Under the Skin: Ixodes Ticks in the Subcutaneous Tissue of Red Foxes

Total Page:16

File Type:pdf, Size:1020Kb

Under the Skin: Ixodes Ticks in the Subcutaneous Tissue of Red Foxes Haut et al. Parasites Vectors (2020) 13:189 https://doi.org/10.1186/s13071-020-04061-x Parasites & Vectors SHORT REPORT Open Access Under the skin: Ixodes ticks in the subcutaneous tissue of red foxes (Vulpes vulpes) from Germany Maja Haut1, Nina Król1, Anna Obiegala1, Johannes Seeger2 and Martin Pfefer1* Abstract Background: Ixodes spp. are vectors of zoonotic pathogens. All three active life stages (larvae, nymphs, adults) need to feed on a host in order to develop. Usually ticks parasitize attached to the external surface of their hosts’ skin. Interestingly, in some cases ticks can also be found in the subcutaneous tissue in a variety of hosts, such as red foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides) and dogs. Methods: The visceral side of 126 red fox-furs from Germany was examined visually searching for ticks. The localiza- tion of ticks was recorded and assigned to ten specifc body parts. Morphological identifcation of ticks was per- formed according to standardized taxonomic protocols. Ticks which could not be further identifed were examined genetically via conventional PCR targeting the 16S rRNA and cox1 gene. Hematoxylin and eosin (H&E) staining was used for histopathological examination. Results: In 111 out of 126 (88.1%) examined coats, at least one tick was found in the subcutaneous tissue. A total of 1203 ticks were removed from the subcutaneous tissue. Well-preserved ticks could be identifed based on morpho- logical criteria, but most ticks were in a progressed state of decomposition. Here, morphological species identifcation was not successful. Also, PCR methods did not lead to a successful species identifcation. The following species and development stages were found by morphological identifcation: Ixodes ricinus (female, n 289; male, n 8; nymph, n 1), I. hexagonus (female, n 2), I. canisuga (female, n 1). Male I. ricinus were found individually= or copulating= in pairs= with females. Subcutaneous= ticks were localized at= three predominant afected body parts: ears, axillar and ingui- nal region. Histological examination of subcutaneous ticks revealed a granulomatous panniculitis. Conclusions: To the authors’ knowledge, this is the frst fnding of highly prevalent subcutaneous ticks in red foxes from Germany. Subcutaneous location of ticks seems to be very common in red foxes and the rule rather than the exception. Deep embedment of longirostra and long feeding times of females seem to put the subcutaneous loca- tion in favor. Most foxes were infested in the inguinal area, where the skin is thin and less hairy. Keywords: Ectoparasites, Subcutaneous, Ixodes spp., Tick, Red fox, Germany, Europe Background Ticks belonging to the genera Ixodes and Dermacentor (Family: Ixodidae) are the most prevalent in Europe [1]. All active tick life stages (six-legged larva, eight-legged *Correspondence: [email protected] nymph and females) require blood meals from hosts for 1 Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, molting (immatures) or for oviposition (females) with the 04103 Leipzig, Germany exception of males which feed facultatively and are local- Full list of author information is available at the end of the article ized on hosts mainly for mating purposes [1, 2]. © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Haut et al. Parasites Vectors (2020) 13:189 Page 2 of 9 In Germany the species Ixodes ricinus, I. hexagonus, from all over Germany deposited fox carcasses in plas- I. canisuga and I. kaiseri have been frequently collected tic bags labelled with the date and exact geographical from foxes [3–8]. Additionally, Dermacentor reticu- location in deep-freezers. Only adult foxes with good latus and Haemaphysalis concinna were occasionally nutritional status were selected by hunters. Fox cadav- found attached to red foxes’ skin [7, 9]. Ticks are usu- ers were stored at − 80 °C until faying. For enabling the ally strongly attached to the external surface of their histological studies one fox was skinned directly after hosts to remain in place for a blood meal. Tereby tick’ hunting. mouthparts penetrate diferent skin layers, depending on their length. Ticks with long mouthparts (longirostra Tick collection and identifcation e.g. Amblyomma, Hyalomma and Ixodes) embedded into Te visceral side of each fur was examined visually for deep layers of the dermis while ticks with short mouth- the presence of subcutaneous