. J. Rudosky, Pergamon Press, Inc., Maxwell House, Fairview Park, Elmsford, NY 10523. Division members are also eligible for one copy at a 400/o discount of books resulting from symposia sponsored by the division. Some of the books in the Advances in Chemistry Series, published by the ACS, are eligible for this discount. The order must be prepaid and made on a special order form which can be supplied on request by the Secretary-Treasurer of the division. ABSTRACTS The abstracts of papers presented before the Organic Division will be lithographed and distributed to the members of the Division. Complete sets of the abstracts of all papers presented at the August, 1980 National ACS Meeting may be obtained from ACS News Service. Be sure to indicate Divisional Membership while ordering. A limited number of copies of the abstracts of papers previously presented before the Division are available from the Secretary's office upon receipt of a self-addressed, stamped envelope (at least 8" x 10") and remission of $1.50 per abstract of National meetings, $2.00 per abstract of National Organic Symposia. ELECTION OF OFFICERS Enclosed with this letter is the 1981 Nominating Committee Report, a ballot, and a return envelope for the marked ballot. Results of the ballots shall be determined by those whose votes are returned to the Secretary by June 15, 1981. BYLAW REVISION Nominations for officers of the Division may be made by petition or by a Nominating Committee appointed by the Chairman. The enclosed Bylaw Revision, proposed by the Executive Committee, would separate the nominations for councilor and alter­ nate councilor from one another and would transfer the responsibility for the nominations for those offices from the Nominating Committee to the Executive Committee. Nominations by petition would not be affected by this proposal. The ra­ tionale for this change is that the interest of the Division are best served by establishing continuity on the council. Adoption of this revision requires a three-fifths majority of the ballots received by June 15, 1981. A ballot is enclosed for your considera­ tion. Please enclose it with your nominations ballot in the addressed envelope. Walter Trahanovsky will be taking over the Secretary-Treasurer's office in August of this year. I have appreciated your suggestions throughout my term and would encourage you to communicate with Walter on matters of divisional interest. Sincerely yours, J£ftL©e(,~ Peter Beak AMERICAN CHEMICAL SOCIETY DIVISION OF ORGANIC CHEMISTRY NOMINATING COMMITTEE REPORT Nominating Committee: C.H. Heathcock, Chairman W. Leimgruber A. Trozzolo The election of officers shall be held by mail ballot and the results of the ballot shall be determined by the majority of those whose votes are received by the Secretary by June 15, 1981. The announcement of the officers elected to serve will be made at a business meeting in New York and in the fall newsletter. Enclosed with this report are a ballot and an addressed return envelope. In order for votes to be valid, the votes must be marked in ac­ cordance with the instructions given, placed in the addressed envelope, sealed, stamped, and mailed so that the Secretary will receive them by June 15, 1981. FOR CHAIRMAN-ELECT: (one to be elected) JAMES C. MARTIN - b. 1928; B.A., Vanderbilt University, 1951; M.S., Vanderbilt University, 1952; Ph.D., Harvard University, 1956; Instruc­ tor to Professor, University of Illinois at Urbana-Champaign; Executive Committee, Organic Division, 1971-1972; Symposium Executive Officer, 1975-1977; Organizing Committee and Conference Chairman, Gordon Conferences and Reactions Mechanism Conference; Editorial Advisory Board, Journal of Organic Chemistry, 1972-1977; American Chemical Society: Committee on Publications, 1978-1983, Science Commission, 1978-1980; Guggenheim Fellow; Sloan Fellow; AAAS Fellow; Humboldt Awardee; Buck-Whitney Medalist; Research interests: sulfuranes and per­ sulfuranes, pentavalent species, solvent cage effects, mechanisms of organic reactions, radical chemistry, organofluorine chemistry. BARRY M. TROST - b. 1941; B.A., University of Pennsylvania, Ph.D., Massachusetts Institute of Technology; Assistant Professor to Professor, University of Wisconsin at Madison, Evan P. and Marion Helfaer Professor of Chemistry, 1976; Sloan Fellow; Dreyfus Fellow; American Swiss Foundation Felow; AAAS Fellow; ACS award in Pure Chemistry, 1977; ACS award for Creative Work in Synthetic Organic Chemistry, 1981; Na­ tional Academy of Sciences, 1980; Associate Editor, Journal of the American Chemical Society, 1974-1980; Editorial Advisory Board, Journal of Organic Chemistry, 