The Vertebral Column of Australopithecus Sediba

Total Page:16

File Type:pdf, Size:1020Kb

The Vertebral Column of Australopithecus Sediba RESEARCH ARTICLES Gauteng, South Africa (24, 25) preserve 23 pre- sacral vertebrae and a partial, five-element sacrum (Fig. 1). Here, we describe vertebrae assigned to The Vertebral Column of the juvenile male holotype [Malapa Hominin 1 (MH1)] and the adult female paratype (MH2), Australopithecus sediba in addition to the previously published sacrum of MH2 (26). Scott A. Williams,1,2* Kelly R. Ostrofsky,3 Nakita Frater,4 Steven E. Churchill,3,5 The MH1 partial vertebral column consists of Peter Schmid,4,5 Lee R. Berger5 four cervical, six thoracic, and two lumbar verte- brae; that of MH2 is composed of two cervical, Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin seven thoracic, and two lumbar vertebrae, as well spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba as a sacrum. Specimen numbers and identifica- likely possessed five non–rib-bearing lumbar vertebrae and five sacral elements, the same configuration tions are provided in table S1. Vertebrae belong- thatoccursmodallyinmodernhumans.Thisfinding contrasts with other interpretations of early ing to MH1 are readily distinguished from those hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above of MH2 by their lack of apophyseal rings. As the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This with modern human juveniles and the Nariokotome configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic juvenile skeleton (KNM-WT 15000) (1), MH1 posture, would have contributed to a highly flexible spine that is derived compared with earlier possesses short vertebral centra relative to superior- members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton. inferior interfacet distance, consistent with its juvenile status (27). In contrast, MH2’s centra he vertebral column plays a central role to Au. africanus (Sts 14 and Stw 431) and Homo demonstrate ratios similar to those of adult mod- in posture, locomotion, and overall trunk erectus (KNM-WT 15000). Thoracic and lum- ern humans. Tstability and mobility in vertebrate ani- bar vertebrae have been defined in two ways in mals. The hominin vertebral column is distinct the recent literature: (i) based on the presence Cervical Vertebrae in its role in force transmission and weight- and absence of ribs (i.e., the last thoracic verte- A small cervical body fragment of unknown se- bearing in an upright torso balanced over two bra is identified as the last rib-bearing vertebra) rial position, two fragmentary mid-cervical verte- legs. Owing to these biomechanical demands, (8, 15, 16), and (ii) based on the orientation of brae, and a nearly intact last cervical (C7) vertebra the hominin spine has several specialized traits the articular facets (i.e., the last thoracic vertebra (fig. S1) are associated with MH1. Two mid-level not seen in other mammals, including sigmoid is identified as the transitional vertebra, one that cervical vertebrae are attributed to MH2: a nearly curvature; a pyramidal configuration of articu- bears thoracic-like, coronally oriented superior ar- complete C3 or C4 (fig. S2) and a partially com- lar facets with descent through the lower lum- ticular facets and lumbar-like, curved and laterally plete C5 or C6. These vertebrae do not articulate bar column; and a wide, curved sacrum (1–6). directed inferior articular facets) (6, 17, 18). In and, thus, likely represent either C3 and C5 or C4 Whereas these adaptations are present in modern modern humans and other extant hominoids, the and C6. humans and currently known extinct hominins, last rib-bearing vertebra and the transitional ver- other aspects of the modern human vertebral tebra generally occur at the same vertebral level Rib-Bearing Vertebrae column—for instance, large relative lumbosacral (i.e., are the same vertebral element) and, there- Six rib-bearing vertebrae are attributed to MH1: body size—are not present in early hominins such fore, yield identical numbers of thoracic and lum- two upper thoracic, one mid-thoracic, and three as Australopithecus afarensis and Au. africanus bar vertebrae under either definition [(15, 18, 19), lower thoracic vertebrae. An upper thoracic verte- (2, 3, 7), suggesting that the vertebral column but see (20)]. bra (fig. S3) demonstrates superior articular facet evolved in a mosaic fashion. Therefore, an under- In contrast, recent evidence indicates that shape and orientation and relationships among standing of which adaptations characterized early fossil hominins may not follow this pattern the body, transverse process, and superior articu- various fossil species and when the full com- (9, 15). Newly identified vertebral and rib frag- lar facets diagnostic of a second thoracic