ticks. Te localization of parts (brevirostra e.g. Dermacentor, Haemaphysalis and ticks was recorded on a pre-drawn schematic picture and Rhipicephalus) barely penetrate the epidermis [10, 11]. assigned to ten specifc body parts (ears, neck, axillar Ixodes ricinus larvae are attached for 2–4 days, nymphs region, shoulder, back, belly, inguinal region, anorectal for 4–6 days and females for 6–10 days [12]. region, legs and tail) in order to create a body map of tick Interestingly, in some cases ticks can also be found in density (Fig. 1), as recommended by Lydecker et al. [25]. the subcutaneous tissue in a variety of hosts including Afterwards, the ticks were individually dissected from red foxes. Te presence of subcutaneous ticks such as I. the subcutaneous tissue with fne-tipped forceps and ricinus, I. hexagonus, I. crenulatus and D. reticulatus was a scalpel and stored at − 20 °C (Fig. 2). Well-preserved noted in red foxes in several case studies from the UK, ticks could be identifed based on morphological crite- Poland, Austria, Romania, Slovakia and Czech Republic ria according to standardized taxonomic protocols [26] [13–20]. In the USA, the native tick species Amblyomma under a binocular at 50× magnifcation (Motic SMZ-171, americanum was likewise discovered in the subcutaneous Motic Deutschland GmbH, Wetzlar, Germany). tissue of red foxes [21]. Besides red foxes, single case reports of subcutaneous DNA extraction and PCR methods ticks were previously recorded in raccoon dogs (Nyc- Ticks which could not be morphologically identifed were tereutes procyonoides) from Poland [22], in a dog from further processed by conventional PCR to identify them Sweden [23] and in a child from South Korea [24]. to species level. For the DNA extraction, 1 g of steel beads Hitherto, small sample sizes were reported in most (sized 2.8 mm) and 500 µl of PBS were added to each tick. cases also rather as occasional fndings [13–17, 21]. Te samples were then homogenized at 5000× rpm for Tus far, no published data exist about subcutaneous ® 2 × 15 s with 15 s break intervals in a Precellys 24 tissue ticks in red foxes or other animals from Germany. Tis homogenizer (Bertin Technologies, Montigny Le Breton- is why this study is aiming to evaluate the frequency of neux, France). subcutaneous ticks in red foxes from Germany using Te genomic DNA was extracted using the QIAamp a large number of samples. Te localization of subcu- DNA Mini Kit (Qiagen, Hilden, Germany) following the taneous ticks at diferent body regions of the red fox manufacturer’s instructions. PCR amplifcations of par- has not been analyzed yet; therefore, we documented tially cytochrome c oxidase subunit 1 (cox1) gene (710 the localization of each tick in order to determine the bp) and of the 16S ribosomal ribonucleic acid (rRNA) abundance of these ticks in the subcutaneous tissue. gene (455 bp) were performed using previously published Precise species identifcation of subcutaneous ticks PCR protocols [8, 27]. PCR products were visualized based on morphological criteria is possible only to a by gel electrophoresis on 2% agarose gels stained with limited extent due to the advanced degradation process HDGreen Plus DNA Stain (Intas Science Imaging Instru- in subcutaneous tissue, as seen in previous studies [18]. ments GmbH, Göttingen, Germany). Hence, this study aims to use molecular biology tech- niques to identify subcutaneous ticks to species level. Histological examination of subcutaneous tissue Subcutaneously located ticks were removed with the skin and the surrounding tissue from the complete fur and Methods immediately fxed in 10% bufered formalin, dehydrated Animal collection in ascending ethanol series (20–100%) and embedded Between November 2018 and February 2019 local in parafn blocks. Seven-micron thick sections were hunters shot red foxes and other wild game in course cut with a rotary microtome (Leica RM 2155, Leica of traditional hunting. In cooperation with a scrape Microsystems Nussloch GmbH, Nussloch, Germany), station (Fellwechsel Berlin, Germany), local hunters placed on glass slides and stained with hematoxylin and Haut et al. Parasites Vectors (2020) 13:189 Page 3 of 9 Fig. 1 Density of ticks expressed as percentage of total number of ticks depending on body region (n 111 red foxes). A darker grey in the fgure = indicates a higher density of ticks eosin (H&E). Microscopy and pictures were performed by the Clopper & Pearson method with GraphPad Soft- using a Zeiss Axioplan 2 imaging (Carl Zeiss Microscopy, ware (GraphPad Software Inc., San Diego, CA, USA).