1973-1977; Board of Editors, Organic Reactions; Executive Committee, Organic Division, 1977-1979; Chairman, Organizing Committee, Third IUPAC Symposium on Organic Synthesis; Adyisory Panel, NSF, 1973-1977; Research interests: chemistry of ylids, natural pro­ ducts structure elucidation, natural products synthesis, development of new synthetic methods, organopalladium chemistry. FOR EXECUTIVE COMMITTEE: (two to be elected) ROBERT G. BERGMAN - b. 1942, B.A., Carlton College, 1963; Ph.D., University of Wisconsin at Madison, 1966; Instructor to Professor of Chemistry, Cal Tech, 1967-1977; Professor of Chemistry, University of California at Berkeley, 1977-; Sloan Fellow; Dreyfus Fellow; Editorial Ad­ visory Board, Journal of Organic Chemistry, 1980- ; member NIH Study Section, 1977-1980; Research interests: physical organic chemistry, organotransition metal chemistry, biradicals, mechanisms
Recommended publications
  • A Focus on Vinyl Selenones
    molecules Review ReviewModern Synthetic Strategies with Organoselenium Reagents: Modern Synthetic Strategies with Organoselenium Reagents: AA FocusFocus onon VinylVinyl SelenonesSelenones Martina Palomba, Italo Franco Coelho Dias, Ornelio Rosati and Francesca Marini * Martina Palomba, Italo Franco Coelho Dias, Ornelio Rosati and Francesca Marini * Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), UniversityGroup of Catalysis, of Perugia, Synthesis Via del andLiceo, Organic 06123 GreenPerugia, Chemistry, Italy; [email protected] Department of Pharmaceutical (M.P.); Sciences, italo.francocoelhodias@studeUniversity of Perugia, Via delnti.unipg.it Liceo, 06123 (I.F.C.D.); Perugia, [email protected] Italy; [email protected] (O.R.) (M.P.); *[email protected] Correspondence: [email protected] (I.F.C.D.); [email protected] (O.R.) * Correspondence: [email protected] Abstract: In recent years, vinyl selenones were rediscovered as useful building blocks for new syn- Abstract: In recent years, vinyl selenones were rediscovered as useful building blocks for new thetic transformations. This review will highlight these advances in the field of multiple-bond-form- synthetic transformations. This review will highlight these advances in the field of multiple-bond- ing reactions, one-pot synthesis of carbo- and heterocycles, enantioselective construction of densely forming reactions, one-pot synthesis of carbo- and heterocycles, enantioselective construction of functionalized molecules, and total synthesis of natural products. densely functionalized molecules, and total synthesis of natural products. Keywords: selenium; domino reactions; heterocycles; natural products; spiro compounds; annula- Keywords: selenium; domino reactions; heterocycles; natural products; spiro compounds; annula- tions; enantioselective synthesis; organocatalysis tions; enantioselective synthesis; organocatalysis Citation: Palomba, M.; Dias, I.F.C.; Rosati, O.; Marini, F.
    [Show full text]
  • Biology Chemistry III: Computers in Education High School
    Abstracts 1-68 Relate to the Sunday Program Biology 1. 100 Years of Genetics William Sofer, Rutgers University, Piscataway, NJ Almost exactly 100 years ago, Thomas Hunt Morgan and his coworkers at Columbia University began studying a small fly, Drosophila melanogaster, in an effort to learn something about the laws of heredity. After a while, they found a single white-eyed male among many thousands of normal red-eyed males and females. The analysis of the offspring that resulted from crossing this mutant male with red-eyed females led the way to the discovery of what determines whether an individual becomes a male or a female, and the relationship of chromosomes and genes. 2. Streptomycin - Antibiotics from the Ground Up Douglas Eveleigh, Rutgers University, New Brunswick, NJ Antibiotics are part of everyday living. We benefit from their use through prevention of infection of cuts and scratches, control of diseases such as typhoid, cholera and potentially of bioterrorist's pathogens, besides allowing the marvels of complex surgeries. Antibiotics are a wondrous medical weapon. But where do they come from? The unlikely answer is soil. Soil is home to a teeming population of insects and roots, plus billions of microbes - billions. But life is not harmonious in soil. Some microbes have evolved strategies to dominate their territory; one strategem is the production of antibiotics. In the 1940s, Selman Waksman, with his research team at Rutgers University, began the first ever search for such antibiotic producing micro-organisms amidst the thousands of soil microbes. The first antibiotics they discovered killed microbes but were toxic to humans.