vertebra plement of modern humanlike features evolved is ments associated with KNM-WT 15000 show (T2). The middle thoracic vertebra, which likely integral to reconstructing postural and locomotor that the transitional vertebra is cranially adjacent represents T7, is complete but pathological: The evolution in the hominin lineage. to the last rib-bearing vertebra in this specimen dorsal surface of the right lamina exhibits a rounded Recently, two key components of the hominin (9). This configuration yields contrasting num- triangular lytic lesion extending ventrally into vertebral column—its numerical composition and bers of lumbar vertebrae when different opera- the lamina (fig. S4). Poor preservation precludes degree of lumbar lordosis—have been at the tional definitions are employed: five nonribbed certainty of articulation between the three lower forefront of discussion (4, 6, 8–17). However, lumbar vertebrae and six vertebrae with sagittally thoracic vertebrae, although spinous and trans- adequately preserved vertebral columns that lend oriented upper articular facets (posttransitional verse process morphologies and orientations and themselves to reconstructions of regional verte- vertebrae). Sts 14 also seems to demonstrate this costal facet configurations suggest the associa- bral numbers are rare in the hominin fossil record, pattern (8, 15), although the last rib-bearing ver- tion and possible affiliation of two of these verte- particularly before 50 thousand years ago, and tebra in this specimen is somewhat anomalous brae as T9 and T10. are best represented by partial skeletons assigned in that it bears a lumbar-like structure on one side, There are seven rib-bearing vertebrae asso- giving it an intermediate (half-thoracic-, half-lumbar) ciated with MH2 (table S1), including a block of appearance (8, 10, 15, 21, 22). Dissociated verte- four consecutive upper–to–mid-thoracic vertebrae 1Center for the Study of Human Origins, Department of An- thropology, New York University, 25 Waverly Place, New York, bral bodies and neural arches at the thoraco-lumbar and a block of three articulating lower rib-bearing NY 10003, USA. 2New York Consortium in Evolutionary Pri- border in Stw 431 have led to contrasting recon- vertebrae. The upper block contains variably com- matology, New York, NY 10024, USA. 3Department of Evolu- structions of this specimen (8, 23), precluding a plete fragments of what likely represent either tionary Anthropology, Box 90383, Duke University, Durham, definitive assessment of the relationship between a T3-T6 or T4-T7 series. The lower block is of NC 27708, USA. 4Anthropological Institute and Museum, Uni- versity of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, last rib-bearing and transitional vertebrae. Clearly, particular interest because it preserves in artic- Switzerland. 5Evolutionary Studies Institute, University of the additional specimens that preserve this region ulation the penultimate and ultimate rib-bearing Witwatersrand, Private Bag 3, Wits 2050, South Africa. of the vertebral column are needed. The 1.977 vertebrae (Fig. 2). The antepenultimate rib-bearing *Corresponding author. E-mail: [email protected] Ma partial skeletons of Au. sediba from Malapa, vertebra is also preserved but is displaced slightly EMBARGOED UNTIL 2PM U.S. EASTERN TIME ON THE THURSDAY BEFORE THIS DATE: www.sciencemag.org SCIENCE VOL 340 12 APRIL 2013 1232996-1 Australopithecus sediba from articulation with the penultimate vertebra. the articular facet joints onto the laminae and nial body of S1 through the caudal body of S5; The penultimate vertebra bears a full costal facet habitual lordotic posture (fig. S7). Both the pe- five distinct sacral bodies are recognizable. The at the body-pedicle border and lacks an inferior nultimate and ultimate lumbar vertebra are wedged sacrum is incomplete medio-laterally, with the facet or demi-facet. The zygapophyses bear flat, dorsally (–1.5° and –10.9°, respectively) (Fig. 4, alae broken at its lateral aspects on both sides. dorsally (and slightly laterally) directed superior fig. S8, and table S2). The left ala and sacral foramina are missing en- articular facets and curved, laterally directed in- tirely, whereas the right side retains four large and ferior articular facets; that is, the penultimate rib- Sacrum complete sacral foramina and part of the auricu- bearing vertebra is the transitional vertebra. The The MH2 sacrum is cranio-caudally complete lar surface. The preserved right zygapophysis is ultimate thoracic vertebra bears a full costal facet along the anterior midline (except for the de- curved and postero-medially oriented at
Recommended publications
  • The Partial Skeleton Stw 431 from Sterkfontein – Is It Time to Rethink the Plio-Pleistocene Hominin Diversity in South Africa?