Recommended publications
  • Influence of Parasites on Fitness Parameters of the European Hedgehog (Erinaceus Europaeus)
    Influence of parasites on fitness parameters of the European hedgehog (Erinaceus europaeus ) Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich vorgelegte DISSERTATION von Miriam Pamina Pfäffle aus Heilbronn Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Horst Taraschewski Korreferent: Prof. Dr. Agustin Estrada-Peña Tag der mündlichen Prüfung: 19.10.2010 For my mother and my sister – the strongest influences in my life “Nose-to-nose with a hedgehog, you get a chance to look into its eyes and glimpse a spark of truly wildlife.” (H UGH WARWICK , 2008) „Madame Michel besitzt die Eleganz des Igels: außen mit Stacheln gepanzert, eine echte Festung, aber ich ahne vage, dass sie innen auf genauso einfache Art raffiniert ist wie die Igel, diese kleinen Tiere, die nur scheinbar träge, entschieden ungesellig und schrecklich elegant sind.“ (M URIEL BARBERY , 2008) Index of contents Index of contents ABSTRACT 13 ZUSAMMENFASSUNG 15 I. INTRODUCTION 17 1. Parasitism 17 2. The European hedgehog ( Erinaceus europaeus LINNAEUS 1758) 19 2.1 Taxonomy and distribution 19 2.2 Ecology 22 2.3 Hedgehog populations 25 2.4 Parasites of the hedgehog 27 2.4.1 Ectoparasites 27 2.4.2 Endoparasites 32 3. Study aims 39 II. MATERIALS , ANIMALS AND METHODS 41 1. The experimental hedgehog population 41 1.1 Hedgehogs 41 1.2 Ticks 43 1.3 Blood sampling 43 1.4 Blood parameters 45 1.5 Regeneration 47 1.6 Climate parameters 47 2. Hedgehog dissections 48 2.1 Hedgehog samples 48 2.2 Biometrical data 48 2.3 Organs 49 2.4 Parasites 50 3.
    [Show full text]
  • Borne Pathogens Tim R
    Hofmeester et al. Parasites & Vectors (2018) 11:600 https://doi.org/10.1186/s13071-018-3126-8 RESEARCH Open Access Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick- borne pathogens Tim R. Hofmeester1,2*, Aleksandra I. Krawczyk3, Arieke Docters van Leeuwen3, Manoj Fonville3, Margriet G. E. Montizaan4, Koen van den Berge5, Jan Gouwy5, Sanne C. Ruyts6, Kris Verheyen6 and Hein Sprong3* Abstract Background: Elucidating which wildlife species significantly contribute to the maintenance of Ixodes ricinus populations and the enzootic cycles of the pathogens they transmit is imperative in understanding the driving forces behind the emergence of tick-borne diseases. Here, we aimed to quantify the relative contribution of four mustelid species in the life-cycles of I. ricinus and Borrelia burgdorferi (sensu lato) in forested areas and to investigate their role in the transmission of other tick-borne pathogens. Road-killed badgers, pine martens, stone martens and polecats were collected in Belgium and the Netherlands. Their organs and feeding ticks were tested for the presence of tick-borne pathogens. Results: Ixodes hexagonus and I. ricinus were found on half of the screened animals (n = 637). Pine martens had the highest I. ricinus burden, whereas polecats had the highest I. hexagonus burden. We detected DNA from B. burgdorferi (s.l.)andAnaplasma phagocytophilum in organs of all four mustelid species (n = 789), and Neoehrlichia mikurensis DNA was detected in all species, except badgers. DNA from B. miyamotoi was not detected in any of the investigated mustelids. From the 15 larvae of I. ricinus feeding on pine martens (n = 44), only one was positive for B.