    [Show full text]
  • JPRI Working Paper No. 3: October 1994 Strengths and Weaknesses of Education in Japan by Masao Kunihiro Academic Apartheid at Ja
    JPRI Working Paper No. 3: October 1994 Strengths and Weaknesses of Education in Japan By Masao Kunihiro Academic Apartheid at Japan’s National Universities By Ivan P. Hall Strengths and Weaknesses of Education in Japan By Masao Kunihiro I am not, by any stretch of semantic generosity, an expert in either pedagogy or the sociology of knowledge. However, I have been associated with several universities as a teacher, and have published several books pertaining to education in the broad sense of the term, including translations into Japanese of David Riesman’s The Academic Revolution, Herbert Passin’s Society and Education in Japan, and Benjamin Duke’s The Japanese School. That is to say, I am interested in education as a human endeavor in general, and education in Japan in particular. I have also been associated with the educational end of NHK television and sat on the Education Committee in the Upper House of the Diet for a total of four years. Let me begin with some brief comments about the Sinitic Culture Area--of which Japan is a part--and the possible impact of Confucianism on education. According to Ronald Dore’s 1989 speech, “Confucianism, Economic Growth and Social Development,” there are four salient characteristics of Confucianism relevant to education. First: dutifulness to a larger collectivity, as opposed to individual rights to the pursuit of happiness. Second: the proclivity toward accepting a system of hierarchy. Third: special roles assigned to elites who are highly educated; those with knowledge are entitled to moral authority to rule. Fourth: rationality. Professor De Bary of Columbia University has maintained that, popular views of Confucianism as authoritarian to the contrary, a case can readily be made for both Liberalism and Democracy within the Confucian tradition.
    [Show full text]
  • Tetrahedron Symposia-In-Print
    Tetrahedron 74 (2018) 4875–4878 Tetrahedron Symposia-in-Print Tetrahedron Symposia-in-Print comprise collections of original research papers covering timely areas of organic chemistry. Each symposium is organized by a Symposium Editor who will invite authors, active in the selected field, to submit original articles covering cur- rent research, complete with experimental sections. These papers will be rapidly reviewed and processed for publication by the Symposium Editor under the usual refereeing system. Authors who have not already been invited, and who may have obtained recent significant results in the area of the announced symposium, may also submit contributions for Editorial consideration and possible inclusion. Before submitting such papers authors should send an abstract to the Symposium Editor for preliminary evaluation. Firm deadlines for receipt of papers will allow sufficient time for completion and presentation of ongoing work without loss of the freshness and timeliness of the research results. Symposia-in-Print—already published 1. Recent trends in organic photochemistry, Albert Padwa, Ed. Tetra- 22. Selectivity and synthetic applications of radical reactions, Bernd hedron 1981, 37, 3227–3420. Giese, Ed. Tetrahedron 1985, 41, 3887–4302. 2. New general synthetic methods, E. J. Corey, Ed. Tetrahedron 1981, 23. Recent aspects of organoselenium chemistry, Dennis Liotta, Ed. 37, 3871–4119. Tetrahedron 1985, 41,4727–4890. 3. Recent developments in polycyclopentanoid chemistry, Leo A. 24. Application of newer organometallic reagents to the total Paquette, Ed. Tetrahedron 1981, 37, 4357–4559. synthesis of natural products, Martin Semmelhack, Ed. 4. Biradicals, Josef Michl, Ed. Tetrahedron 1982, 38,733–867. Tetrahedron 1985, 41,5741–5900. 5.