    doie-pub 10.4436/JASS.98020 ahead of print JASs Reports doi: 10.4436/jass.89003 Journal of Anthropological Sciences Vol. 98 (2020), pp. 73-88 The partial skeleton StW 431 from Sterkfontein – Is it time to rethink the Plio-Pleistocene hominin diversity in South Africa? Gabriele A. Macho1, Cinzia Fornai 2, Christine Tardieu3, Philip Hopley4, Martin Haeusler5 & Michel Toussaint6 1) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX, England; School of Archaeology, University of Oxford, Oxford OX1 3QY, England email: [email protected]; [email protected] 2) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria 3) Muséum National d’Histoire Naturelle, 55 rue Buffon, 75005 Paris, France 4) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX; Department of Earth Sciences, University College London, London, WC1E 6BT, England 5) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 6) retired palaeoanthropologist, Belgium email: [email protected] Summary - The discovery of the nearly complete Plio-Pleistocene skeleton StW 573 Australopithecus prometheus from Sterkfontein Member 2, South Africa, has intensified debates as to whether Sterkfontein Member 4 contains a hominin species other than Australopithecus africanus. For example, it has recently been suggested that the partial skeleton StW 431 should be removed from the A. africanus hypodigm and be placed into A. prometheus. Here we re-evaluate this latter proposition, using published information and new comparative data. Although both StW 573 and StW 431 are apparently comparable in their arboreal (i.e., climbing) and bipedal adaptations, they also show significant morphological differences.
    [Show full text]
  • Virtual Reconstruction of the Australopithecus Africanus Pelvis Sts 65 with Implications for Obstetrics and Locomotion
    Journal of Human Evolution 99 (2016) 10e24 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Virtual reconstruction of the Australopithecus africanus pelvis Sts 65 with implications for obstetrics and locomotion * Alexander G. Claxton a, , Ashley S. Hammond b, c, Julia Romano a, Ekaterina Oleinik d, Jeremy M. DeSilva a, e a Department of Anthropology, Boston University, Boston, MA 02215, USA b Center for Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA c Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA d Scientific Computing and Visualization, Boston University, Boston, MA 02215, USA e Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA article info abstract Article history: Characterizing australopith pelvic morphology has been difficult in part because of limited fossilized Received 24 February 2014 pelvic material. Here, we reassess the morphology of an under-studied adult right ilium and pubis (Sts Accepted 3 June 2016 65) from Member 4 of Sterkfontein, South Africa, and provide a hypothetical digital reconstruction of its overall pelvic morphology. The small size of the pelvis, presence of a preauricular sulcus, and shape of the sciatic notch allow us to agree with past interpretations that Sts 65 likely belonged to a female. The Keywords: morphology of the iliac pillar, while not as substantial as in Homo, is more robust than in A.L. 288-1 and Australopithecus africanus Sts 14. We created a reconstruction of the pelvis by digitally articulating the Sts 65 right ilium and a Sterkfontein Pelvis mirrored copy of the left ilium with the Sts 14 sacrum in Autodesk Maya.