    [Show full text]
  • Erinaceus Europaeus) in Urmia City, Iran: First Report
    ORIGINAL Veterinary ARTICLE Veterinary Research Forum. 2013; 4 (3) 191 - 194 Research Forum Journal Homepage: vrf.iranjournals.ir Ectoparasitic infestations of the European hedgehog (Erinaceus europaeus) in Urmia city, Iran: First report Tahmineh Gorgani-Firouzjaee1, Behzad Pour-Reza2, Soraya Naem1*, Mousa Tavassoli1 1Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; 2 Resident in Veterinary Surgery, Department of Surgery and Radiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran. Article Info Abstract Article history: Hedgehogs are small, nocturnal mammals that become popular in the world and have significant role in transmission of zoonotic agents. Some of the agents are transmitted by ticks Received: 01 September 2012 and fleas such as rickettsial agents. For these reason, a survey on ectoparasites in European Accepted: 02 March 2013 hedgehog (Erinaceus europaeus) carried out between April 2006 and December 2007 from Available online: 15 September 2013 different parts of Urmia city, west Azerbaijan, Iran. After being euthanized external surface of body of animals was precisely considered for ectoparasites, and arthropods were collected and Key words: stored in 70% ethanol solution. Out of 34 hedgehogs 23 hedgehogs (67.70%) were infested with ticks (Rhipicephalus turanicus). Fleas of the species Archaeopsylla erinacei were found on Ectoparasite 19 hedgehogs of 34 hedgehogs (55.90%). There was no significant differences between sex of Hedgehog ticks (p > 0.05) but found in fleas (p < 0.05). The prevalence of infestation in sexes and the body Iran condition of hedgehogs (small, medium and large) with ticks and fleas did not show significant Urmia differences (p > 0.05). Highest occurrence of infestation in both tick and flea was in June.
    [Show full text]
  • Canisuga, I. (Ph.) Kaiseri, I
    Hornok et al. Parasites & Vectors (2017) 10:545 DOI 10.1186/s13071-017-2424-x RESEARCH Open Access Contributions to the phylogeny of Ixodes (Pholeoixodes) canisuga, I. (Ph.) kaiseri, I. (Ph.) hexagonus and a simple pictorial key for the identification of their females Sándor Hornok1* , Attila D. Sándor2, Relja Beck3, Róbert Farkas1, Lorenza Beati4, Jenő Kontschán5, Nóra Takács1, Gábor Földvári1, Cornelia Silaghi6, Elisabeth Meyer-Kayser7, Adnan Hodžić8, Snežana Tomanović9, Swaid Abdullah10, Richard Wall10, Agustín Estrada-Peña11, Georg Gerhard Duscher8 and Olivier Plantard12 Abstract Background: In Europe, hard ticks of the subgenus Pholeoixodes (Ixodidae: Ixodes) are usually associated with burrow-dwelling mammals and terrestrial birds. Reports of Pholeoixodes spp. from carnivores are frequently contradictory, and their identification is not based on key diagnostic characters. Therefore, the aims of the present study were to identify ticks collected from dogs, foxes and badgers in several European countries, and to reassess their systematic status with molecular analyses using two mitochondrial markers. Results: Between 2003 and 2017, 144 Pholeoixodes spp. ticks were collected in nine European countries. From accurate descriptions and comparison with type-materials, a simple illustrated identification key was compiled for adult females, by focusing on the shape of the anterior surface of basis capituli. Based on this key, 71 female ticks were identified as I. canisuga,21asI. kaiseri and 21 as I. hexagonus. DNA was extracted from these 113 female ticks, and from further 31 specimens. Fragments of two mitochondrial genes, cox1 (cytochrome c oxidase subunit 1) and 16S rRNA, were amplified and sequenced. Ixodes kaiseri had nine unique cox1 haplotypes, which showed 99.2–100% sequence identity, whereas I.