    [Show full text]
  • Annual Report
    ANNUAL REPORT 2004 Northeastern Section American Chemical Society Local Section Name: Northeastern Section URL for Total Report: http://www.nesacs.org Prof. Jean A. Fuller-Stanley Chair 2004 Northeastern Section, ACS 2 TABLE OF CONTENTS (Pages numbered separately by section) Pages PART I - QUESTIONNAIRE Annual Report Questionnaire ....................................................................................................................................7 PART II: ANNUAL NARRATIVE REPORT Activities: National Chemistry Week ...................................................................................................................17 Phyllis A. Brauner Memorial Lecture................................................................................................17 Northeast Student Chemistry Research Conference (NSCRC) .......................................................18 Northeast Regional Undergraduate Day............................................................................................18 Undergraduate Environmental Research Symposium .....................................................................18 Connections to Chemistry ...................................................................................................................19 NESACS Vendor Fair and Medicinal Chemistry Symposium.........................................................19 NESACS Fundraising Booklet19........................................................................................................19 ACS Scholars Program........................................................................................................................20
    [Show full text]
  • 5 -7 -9 -11 Organoselenium Chemistry.' Redox Chemistry Of
    J. Am. Chem. SOC.1987, 109, 5549-5551 5549 <- <- 1;1P B solid state or solution above 183K solution below183K Figure 1. Evolution of the (PP3)Rh fragment on going from (PP,)RhH to (PP3)Rh+. within 2 h. The compound 6 in turn adds H2 (1 atm) to reform II 2. Finally, 2 quickly exchanges H, with C2H4to give [(PP3)- Rh(C2H,)](S0,CF,)" (7) whose 31PNMR spectrum with an AB,X spin system closely resembles that of 2. This result is reasonable because of the analogy between the binding of H2 and olefins to metals. It has been previously argued that both steric and electronic factors must be finely "tuned" on a metal fragment to permit the formation of an q2-H2adductla The geometric change of the (PP,)Rh fragment from C,, to C,, symmetry (Figure 1) is ac- companied by a certain variation of the fragmental frontier or- bitals. Likely the key to understand the mechanism of the present cis-dihydride - q2-dihydrogen interconversion may be found in the orbital control operated by the (PP,)Rh fragment. Supplementary Material Available: Analytical data and ex- perimental (80 MHz) and computed 'H NMR spectrum of [(PP,)Rh(HD)] (O,CCF,) (2 pages). Ordering information is given on any current masthead page. (10) The compound, which is a nonconductor in CH3CN and C2HSN02, exists in solution as a 1:l mixture of two isomers most likely due to the triflate ligand (IR 1310 cm-' (s), v (SO) of coordinated triflate). 31P(1HJNMR (CD3COCD,, 298 K) AB2CX system, isomer 1: 6 PA 112.33, 6 PB52.06, 6 Pc 24.70; isomer 2: 6 PA 104.15, 6 PB 52.06, 6 PA 112.33, 6 PB52.06, 6 Pc 2 52 24.70; isomer 2: 6 PA 104.15, 6 PB 52.06, 6 Pc 16.52 (JpApB= 27.0 Hz, JpApC = 14.2 HZ, JpBpc = 34.3 HZ, JpARh = 119.7 HZ, JpB~h= 132.1 HZ, JpC~h =140.9 Hz).
    [Show full text]
  • Stereoselective Reactions of Organoselenium Compounds
    Organoselenium Chemistry Authors: Fateh V. Singh, Thomas Wirth Address: VIT University, Chennai Campus, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India Cardiff University, School of Chemistry, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom Email: [email protected] 1 1. Introduction Organoselenium chemistry has been established as valuable research area in synthetic and medicinal chemistry.1-11 After the discovery of the selenoxide elimination reaction in early 1970s,12-14 organoselenium reagents received the great success in organic synthesis including asymmetric synthesis.15-18 More commonly, synthetic transformations such as selenenylations, selenocyclizations and 2,3-sigmatropic rearrangements have been successfully achieved using these reagents under mild reaction conditions.19-33 The application of these reagents in catalysis makes them more suitable reagents in organic synthesis.34-39 Several books,1-7, 41-43 book chapters8-11, 44-48 and review articles49-64 have been published to explain the utility of organoselenium reagents in synthesis. This chapter highlights the application of organoselenium reagents in organic synthesis including asymmetric synthesis. 2. Organoselenium Reagents As Electrophiles Organoselenium reagents play different roles in organic reactions but mainly known for their electrophilic behaviour. The electrophilic selenium species can be generated by the cleavage of the Se-Se bond of diselenides and can be used to activate the olefinic double bonds. Due to their electrophilic character, selenium electrophiles react with olefinic double bonds to form three membered seleniranium ion intermediate. Furthermore, the seleniranium ion intermediate can be employed to achieve various selenenylation reactions with different nucleophiles. 2.1. Selenenylation Reactions 2 Selenium electrophiles have been successfully used to achieve various selenylation reactions such as selenylation of olefins, arenes and other organic species.