    [Show full text]
  • Pelvic Joint Scaling Relationships and Sacral Shape in Hominoid Primates
    Pelvic joint scaling relationships and sacral shape in hominoid primates Ingrid Lundeen Winter 2015 Ingrid Lundeen Introduction Understanding relationships between joints allows inferences to be made about the relative importance of that joint in locomotion. For example, through evolutionary time, there is an overall increase in size of the hind limb joints relative to forelimb joints of bipedal hominins (Jungers, 1988, 1991). These greater hindlimb joint sizes are thought to reflect the higher loading they must bear as posture gradually shifts to rely more on hindlimbs in propulsion, as well as increases in body size through hominin evolution. The first sacral body cross-sectional area in hominins is considered to have expanded over time in response to the higher forces inferred to have been applied by frequent bipedalality and larger body size (Abitbol, 1987; Jungers, 1988; Sanders, 1995; Ruff, 2010). Similarly, the femoral head and acetabular height have increased in size in response to an increase in body during hominin evolution (Ruff, 1988; Jungers, 1991). However, the sacroiliac joint, the intermediate joint between these two force transmission sites, has been less frequently discussed in this evolutionary context (Sanders, 1995). The sacroiliac joint (SIJ) is a synovial, C-shaped joint where the lateral edge of the sacrum and medial edge of the ilium meet. The surface of the SIJ is lined with thick hyaline cartilage on the sacral surface and thin fibrocartilage on the iliac surface (Willard, 2007). The joint is surrounded on all sides by a capsule of strong ligaments bracing the bones against applied forces. At birth, the surface of the SIJ is 2 Ingrid Lundeen flat and smooth but changes after puberty to form slight bumps and grooves that characterize the adult SIJ (Bowen and Cassidy, 1981).
    [Show full text]
  • These Apes Were Made for Walking: the Pelves of Australopithecus Afarensis and Australopithecus Africanus Matthew Murdock
    Papers These apes were made for walking: the pelves of Australopithecus afarensis and Australopithecus africanus Matthew Murdock The debate surrounding hominid bipedality is sometimes fought more on the grounds of presuppositions than it is on factual data. Here I present the fossil evidence for bipedality in australopithecines. The pelvic anatomy of several australopithecines are examined and compared to extant apes and humans to determine their posture and locomotor ability. It can be shown that australopithecines did in fact walk upright, and a relationship to living chimpanzees can be established. Be informed Sts 14 here has been great debate over whether or not Of the many australopithecine fossils found at Sterkfon- Taustralopithecines walked upright or were quadrupeds, tein, South Africa, Sts 14 is the most complete postcranially i.e. knuckle walkers. Very few enter this debate fully (except for possibly the ‘Little foot’ skeleton, of which informed, having not studied the fossil evidence themselves little has been published so far). This specimen (Sts 14) and relying solely on the work of others. was discovered in August 1947 by Robert Broom and J.T. The problem is that if one cites a particular writer in Robinson. It represents an adult female member of the this debate, and that writer is in error, then that person genus/species Australopithecus africanus. unknowingly perpetuates a myth. This has occurred many Sts 14 consists of several ribs and vertebrae, a partial times in relation to the australopithecine pelvis (especially sacrum, two innominate bones and a right femur all belong- in the case of ‘Lucy’), and some of those myths will be ing to the same individual.
    [Show full text]
  • Sacrum Morphology Supports Taxonomic Heterogeneity of Australopithecus Africanus at Sterkfontein Member 4
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Sacrum morphology supports taxonomic heterogeneity of Australopithecus africanus at Sterkfontein Member 4 Fornai, Cinzia ; Krenn, Viktoria ; Mitteröcker, Philipp ; Webb, Nicole ; Haeusler, Martin Abstract: The presence of multiple <jats:italic>Australopithecus</jats:italic> species at Sterkfontein Member 4, South Africa (2.07 to 2.61 Ma) is highly contentious. Quantitative assessments of craniodental and postcranial variability remain inconclusive. Using geometric morphometrics, we compared the sacrum of the small-bodied, presumed female subadult <jats:italic>Australopithecus africanus</jats:italic> skeleton Sts 14 and the large, alleged male adult StW 431 against a geographically diverse sample of mod- ern humans, and two species for each of the genera <jats:italic>Gorilla</jats:italic>, <jats:italic>Pan</jats:italic> and <jats:italic>Pongo</jats:italic>. The probabilities of sampling morphologies as distinct as Sts 14 and StW 431 from a single species ranged from 1.3 to 2.5% for the human sample, and from 0.0 to 4.5% for the ape sample, depending on the analysis performed. Neither differences in developmental or geologic age nor sexual dimorphism could account for the differences between StW 431 and Sts 14 sacra. These findings support earlier claims of taxonomic heterogeneity at Sterkfontein Member4. DOI: https://doi.org/10.21203/rs.3.rs-72859/v1 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-191881 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.
