Opengl Performer™ Programmer's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Opengl Performer™ Programmer's Guide OpenGL Performer™ Programmer’s Guide Version 3.1 007-1680-090 CONTRIBUTORS Written by George Eckel and Ken Jones Illustrated by Chrystie Danzer and Chris Wengelski Production by Karen Jacobson Engineering contributions by Angus Dorbie, Paolo Farinelli, Tom Flynn, Yair Kurzion, Radomir Mech, Alexandre Naaman, Marcin Romaszewicz, Allan Schaffer, and Jenny Zhao COPYRIGHT © 1994, 2000–2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, IRIS, IRIX, ImageVision Library, Indigo, Indy, InfiniteReality, O2, Octane, Onyx, Onyx2, and OpenGL are registered trademarks and CASEVision, Crimson, Elan Graphics, IRIS Geometry Pipeline, IRIS GL, IRIS Graphics Library, IRIS InSight, IRIS Inventor, Indigo Elan, Indigo2, InfinitePerformance, InfiniteReality2, InfiniteReality4, Onyx4, OpenGL Multipipe, OpenGL Performer, OpenGL Shader, Performance Co-Pilot, REACT, RealityEngine, RealityEngine2, Showcase,UltimateVision, and VPro are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide. AutoCAD is a registered trademark of Autodesk, Inc. CATIA is a registered trademark of DASSAULT SYSTEMES S.A. Designer’s Workbench is a trademark of Centric Software, Inc. Lightscape is a trademark of Autodesk, Inc. Linux is a registered trademark of Linus Torvalds. Maya is a registered trademark and Wavefront is a trademark of Alias Systems, a division of Silicon Graphics Limited in the United States and/or other countries worldwide. Motif is a registered trademark and X Window System and OSF/Motif are trademarks of The Open Group. Purify is a registered trademark of Rational Software Corporation. Red Hat is a registered trademark of Red Hat, Inc. RPC is a trademark of ArchVision. VTune is a trademark of Intel Corporation. WindView is a trademark of Wind River Systems. Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the United States and other countries. PATENT DISCLOSURE Many of the techniques and methods disclosed in this Programmer’s Guide are covered by patents held by Silicon Graphics including U.S. Patent Nos. 5,051,737; 5,369,739; 5,438,654; 5,394,170; 5,528,737; 5,528,738; 5,581,680; 5,471,572 and patent applications pending. We encourage you to use these features in your OpenGL Performer application on SGI systems. This functionality and OpenGL Performer are not available for re-implementation and distribution on other platforms without the explicit permission of Silicon Graphics. New Features in This Guide This revision of the guide documents OpenGL Performer 3.1, which has the following features: • GPU programming on systems like Silicon Graphics Onyx4 UltimateVision visualization systems • Curves and surfaces (higher-order primitives) - Parametric surfaces - Subdivision surfaces • pfGeoArrays for efficient use of vertex arrays on systems like Silicon Graphics Onyx4 UltimateVision visualization systems • New data sources - Maya exporter to OpenGL Performer - CATIA import to OpenGL Performer • Miscellaneous - Small object culling - Linux: RedHat 8 support - Linux: RedHat 9 support - IRIX: Remove O32 support - Linux: Remove gcc2 support 007-1680-090 iii Record of Revision Version Description 020 1994 Original publication. 060 November 2000 Updated for the 2.4 version of OpenGL Performer. 070 November 2001 Updated for the 2.5 version of OpenGL Performer. 080 December 2002 Updated for the 3.0 version of OpenGL Performer. 090 December 2003 Updated for the 3.1 version of OpenGL Performer. 