    [Show full text]
  • Central-European Ticks (Ixodoidea) - Key for Determination 61-92 ©Landesmuseum Joanneum Graz, Austria, Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen der Abteilung für Zoologie am Landesmuseum Joanneum Graz Jahr/Year: 1972 Band/Volume: 01_1972 Autor(en)/Author(s): Nosek Josef, Sixl Wolf Artikel/Article: Central-European Ticks (Ixodoidea) - Key for determination 61-92 ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Mitt. Abt. Zool. Landesmus. Joanneum Jg. 1, H. 2 S. 61—92 Graz 1972 Central-European Ticks (Ixodoidea) — Key for determination — By J. NOSEK & W. SIXL in collaboration with P. KVICALA & H. WALTINGER With 18 plates Received September 3th 1972 61 (217) ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Dr. Josef NOSEK and Pavol KVICALA: Institute of Virology, Slovak Academy of Sciences, WHO-Reference- Center, Bratislava — CSSR. (Director: Univ.-Prof. Dr. D. BLASCOVIC.) Dr. Wolf SIXL: Institute of Hygiene, University of Graz, Austria. (Director: Univ.-Prof. Dr. J. R. MOSE.) Ing. Hanns WALTINGER: Centrum of Electron-Microscopy, Graz, Austria. (Director: Wirkl. Hofrat Dipl.-Ing. Dr. F. GRASENIK.) This study was supported by the „Jubiläumsfonds der österreichischen Nationalbank" (project-no: 404 and 632). For the authors: Dr. Wolf SIXL, Universität Graz, Hygiene-Institut, Univer- sitätsplatz 4, A-8010 Graz. 62 (218) ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Dedicated to ERICH REISINGER em. ord. Professor of Zoology of the University of Graz and corr. member of the Austrian Academy of Sciences 3* 63 (219) ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Preface The world wide distributed ticks, parasites of man and domestic as well as wild animals, also vectors of many diseases, are of great economic and medical importance.
    [Show full text]
  • Ticks Infesting Domestic Dogs in the UK: a Large-Scale Surveillance Programme
    Abdullah, S., Helps, C., Tasker, S., Newbury, H., & Wall, R. (2016). Ticks infesting domestic dogs in the UK: a large-scale surveillance programme. Parasites and Vectors, 9, [391]. https://doi.org/10.1186/s13071-016-1673-4 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1186/s13071-016-1673-4 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via BioMed Central at https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-016-1673-4. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Abdullah et al. Parasites & Vectors (2016) 9:391 DOI 10.1186/s13071-016-1673-4 RESEARCH Open Access Ticks infesting domestic dogs in the UK: a large-scale surveillance programme Swaid Abdullah1*, Chris Helps2, Severine Tasker2, Hannah Newbury3 and Richard Wall1 Abstract Background: Recent changes in the distribution of tick vectors and the incidence of tick-borne disease, driven variously by factors such as climate change, habitat modification, increasing host abundance and the increased movement of people and animals, highlight the importance of ongoing, active surveillance. This paper documents the results of a large-scale survey of tick abundance on dogs presented to veterinary practices in the UK, using a participatory approach that allows relatively cost- and time-effective extensive data collection.
    [Show full text]
  • Vulpes Vulpes) Attila D
    Sándor et al. Parasites & Vectors (2017) 10:173 DOI 10.1186/s13071-017-2113-9 RESEARCH Open Access Mesocarnivores and macroparasites: altitude and land use predict the ticks occurring on red foxes (Vulpes vulpes) Attila D. Sándor*, Gianluca D’Amico, Călin M. Gherman, Mirabela O. Dumitrache, Cristian Domșa and Andrei Daniel Mihalca Abstract Background: The red fox Vulpes vulpes is the most common mesocarnivore in Europe and with a wide geographical distribution and a high density in most terrestrial habitats of the continent. It is fast urbanising species, which can harbor high numbers of different tick species, depending on the region. Here we present the results of a large-scale study, trying to disentangle the intricate relationship between environmental factors and the species composition of ectoparasites in red foxes. The samples were collected in Transylvania (Romania), a region with a diverse geography and high biodiversity. The dead foxes (collected primarily through the National Surveillance Rabies Program) were examined carefully for the presence of ticks. Results: Ticks (n = 4578) were found on 158 foxes (out of 293 examined; 53.9%). Four species were identified: Dermacentor marginatus, Ixodes canisuga, I. hexagonus and I. ricinus. The most common tick species was I. hexagonus (mean prevalence 37.5%, mean intensity 32.2), followed by I. ricinus (15.0%; 4.86), I. canisuga (4.8%; 7.71) and D. marginatus (3.7%; 3.45). Co-occurrence of two or more tick species on the same host was relatively common (12.6%), the most common co-occurrence being I. hexagonus - I. ricinus.ForD. marginatus and I.