    [Show full text]
  • 3.3.11 Synthesis of Lysergic Acid Diethylamide by Vollhardt...67
    Copyright by Jason Anthony Deck 2007 The Dissertation Committee for Jason Anthony Deck certifies that this is the approved version of the following dissertation: Studies Towards the Total Synthesis of Condylocarpine and Studies Towards the Enantioselective Synthesis of (+)-Methyl Lysergate Committee: Stephen F. Martin, Supervisor Philip D. Magnus Michael J. Krische Richard A. Jones Sean M. Kerwin Studies Towards the Total Synthesis of Condylocarpine and Studies Towards the Enantioselective Synthesis of (+)-Methyl Lysergate by Jason Anthony Deck, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2007 Studies Towards the Total Synthesis of Condylocarpine and Studies Towards the Enantioselective Synthesis of (+)-Methyl Lysergate Publication No. _______ Jason Anthony Deck, PhD The University of Texas at Austin, 2007 Supervisor: Stephen F. Martin An iminium ion cascade sequence was designed and its implementation attempted to form the pentacyclic core structure of the natural product condylocarpine. Trapping of the transient Pictet-Spengler-type spiroindolenium ion with a latent nucleophile would form two of the five rings of condylocarpine in a regioselective manner. Progress towards the first fully stereocontrolled synthesis of a lysergic acid derivative has been described. The route utilizes intermediates with the appropriate oxidation state for the target, and the two stereocenters are installed via asymmetric catalysis. The d ring and second stereocenter were simultaneously formed via an unprecedented microwave heated asymmetric ring closing metathesis (ARCM). iv Table of Contents List of Figures.....................................................................................................
    [Show full text]
  • Hydroxy=Ecdysones and a Revision of the Structure of Ponasterone C
    CHEMICALCOMMUNICATIONS, 1970 351 5~-Hydroxy=ecdysonesand a Revision of the Structure of Ponasterone C By MASATOKOREEDA and KOJI NAKANISHI*~ (Department of Chemistry, Tohoku University, Sendai, Japan) Summary Some of the spectral properties characteristic the following reasons: (i) The olefinic 7-H n.m.r. signal of the 5p-hydroxy-ecdysones are described and the (5.17 p.p.m., d, 2.5 Hz, in deuteriopyridine) was only structure of ponasterone C has been revised to (V); coupled to the 9a-H signal, whereas in the common ecdy- ponasterone B (I) is the only ecdysone having 2a,3a- sones an additional 7-H/5P-H long-range coupling is dihydroxy-groups. invariably observed; (ii) The 2-H, 3-H, and 19-H n.m.r. signals of ponasterone C were very similar to those of poly- THE structures1 of ponasterones B (I) and C (II), which podine B; (iii) A 7% increase in the 2-H n.m.r. signal area together with ponasterone A (111)2belong to one of the resulted upon irradiation of the 9a-H signal (Nuclear first groups of phytoecdysones (from Pudocurpus nakaii Overhauser Effect) in ponasterone C 2,3,22,24-tetra-acetate Hay.) have been re-investigated: (i) as these were the only (cf. VI) ; (iv) The c.d. data of ponasterone C and polypodine ecdysones with the atypical 2a,3a-dihydroxy-groups B benzoates (Table 1) indicated that the C-2 and C-3 among the nearly 30 ecdysones characterized to date; and (ii) because the optical and m.s. data of ponasterone C was TABLE1.
    [Show full text]
  • A Green Alternative for Obtaining Potentially Active Compounds †
    Proceedings Eco-Friendly Catalytic Aminoselenation of Alkenes: A Green Alternative for Obtaining Potentially Active Compounds † Luana S. Gomes 1,*, Rafaella G. Angelino 1, José S. S. Neto 2, Iris di Leo 3, Claudio Santi 3 and Vanessa Nascimento 1 1 Supraselen Laboratory, Department of Organic Chemistry, Federal Fluminense University (UFF), Rio de Janeiro 24220-008, Brazil; [email protected] (R.G.A.); [email protected] (V.N.) 2 Department of Organic Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil; [email protected] 3 Department of Pharmaceutical Sciences, University of Perugia, 06125 Perugia, Italy; [email protected] (I.d.L.); [email protected] (C.S.) * Correspondence: [email protected] † Presented at the 1st International Electronic Conference on Catalysis Sciences, 10–30 November 2020; Available online: https://eccs2020.sciforum.net. Published: 9 November 2020 Abstract: In this work, a new ecological approach to the selenofunctionalization of alkenes has been described using I2 as catalyst, DMSO as oxidant, under microwave irradiation (MW) in a solvent- and metal-free method. The general idea is to combine organoselenium compounds and triazole nuclei to obtain molecules capable of becoming a powerful class due to their potential pharmacological activity. However, most methods that involve the functionalization of alkenes are generally mediated by the use of transition metals or reagents in large stoichiometric quantities. Thus, the development of direct, clean and environmentally appropriate procedures, which are in accordance with the principles of green chemistry, for the synthesis of these compounds remains highly desirable. Thus, the present work developed the synthesis of β-amino selenides with only 20 minutes of reaction time, following the conditions previously mentioned.