007-1680-090 v Contents Figures . xxix Tables . xxxv Examples . xxxix About This Guide. xliii Why Use OpenGL Performer? . xliii What You Should Know Before Reading This Guide . xliv How to Use This Guide . xliv What This Guide Contains . xliv Sample Applications . xlvi Conventions . xlvii Internet and Hardcopy Reading for the OpenGL Performer Series . xlvii Reader Comments . xlviii 1. OpenGL Performer Programming Interface . 1 General Naming Conventions . 1 Prefixes. 1 Header Files . 2 Naming in C and C++ . 2 Abbreviations . 3 Macros, Tokens, and Enums. 3 Class API . 3 Object Creation . 4 Set Routines . 4 Get Routines . 4 Action Routines . 5 Enable and Disable of Modes . 5 Mode, Attribute, or Value . 6 007-1680-090 vii Contents Base Classes . 6 Inheritance Graph . 7 libpr and libpf Objects . 10 User Data . 10 pfDelete() and Reference Counting . 11 Copying Objects with pfCopy() . 15 Printing Objects with pfPrint() . 15 Determining Object Type . 17 2. Setting Up the Display Environment . 19 Using Pipes . 21 The Functional Stages of a Pipeline . 21 Creating and Configuring a pfPipe . 23 Example of pfPipe Use . 25 Using Channels . 26 Creating and Configuring a pfChannel . .26 Setting Up a Scene . 27 Setting Up a Viewport . 27 Setting Up a Viewing Frustum . 28 Setting Up a Viewpoint . 30 Example of Channel Use . 32 Controlling the Video Output. 34 Using Multiple Channels . 35 One Window per Pipe, Multiple Channels per Window . 36 Using Channel Groups. 40 Multiple Channels and Multiple Windows. 43 Importing OpenGL Multipipe SDK (MPK) Configuration Files . 44 3. Nodes and Node Types . 49 Nodes . 49 Attribute Inheritance . 49 pfNode . 51 pfGroup. 53 viii 007-1680-090 Contents Working with Nodes . 56 Instancing . 56 Bounding Volumes . 59 Node Types. 61 pfScene Nodes. 61 pfSCS Nodes . 62 pfDCS Nodes . 62 pfFCS Nodes . 63 pfDoubleSCS Nodes . 64 pfDoubleDCS Nodes . 64 pfDoubleFCS Nodes . 67 pfSwitch Nodes . 67 pfSequence Nodes . 67 pfLOD Nodes . 70 pfASD Nodes . 70 pfLayer Nodes . 70 pfGeode Nodes . 71 pfText Nodes . 73 pfBillboard Nodes . 75 pfPartition Nodes . 78 Sample Program . 80 4. Database Traversal . 85 Scene Graph Hierarchy . 87 Database Traversals . 87 State Inheritance . 87 Database Organization . 88 Application Traversal . 88 Cull Traversal . 90 Traversal Order . 90 Visibility Culling . 91 Organizing a Database for Efficient Culling . 94 Sorting the Scene . 97 Paths through the Scene Graph . .100 007-1680-090 ix Contents Draw Traversal . 100 Optimizing the Drawing of Sub-bins . 101 Bin Draw Callbacks . 101 Controlling and Customizing Traversals . 102 pfChannel Traversal Modes . 102 Cull Programs . 103 pfNode Draw Mask . 112 pfNode Cull and Draw Callbacks . 113 Process Callbacks . 116 Process Callbacks and Passthrough Data . 118 Intersection Traversal . 120 Testing Line Segment Intersections . 120 Intersection Requests: pfSegSets . 121 Intersection Return Data: pfHit Objects . 121 Intersection Masks. 122 Discriminator Callbacks . 124 Line Segment Clipping . 125 Traversing Special Nodes. 125 Picking . 126 Performance . 126 Intersection Methods for Segments . 127 5. Frame and Load Control . 129 Frame Rate Management . 129 Selecting the Frame Rate . 130 Achieving the Frame Rate . 130 Fixing the Frame Rate . 131 Level-of-Detail Management . 136 Level-of-Detail Models . 136 Level-of-Detail States . 140 Level-of-Detail Range Processing . 141 Level-of-Detail Transition Blending . 145 Run-Time User Control Over LOD Evaluation. 146.

