The Astrophysical Journal, 893:96 (30pp), 2020 April 20 https://doi.org/10.3847/1538-4357/ab7eab © 2020. The American Astronomical Society. All rights reserved. CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies Danielle A. Berg1,2 , Richard W. Pogge1,2 , Evan D. Skillman3 , Kevin V. Croxall4 , John Moustakas5, Noah S. J. Rogers3, and Jiayi Sun1 1 Department of Astronomy, The Ohio State University, 140 W 18th Avenue, Columbus, OH 43210, USA;
[email protected] 2 Center for Cosmology & AstroParticle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA 3 Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA 4 Expeed Software, 100 W Old Wilson Bridge Road Suite 216, Worthington, OH 43085, USA 5 Department of Physics & Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA Received 2019 September 25; revised 2020 January 1; accepted 2020 January 14; published 2020 April 20 Abstract The chemical abundances of spiral galaxies, as probed by H II regions across their disks, are key to understanding the evolution of galaxies over a wide range of environments. We present Large Binocular Telescope/Multi-Object Double Spectrographs spectra of 52 H II regions in NGC 3184 as part of the CHemical Abundances Of Spirals (CHAOS) project. We explore the direct-method gas-phase abundance trends for the first four CHAOS galaxies, using temperature measurements from one or more auroral-line detections in 190 individual H II regions. We find that the dispersion in TTee- relationships is dependent on ionization, as characterized by FFll5007 3727, and so we recommend ionization-based temperature priorities for abundance calculations.