    [Show full text]
  • Selenium-Epoxy ‘Click’ Reaction and Se-Alkylation—Efficient Access to Organo-Selenium and Selenonium Compounds
    Communication Selenium-Epoxy ‘Click’ Reaction and Se-Alkylation—Efficient Access to Organo-Selenium and Selenonium Compounds Taejun Eom and Anzar Khan * Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3290-4859 Received: 3 September 2020; Accepted: 29 September 2020; Published: 5 October 2020 Abstract: This work establishes the ‘click’ nature of the base-catalyzed oxirane ring opening reaction by the selenolate nucleophile. The ‘click’-generated ß-hydroxy selenide can be alkylated to afford cationic selenium species. Hemolytic studies suggest that selenonium cations do not lyse red blood cells even at high concentrations. Overall, these results indicate the future applicability of the developed organo-selenium chemistry in the preparation of a new class of cationic materials based on the seleno-ether motif. Keywords: ‘click’ chemistry; oxirane ring opening reaction; organo-selenium; organo-selenonium 1. Introduction Selenium was discovered in early 1800 [1,2]. The chemistry of organo-selenium nucleophiles, however, only began in 1973 with Sharpless and Lauers’ report on the preparation of phenylselenolate and its application in converting epoxides into allylic alcohols [3]. Since then a wide range of reactions based on nucleophilic selenium reagents have been developed for use in organic synthesis [1,2]. Inspired by Sharpless’ selenium reagent and the growing interest in organoselenium materials [4], we began to examine the full scope of the ring opening reaction of epoxides by the selenolates in context of ‘click’ chemistry—another area of research pioneered by Sharpless [5]. ‘Click’ chemistry entails modular and wide in scope reactions that can be carried out under simple experimental conditions and produce quantitative yields and inoffensive byproducts [6].
    [Show full text]
  • Osaka University Knowledge Archive : OUKA
    STUDIES ON THE DEVELOPMENT OF NEW SYNTHETIC Title REACTIONS USING SELENIUM AND ORGANOSELENIUM COMPOUNDS Author(s) 前多, 肇 Citation Issue Date Text Version ETD URL https://doi.org/10.11501/3129006 DOI 10.11501/3129006 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University STUDIES ON THE DEVELOPMENT OF NEW SYNTHETIC REACTIONS USING SELENIUM AND ORGANOSELENIUM COMPOUNDS (-lz I/ )/ JB' * U<N'Jfi'ec •l! u '/ ttAtlig lt Al v> 6 \fiISIAJSX ljlJ;trN cD ea patJE ec Pfi vs}- 6 liJl 9,fiaS) HAJIME MAEDA OSAKA UNIVERSITY 1997 Contents General lntroduction ... 1 Chapter 1. Reaction of 2,6-Xylyl Isoselenocyanate wtth Organolithium Compounds 1-2.1-1. Results Introduction and Discussion ...3 . ..e4 1-4.1-3. ExperimentalSection Conclusion ... ...10 10 1-5. References andNotes ... 17 Chapter 2. Selenium-Assisted Carbonylation of Organolithium Compounds with Carbon Monoxide and Its Application 2-1. Selenium-Assisted Carbonylation of Acidic Hydrocarbons with Carbon Monoxide 2-1-1. Introduction ' ... 24 2-1-2. Results and Discussion ... 24 2-1-3. Conclusion ... 30 2-1-4. ExperimentalSection ... 30 2-1-5. References andNotes ... 37 2-2. Selenium-Assisted Carbonylation of 2-Arylpropionitriles with Carbon Monoxide 2-2-1. Introduction ... 41 2-2-2. Results andDiscussion ... 42 2-2-3. Conclusion ... 44 2-2-4. ExperimentalSection ... 44 2-2-5. References ' andNotes ... 48 2-3. Synthesis of Selenoimidates via Selenoimidoylation of Organolithium Compounds with Selenium and Isocyanides 2-3-1. Introduction ... 55 2-3-2. Results and Discussion ... 55 2-3-3. Conclusion ... 60 2-3-4. ExperimentalSection ..
    [Show full text]