  1008
Recommended publications
  • (12) United States Patent (10) Patent No.: US 7,133,041 B2 Kaufman Et Al
    US007133041B2 (12) United States Patent (10) Patent No.: US 7,133,041 B2 Kaufman et al. (45) Date of Patent: Nov. 7, 2006 (54) APPARATUS AND METHOD FOR VOLUME (56) References Cited PROCESSING AND RENDERING U.S. PATENT DOCUMENTS (75) Inventors: Arie E. Kaufman, Plainview, NY (US); 4,314,351 A 2f1982 Postel et al. Ingmar Bitter, Lake Grove, NY (US); 4,371,933 A 2, 1983 Bresenham et al. Frank Dachille, Amityville, NY (US); Kevin Kreeger, East Setauket, NY (Continued) (US); Baoquan Chen, Maple Grove, FOREIGN PATENT DOCUMENTS MN (US) EP O 216 156 A2 4f1987 (73) Assignee: The Research Foundation of State University of New York, Albany, NY (Continued) (US) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Knittel, G., TriangleCaster: extensions to 3D-texturing units for patent is extended or adjusted under 35 accelerated volume rendering, 1999, Proceedings of the ACM U.S.C. 154(b) by 742 days. SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pp. 25-34.* (21) Appl. No.: 10/204,685 (Continued) PCT Fed: Feb. 26, 2001 (22) Primary Examiner Ulka Chauhan (86) PCT No.: PCT/USO1 (O6345 Assistant Examiner Said Broome (74) Attorney, Agent, or Firm Hoffmann & Baron, LLP S 371 (c)(1), (2), (4) Date: Jan. 9, 2003 (57) ABSTRACT (87) PCT Pub. No.: WOO1A63561 An apparatus and method for real-time Volume processing and universal three-dimensional rendering. The apparatus PCT Pub. Date: Aug. 30, 2001 includes a plurality of three-dimensional (3D) memory units; at least one pixel bus for providing global horizontal (65) Prior Publication Data communication; a plurality of rendering pipelines; at least one geometry bus; and a control unit.
    [Show full text]
  • Avs Developer's Guide
    333333333 3333 AVS DEVELOPER'S 333333333333GUIDE Release 4 May, 1992 Advanced Visual Systems Inc.33333333 Part Number: 320-0013-02, Rev B NOTICE This document, and the software and other products described or referenced in it, are con®dential and proprietary products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC. WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The speci®cations and other information contained in this document for some purposes may not be complete, current or correct, and are subject to change without notice. The reader should consult AVS Inc.
    [Show full text]
  • Tessellation and Rendering of Trimmed NURBS Models in Scene Graph Systems
    Tessellation and rendering of trimmed NURBS models in scene graph systems Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultat¨ der Rheinischen Friedrich-Wilhelms-Universitat¨ Bonn vorgelegt von Dipl.-Inform. Akos´ Balazs´ aus Budapest/Ungarn Munchen,¨ April 2008 Universitat¨ Bonn, Institut fur¨ Informatik II Romerstraße¨ 164, 53117 Bonn Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat¨ der Rheinischen Friedrich-Wilhelms Universitat¨ Bonn. Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert. Dekan: Prof. Dr. Armin B. Cremers 1. Referent: Prof. Dr. Reinhard Klein 2. Referent: Prof. Dr. Andreas Weber Tag der Promotion: 25.09.2008 Erscheinungsjahr: 2008 I To the memory of my father To my parents, for making all of this possible. II III Acknowledgements “Standing on the shoulders of giants” - Isaac Newton once wrote, and this sentence describes how I feel about the support many people have given me during the writing of this thesis. Acknowledging their support here is beyond doubt not enough to express my sincere appreciation for their help, yet, I hope they know what their backing has meant to me. First and foremost, I must thank my advisor Prof. Dr. Reinhard Klein, whose inspi- ration, patience and guidance made writing this thesis possible. His occasional nudges were also necessary to keep me on the right track and for this I cannot be grateful enough. I would like to thank
    [Show full text]
  • Opengl Shading Languag 2Nd Edition (Orange Book)
    OpenGL® Shading Language, Second Edition By Randi J. Rost ............................................... Publisher: Addison Wesley Professional Pub Date: January 25, 2006 Print ISBN-10: 0-321-33489-2 Print ISBN-13: 978-0-321-33489-3 Pages: 800 Table of Contents | Index "As the 'Red Book' is known to be the gold standard for OpenGL, the 'Orange Book' is considered to be the gold standard for the OpenGL Shading Language. With Randi's extensive knowledge of OpenGL and GLSL, you can be assured you will be learning from a graphics industry veteran. Within the pages of the second edition you can find topics from beginning shader development to advanced topics such as the spherical harmonic lighting model and more." David Tommeraasen, CEO/Programmer, Plasma Software "This will be the definitive guide for OpenGL shaders; no other book goes into this detail. Rost has done an excellent job at setting the stage for shader development, what the purpose is, how to do it, and how it all fits together. The book includes great examples and details, and good additional coverage of 2.0 changes!" Jeffery Galinovsky, Director of Emerging Market Platform Development, Intel Corporation "The coverage in this new edition of the book is pitched just right to help many new shader- writers get started, but with enough deep information for the 'old hands.'" Marc Olano, Assistant Professor, University of Maryland "This is a really great book on GLSLwell written and organized, very accessible, and with good real-world examples and sample code. The topics flow naturally and easily, explanatory code fragments are inserted in very logical places to illustrate concepts, and all in all, this book makes an excellent tutorial as well as a reference." John Carey, Chief Technology Officer, C.O.R.E.