    [Show full text]
  • Ticks (Acari: Ixodidae) Ticks Parasitizing Red Foxes (Vulpes Vulpes) in Slovakia and New Data About Subgenus Pholeoixodes Occurrence
    Acta Parasitologica https://doi.org/10.2478/s11686-020-00184-4 ORIGINAL PAPER Ticks (Acari: Ixodidae) Ticks Parasitizing Red Foxes (Vulpes vulpes) in Slovakia and New Data About Subgenus Pholeoixodes Occurrence Grzegorz Karbowiak1 · Michal Stanko2 · Martina Miterpaková2 · Zuzana Hurníková2 · Bronislava Víchová2 Received: 21 August 2019 / Accepted: 9 December 2019 © The Author(s) 2020 Abstract Background Distribution and biology of Pholeoixodes ticks is not very well understood. The goal of the study was to collect new data on the Pholeoixodes tick occurrence in Slovakia. Methods Tick infestation of red foxes in the regions of Košice, Prešov, Bratislava and Žilina was studied during the period 2017–2018. Ticks were collected from the fur of animals using tweezers and identifed using appropriate keys. In total, 146 red foxes (Vulpes vulpes) were investigated. Results In total, 39 (26.7%) of animals were found to be infected with ticks from fve species. Pholeoixodes ticks were found on 13 (3.4%) of the foxes: Ixodes hexagonus (Leach, 1815) on 5 specimens (3.4%), in the Košice, Prešov and Žilina regions; I. crenulatus (Koch, 1844) on 8 specimens (5.5%) in the Prešov and Bratislava regions; Ixodes ricinus (Linnaeus, 1758) collected from 25 (17.2%) foxes in every locality; Dermacentor reticulatus (Fabricius, 1794) from 5 foxes (3.4%) in the Košice, Prešov and Žilina regions; Haemaphysalis concinna (Koch, 1844), from 4 foxes (2.8%) from the Košice region. Conclusions Ixodes hexagonus has been previously recorded in Slovakia. However, this is the frst fnding of I. crenulatus in the country. The morphological features of the I. crenulatus specimens found in Slovakia were identical to those of ticks described in Poland and descriptions given in identifcation keys.
    [Show full text]
  • The Health of Hedgehogs in Relation to Tick Infestation and Transmission of Pathogens by the Hedgehog Tick, Ixodes Hexagonus in Vitro
    The health of hedgehogs in relation to tick infestation and transmission of pathogens by the hedgehog tick, Ixodes hexagonus in vitro. Khyara van Hummel April 2014 – July 2014 P a g e | 1 The health of hedgehogs in relation to tick infestation and transmission of pathogens by the hedgehog tick, Ixodes hexagonus in vitro. Author: K.M.L.B. van Hummel Location: Utrecht Centre for Tick-borne Diseases (UCTD) Faculty of Veterinary Medicine Utrecht University Timeslot: April 2014 – July 2014 Supervisor: Prof. Dr. F. Jongejan The image on the front was taken by the author. P a g e | 2 Index Abstract .............................................................................................................................................5 Introduction ......................................................................................................................................6 Ixodes hexagonus ............................................................................................................................................... 6 In vitro feeding ................................................................................................................................................... 6 Objective of this research ................................................................................................................................... 7 Materials and method ........................................................................................................................8 Questionnaire ....................................................................................................................................................
    [Show full text]
  • Selected Vector-Borne Diseases – Description and Differentiation
    Selected vector-borne diseases – description and differentiation Natalia Jackowska, DVM Vet Planet Ltd. Tomasz Nalbert, DVM Tomasz Nagas, DVM Warsaw University of Life Sciences, SGGW Selected vector-borne diseases – description and differentiation Authors: Natalia Jackowska, DVM (VetExpert), Tomasz Nalbert, DVM (Division of Infectious Diseases, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences) Tomasz Nagas, DVM (Division of Animal Reproduction, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences) As a result of warming of the climate, Poland witnesses diseases that used to be associated with the warm Mediterranean climate only. The ever milder climate makes life of ticks and insects much easier. There are report from other countries (Germany, Austria) saying that dogs coming back from holidays were diagnosed with diseases not typical for their native country, namely ones brought from other countries (6). This means that when we take our four legged friends for holidays in warmer regions, we can bring back not only nice memories from there. Expansion of ticks and insects leads to the increase of cases of leishmaniosis, borreliosis (Lyme disease), ehrlichiosis, anaplasmosis - diseases whose vectors are different types of insects and ticks, some of which might cause cross infection. Knowledge about intermediate hosts, vectors and diseases transmitted by them is very useful in everyday practice. Ticks belong to arachnids. In Poland there are about 20 species of ticks. The most common ones are Ixodes ricinus (the castor bean tick) and Dermacentor reticulatus, more rare ones being Rhipicephalus sanguineus, Ixodes hexagonus, Ixodes cerenulatus (14). In order to fully appreciate the threat posed by these arachnids it is good to review their physiology.