    [Show full text]
  • Underestimating Intraspecific Variation: the Problem with Excluding Sts 19 from Australopithecus Africanus.” American Journal of Physical Anthropology 105, No
    Ahern, James C. “Underestimating Intraspecific Variation: The Problem With Excluding Sts 19 From Australopithecus Africanus.” American Journal of Physical Anthropology 105, no. 4 (April 1998): 461–80. https://doi.org/10.1002/(SICI)1096-8644(199804)105:4<461::AID- AJPA5>3.0.CO;2-R. Aiello, Leslie, and Christopher Dean. An Introduction to Human Evolutionary Anatomy. London: Academic Press, 1990. Ashton, Eric H, and Solly Zuckerman. “Some Cranial Indices of Plesianthropus and Other Primates.” American Journal of Physical Anthropology 9, no. 3 (1951): 283–96. Avery, Diana M. “The Plio-Pleistocene Vegetation and Climate of Sterkfontein and Swartkrans, South Africa, Based on Micromammals.” Journal of Human Evolution 41, no. 2 (2001): 113–32. Avery, Diana M, Dominic J Stratford, and Frank Sénégas. “Micromammals and the Formation of the Name Chamber at Sterkfontein, South Africa.” Geobios 43, no. 4 (2010): 379–87. Bamford, Marion K. “Environmental Changes and Hominid Evolution: What the Vegetation Tells Us.” In From Tools to Symbols. From Early Hominids to Modern Humans, edited by Francesco d’Errico and Lucinda Blackwell, 103–20. Johannesburg: Witwatersrand University Press, 2005. ———. “Pliocene Fossil Woods from an Early Hominid Cave Deposit, Sterkfontein, South Africa.” South African Journal of Science 95 (1999): 231–37. Beaudet, Amélie, José Braga, Frikkie De Beer, Burkhard Schillinger, Christine Steininger, Vladimira Vodopivec, and Clément Zanolli. “Neutron Microtomography‐based Virtual Extraction and Analysis of a Cercopithecoid Partial Cranium (STS 1039) Embedded in a Breccia Fragment from Sterkfontein Member 4 (South Africa).” American Journal of Physical Anthropology 159 (2015): 737–45. Benade, Maria Magdalena. “Thoracic and Lumbar Vertebrae of African Hominids Ancient and Recent: Morphological and Fuctional Aspects with Special Reference to Upright Posture.” Masters Thesis, University of the Witwatersrand, 2016.
    [Show full text]
  • Evolution of the Human Pelvis
    COMMENTARY THE ANATOMICAL RECORD 300:789–797 (2017) Evolution of the Human Pelvis 1 2 KAREN R. ROSENBERG * AND JEREMY M. DESILVA 1Department of Anthropology, University of Delaware, Newark, Delaware 2Department of Anthropology, Dartmouth College, Hanover, New Hampshire ABSTRACT No bone in the human postcranial skeleton differs more dramatically from its match in an ape skeleton than the pelvis. Humans have evolved a specialized pelvis, well-adapted for the rigors of bipedal locomotion. Pre- cisely how this happened has been the subject of great interest and con- tention in the paleoanthropological literature. In part, this is because of the fragility of the pelvis and its resulting rarity in the human fossil record. However, new discoveries from Miocene hominoids and Plio- Pleistocene hominins have reenergized debates about human pelvic evolu- tion and shed new light on the competing roles of bipedal locomotion and obstetrics in shaping pelvic anatomy. In this issue, 13 papers address the evolution of the human pelvis. Here, we summarize these new contribu- tions to our understanding of pelvic evolution, and share our own thoughts on the progress the field has made, and the questions that still remain. Anat Rec, 300:789–797, 2017. VC 2017 Wiley Periodicals, Inc. Key words: pelvic evolution; hominin; Australopithecus; bipedalism; obstetrics When Jeffrey Laitman contacted us about coediting a (2017, this issue) finds that humans, like other homi- special issue for the Anatomical Record on the evolution noids, have high sacral variability with a large percent- of the human pelvis, we were thrilled. The pelvis is hot age of individuals possessing the non-modal number of right now—thanks to new fossils (e.g., Morgan et al., sacral vertebrae.
