Article in press - uncorrected proof Biol. Chem., Vol. 392, pp. 357–369, April 2011 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BC.2011.034 Changing nucleotide specificity of the DEAD-box helicase Hera abrogates communication between the Q-motif and the P-loop Julian Strohmeier1, Ines Hertel2, Ulf Diederichsen1, complexes. As such they touch upon virtually all processes Markus G. Rudolph3 and Dagmar Klostermeier2,a,* of RNA metabolism including transcription, translation, 1 Institute for Organic and Biomolecular Chemistry, RNA editing, viral replication, and ribosome biogenesis University of Go¨ttingen, D-37077 Go¨ttingen, Germany (Cordin et al., 2006). DEAD-box proteins form the largest 2 Division of Biophysical Chemistry, Biozentrum, RNA helicase family (Hilbert et al., 2009). They are named University of Basel, CH-4056 Basel, Switzerland according to the characteristic sequence of their Walker B 3 F. Hoffmann-La Roche, CH-4070 Basel, Switzerland motif, which is implicated in ATP binding. DEAD-box pro- teins share a common modular architecture (Figure 1A): a * Corresponding author helicase core of two flexibly connected RecA-like domains e-mail:
[email protected] (RecA_N and RecA_C), which are sometimes flanked by additional domains that confer substrate binding specificity, Abstract mediate protein/protein interactions or may contribute to duplex separation (Tsu et al., 2001; Kossen et al., 2002; DEAD-box proteins disrupt or remodel RNA and protein/ Grohman et al., 2007; Linden et al., 2008; Mohr et al., 2008; RNA complexes at the expense of ATP. The catalytic core Del Campo et al., 2009). In addition, DEAD-box helicases is composed of two flexibly connected RecA-like domains.