    [Show full text]
  • 3Dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli
    3dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli Interviewed by: Shayne Hodge Recorded: July 29, 2013 Mountain View, California CHM Reference number: X6887.2013 © 2013 Computer History Museum 3dfx Oral History Panel Shayne Hodge: OK. My name is Shayne Hodge. This is July 29, 2013 at the afternoon in the Computer History Museum. We have with us today the founders of 3dfx, a graphics company from the 1990s of considerable influence. From left to right on the camera-- I'll let you guys introduce yourselves. Gary Tarolli: I'm Gary Tarolli. Scott Sellers: I'm Scott Sellers. Ross Smith: Ross Smith. Gordon Campbell: And Gordon Campbell. Hodge: And so why don't each of you take about a minute or two and describe your lives roughly up to the point where you need to say 3dfx to continue describing them. Tarolli: All right. Where do you want us to start? Hodge: Birth. Tarolli: Birth. Oh, born in New York, grew up in rural New York. Had a pretty uneventful childhood, but excelled at math and science. So I went to school for math at RPI [Rensselaer Polytechnic Institute] in Troy, New York. And there is where I met my first computer, a good old IBM mainframe that we were just talking about before [this taping], with punch cards. So I wrote my first computer program there and sort of fell in love with computer. So I became a computer scientist really. So I took all their computer science courses, went on to Caltech for VLSI engineering, which is where I met some people that influenced my career life afterwards.
    [Show full text]
  • IRIS Performer™ Programmer's Guide
    IRIS Performer™ Programmer’s Guide Document Number 007-1680-030 CONTRIBUTORS Edited by Steven Hiatt Illustrated by Dany Galgani Production by Derrald Vogt Engineering contributions by Sharon Clay, Brad Grantham, Don Hatch, Jim Helman, Michael Jones, Martin McDonald, John Rohlf, Allan Schaffer, Chris Tanner, and Jenny Zhao © Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/ or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Indigo, IRIS, OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks and Crimson, Elan Graphics, Geometry Pipeline, ImageVision Library, Indigo Elan, Indigo2, Indy, IRIS GL, IRIS Graphics Library, IRIS Indigo, IRIS InSight, IRIS Inventor, IRIS Performer, IRIX, Onyx, Personal IRIS, Power Series, RealityEngine, RealityEngine2, and Showcase are trademarks of Silicon Graphics, Inc. AutoCAD is a registered trademark of Autodesk, Inc. X Window System is a trademark of Massachusetts Institute of Technology.
    [Show full text]
  • PACKET 22 BOOKSTORE, TEXTBOOK CHAPTER Reading Graphics
    A.11 GRAPHICS CARDS, Historical Perspective (edited by J Wunderlich PhD in 2020) Graphics Pipeline Evolution 3D graphics pipeline hardware evolved from the large expensive systems of the early 1980s to small workstations and then to PC accelerators in the 1990s, to $X,000 graphics cards of the 2020’s During this period, three major transitions occurred: 1. Performance-leading graphics subsystems PRICE changed from $50,000 in 1980’s down to $200 in 1990’s, then up to $X,0000 in 2020’s. 2. PERFORMANCE increased from 50 million PIXELS PER SECOND in 1980’s to 1 billion pixels per second in 1990’’s and from 100,000 VERTICES PER SECOND to 10 million vertices per second in the 1990’s. In the 2020’s performance is measured more in FRAMES PER SECOND (FPS) 3. Hardware RENDERING evolved from WIREFRAME to FILLED POLYGONS, to FULL- SCENE TEXTURE MAPPING Fixed-Function Graphics Pipelines Throughout the early evolution, graphics hardware was configurable, but not programmable by the application developer. With each generation, incremental improvements were offered. But developers were growing more sophisticated and asking for more new features than could be reasonably offered as built-in fixed functions. The NVIDIA GeForce 3, described by Lindholm, et al. [2001], took the first step toward true general shader programmability. It exposed to the application developer what had been the private internal instruction set of the floating-point vertex engine. This coincided with the release of Microsoft’s DirectX 8 and OpenGL’s vertex shader extensions. Later GPUs, at the time of DirectX 9, extended general programmability and floating point capability to the pixel fragment stage, and made texture available at the vertex stage.