    [Show full text]
  • Thoracic Vertebral Count and Thoracolumbar Transition in Australopithecus Afarensis
    Thoracic vertebral count and thoracolumbar transition in Australopithecus afarensis Carol V. Warda,1, Thierra K. Nalleyb, Fred Spoorc,d, Paul Tafforeaue, and Zeresenay Alemsegedf aIntegrative Anatomy Program, Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212; bDepartment of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854; cDepartment of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany; dDepartment of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; eEuropean Synchrotron Radiation Facility, CS-40220 38043 Grenoble Cedex 09, France; and fDepartment of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637 Edited by Bruce Latimer, Case Western Reserve University, Cleveland, OH, and accepted by Editorial Board Member C. O. Lovejoy March 26, 2017 (receivedfor review February 8, 2017) The evolution of the human pattern of axial segmentation has been and are generally oriented posteromedially, averaging about 30° to the focus of considerable discussion in paleoanthropology. Although 45° to a sagittal plane, like those of upper lumbar vertebrae (21– several complete lumbar vertebral columns are known for early 23). This vertebra, which exhibits the transition from thoracic-like hominins, to date, no complete cervical or thoracic series has been to lumbar-like zygapophyses, is referred to as the transitional or recovered. Several partial skeletons have revealed that the thoraco- diaphragmatic vertebra. The transition in facet orientation from lumbar transition in early hominins differed from that of most extant thoracic to lumbar patterns occurs gradually over two to three apes and humans.
    [Show full text]
  • Triangulating the Evolution of the Vertebral Column in the Last Common Ancestor: Thoracolumbar Transverse Process Homology in the Hominoidea
    TRIANGULATING THE EVOLUTION OF THE VERTEBRAL COLUMN IN THE LAST COMMON ANCESTOR: THORACOLUMBAR TRANSVERSE PROCESS HOMOLOGY IN THE HOMINOIDEA A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Burt A. Rosenman May 2008 Dissertation written by Burt A. Rosenman B.A., Wesleyan University, 1995 M.A., Kent State University, 1998 Ph.D., Kent State University, 2008 Approved by Dr. C. Owen Lovejoy Chair, Doctoral Dissertation Committee Dr. Richard S. Meindl Member, Doctoral Dissertation Committee Dr. Christopher J. Vinyard Member, Doctoral Dissertation Committee Dr. John R. D. Stalvey Member, Doctoral Dissertation Committee Accepted by Dr. Robert V. Dorman Director, School of Biomedical Sciences Dr. John R. D. Stalvey Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES…………………………………………………………….....v LIST OF TABLES………………………………………………………………..xi ACKNOWLEDGEMENTS .................................................................................. xii Chapter I. INTRODUCTION .............................................................................1 II. SERIAL HOMOLOGY OF THE CATARHINE LUMBAR TRANSVERSE PROCESS ...............................................................5 Introduction and Background ...........................................................5 Materials and Methods ....................................................................10 Results .............................................................................................11
    [Show full text]
  • Sacrum Morphology Supports Taxonomic Heterogeneity of Australopithecus Africanus at Sterkfontein Member 4
    Sacrum morphology supports taxonomic heterogeneity of Australopithecus africanus at Sterkfontein Member 4 Cinzia Fornai ( [email protected] ) University of Zurich https://orcid.org/0000-0002-0911-0164 Viktoria Krenn University of Zurich Philipp Mitteröcker University of Vienna Nicole Webb University of Zürich https://orcid.org/0000-0002-7579-703X Martin Haeusler University of Zürich https://orcid.org/0000-0002-9100-4183 Article Keywords: Australopithecus africanus, taxonomic heterogeneity, sacrum Posted Date: September 23rd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-72859/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract The presence of multiple Australopithecus species at Sterkfontein Member 4, South Africa (2.07 to 2.61 Ma) is highly contentious. Quantitative assessments of craniodental and postcranial variability remain inconclusive. Using geometric morphometrics, we compared the sacrum of the small-bodied, presumed female subadult Australopithecus africanus skeleton Sts 14 and the large, alleged male adult StW 431 against a geographically diverse sample of modern humans, and two species for each of the genera Gorilla, Pan and Pongo. The probabilities of sampling morphologies as distinct as Sts 14 and StW 431 from a single species ranged from 1.3 to 2.5% for the human sample, and from 0.0 to 4.5% for the ape sample, depending on the analysis performed. Neither differences in developmental or geologic age nor sexual dimorphism could account for the differences between StW 431 and Sts 14 sacra. These ndings support earlier claims of taxonomic heterogeneity at Sterkfontein Member 4.