    [Show full text]
  • 12. the Role of Host Diversity in Borrelia Burgdorferi S.L. Dynamics
    12. The role of host diversity in Borrelia burgdorferi s.l. dynamics Tim R. Hofmeester Resource Ecology Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; [email protected] Abstract There has been substantial debate about the influence of vertebrate host diversity on Lyme borreliosis risk. In North America, studies investigating Borrelia burgdorferi s.l. and the Black- legged tick (Ixodes scapularis) have shown that on a large spatial scale there seems to be a negative correlation between host species diversity and Lyme borreliosis risk. However, studies on this relationship in Europe are lacking. I discuss the work done in North America and translate the findings and assumptions of these studies to the European situation, where the sheep tick (Ixodes ricinus) is the most important vector of B. burgdorferi s.l. The European situation is fundamentally different compared to the North American situation due to the high diversity of B. burgdorferi s.l. genospecies, which are transmitted by different groups of vertebrate species. Disease risk in Europe is hypothesised to increase with vertebrate diversity due to an increase in B. burgdorferi s.l. genospecies diversity. However, it seems that the majority of genospecies in Europe is transmitted by two functional groups of host species, rodents and thrushes, which are present in most vertebrate assemblages. Therefore, it seems plausible that a dilution effect can also occur in Europe. This might result in high risk in urban areas where a few dominant species are very abundant, among which the most important reservoir hosts for B. burgdorferi s.l.
    [Show full text]
  • Arthropod Phylogeny Based on Eight Molecular Loci and Morphology
    letters to nature melanogaster (U37541), mosquito Anopheles quadrimaculatus (L04272), mosquito arthropods revealed by the expression pattern of Hox genes in a spider. Proc. Natl Acad. Sci. USA 95, Anopheles gambiae (L20934), med¯y Ceratitis capitata (CCA242872), Cochliomyia homi- 10665±10670 (1998). nivorax (AF260826), locust Locusta migratoria (X80245), honey bee Apis mellifera 24. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTALW: Improving the sensitivity of progressive (L06178), brine shrimp Artemia franciscana (X69067), water ¯ea Daphnia pulex multiple sequence alignment through sequence weighting, position-speci®c gap penalties and weight (AF117817), shrimp Penaeus monodon (AF217843), hermit crab Pagurus longicarpus matrix choice. Nucleic Acids Res. 22, 4673±4680 (1994). (AF150756), horseshoe crab Limulus polyphemus (AF216203), tick Ixodes hexagonus 25. Foster, P. G. & Hickey, D. A. Compositional bias may affect both DNA-based and protein-based (AF081828), tick Rhipicephalus sanguineus (AF081829). For outgroup comparison, phylogenetic reconstructions. J. Mol. Evol. 48, 284±290 (1999). sequences were retrieved for the annelid Lumbricus terrestris (U24570), the mollusc 26. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic Katharina tunicata (U09810), the nematodes Caenorhabditis elegans (X54252), Ascaris analysis. Mol. Biol. Evol. 17, 540±552 (2000). suum (X54253), Trichinella spiralis (AF293969) and Onchocerca volvulus (AF015193), and 27. Muse, S. V. & Kosakovsky Pond, S. L. Hy-Phy 0.7 b (North Carolina State Univ., Raleigh, 2000). the vertebrate species Homo sapiens (J01415) and Xenopus laevis (M10217). Additional 28. Strimmer, K. & von Haeseler, A. Quartet puzzlingÐa quartet maximum-likelihood method for sequences were analysed for gene arrangements: Boophilus microplus (AF110613), Euhadra reconstructing tree topologies.
    [Show full text]