    [Show full text]
  • Ences Are Reflected in Bony Morphology, They Should Anatomy
    8 5 Early Hominid Postcrania and Locomotor Adaptations Randall J. Thompkins The locomotor system of modern man is a complex ical characteristics of early hominid1 postcrania is in and unique adaptation, and the evolutionary origin considerable part a lack of agreement about approp- and history of bipedalism are of fundamental impor- riate techniques and relevant parameters. Much ofthe tance in understanding the pattern of human evolu- earlier literature was on a purely descriptive level, and tion. For this reason much attention has been focused later statistical treatment gave ambiguous results. This upon the postcranial skeleton of the early hominids. is partly because of different workers measuring the The fossil evidence ot Australopithecus fortunately in- same set of fossils and getting different results; also, cludes numerous postcranial remains, and these have access to the original specimens is not readily available been analyzed to determine locomotor capabilities. to all workers, who therefore must rely upon pub- Bipedal, erect posture inAustralopithecus has been dem- lished reports and casts. Many of the original speci- onstrated, but the full spectrum oflocomotion in these mens are not fully prepared for study and are in need hominids is not known. The use of extant models has of reconstruction. A general consensus on placed undue emphasis on the striding gait and the operationalism of method is needed with respect to: question of its presence in Australopithecus. (a) the basic parameters involved, (b) how to obtain the Methodological problems have hindered progress in necessary data from the fossils (what to measure on the reconstructive anatomy and biomechanical analysis. bone and how to measure it), (c) how to standardize for Since the locomotor system influences most activities effects of body size, and (d) the appropriate statistical of an organism, differences in locomotor capacities methodologies.
    [Show full text]
  • Sterkfontein at 75: Review of Palaeoenvironments, Fauna and Archaeology from the Hominin Site of Sterkfontein (Gauteng Province, South Africa)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Bournemouth University Research Online Sterkfontein at 75: review of palaeoenvironments, fauna and archaeology from the hominin site of Sterkfontein (Gauteng Province, South Africa) Sally Christine Reynolds1,2* & Job Munuhe Kibii1 1Institute for Human Evolution, University of the Witwatersrand, Johannesburg 2School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom Received 5 May 2011. Accepted 27 October 2011 Seventy-five years after Robert Broom’s discovery of the first adult Australopithecus in 1936, the Sterkfontein Caves (Gauteng Province, South Africa) remains one of the richest and most informative fossil hominin sites in the world. The deposits record hominin and African mammal evolution from roughly 2.6 million years (Ma) until the Upper Pleistocene. Earlier excavation efforts focused on the Member 4 australopithecine-bearing breccia and the Member 5 stone tool-bearing breccias of Oldowan and Early Acheulean age. Ronald J. Clarke’s 1997 programme of understanding the cave deposits as a whole led to the discovery of the near-complete StW 573 Australopithecus skeleton in the Member 2 deposit of the Silberberg Grotto, and the exploration of lesser known deposits such as the Jacovec Cavern, Name Chamber and the Lincoln Cave. Our aim is to produce a cogent synthesis of the environments, palaeodietary information, fauna and stone artefacts as recorded in the Sterkfontein sequence. We begin with an overview of the site and early accounts of the interpretations of the site-formation processes, after which we discuss each Member in turn and summarize the various types of evidence published so far.
    [Show full text]