    [Show full text]
  • Rapid Prototyping for Virtual Environments
    Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Dissertations Electrical & Computer Engineering Winter 2008 Rapid Prototyping for Virtual Environments Emre Baydogan Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons Recommended Citation Baydogan, Emre. "Rapid Prototyping for Virtual Environments" (2008). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/pb9g-mv96 https://digitalcommons.odu.edu/ece_etds/45 This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. RAPID PROTOTYPING FOR VIRTUAL ENVIRONMENTS by Emre Baydogan B.S. June 1999, Marmara University, Turkey M.S. June 2001, Marmara University, Turkey A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY ELECTRICAL AND COMPUTER ENGINEERING OLD DOMINION UNIVERSITY December 2008 Lee A. Belfore, H (Director) K. Vijayan Asari Jesmca R. Crouch ABSTRACT RAPID PROTOTYPING FOR VIRTUAL ENVIRONMENTS Emre Baydogan Old Dominion University, 2008 Director: Dr. Lee A. Belfore, II Development of Virtual Environment (VE) applications is challenging where appli­ cation developers are required to have expertise in the target VE technologies along with the problem domain expertise. New VE technologies impose a significant learn­ ing curve to even the most experienced VE developer. The proposed solution relies on synthesis to automate the migration of a VE application to a new unfamiliar VE platform/technology.
    [Show full text]
  • 3D Computer Graphics Compiled By: H
    animation Charge-coupled device Charts on SO(3) chemistry chirality chromatic aberration chrominance Cinema 4D cinematography CinePaint Circle circumference ClanLib Class of the Titans clean room design Clifford algebra Clip Mapping Clipping (computer graphics) Clipping_(computer_graphics) Cocoa (API) CODE V collinear collision detection color color buffer comic book Comm. ACM Command & Conquer: Tiberian series Commutative operation Compact disc Comparison of Direct3D and OpenGL compiler Compiz complement (set theory) complex analysis complex number complex polygon Component Object Model composite pattern compositing Compression artifacts computationReverse computational Catmull-Clark fluid dynamics computational geometry subdivision Computational_geometry computed surface axial tomography Cel-shaded Computed tomography computer animation Computer Aided Design computerCg andprogramming video games Computer animation computer cluster computer display computer file computer game computer games computer generated image computer graphics Computer hardware Computer History Museum Computer keyboard Computer mouse computer program Computer programming computer science computer software computer storage Computer-aided design Computer-aided design#Capabilities computer-aided manufacturing computer-generated imagery concave cone (solid)language Cone tracing Conjugacy_class#Conjugacy_as_group_action Clipmap COLLADA consortium constraints Comparison Constructive solid geometry of continuous Direct3D function contrast ratioand conversion OpenGL between
    [Show full text]
  • Overview of Recent Supercomputers
    Overview of recent supercomputers Aad J. van der Steen high-performance Computing Group Utrecht University P.O. Box 80195 3508 TD Utrecht The Netherlands [email protected] www.phys.uu.nl/~steen NCF/Utrecht University July 2007 Abstract In this report we give an overview of high-performance computers which are currently available or will become available within a short time frame from vendors; no attempt is made to list all machines that are still in the development phase. The machines are described according to their macro-architectural class. Shared and distributed-memory SIMD an MIMD machines are discerned. The information about each machine is kept as compact as possible. Moreover, no attempt is made to quote price information as this is often even more elusive than the performance of a system. In addition, some general information about high-performance computer architectures and the various processors and communication networks employed in these systems is given in order to better appreciate the systems information given in this report. This document reflects the technical state of the supercomputer arena as accurately as possible. However, the author nor NCF take any responsibility for errors or mistakes in this document. We encourage anyone who has comments or remarks on the contents to inform us, so we can improve this report. NCF, the National Computing Facilities Foundation, supports and furthers the advancement of tech- nical and scientific research with and into advanced computing facilities and prepares for the Netherlands national supercomputing policy. Advanced computing facilities are multi-processor vectorcomputers, mas- sively parallel computing systems of various architectures and concepts and advanced networking facilities.
    [Show full text]
  • AVS on UNIX WORKSTATIONS INSTALLATION/ RELEASE NOTES
    _________ ____ AVS on UNIX WORKSTATIONS INSTALLATION/ RELEASE NOTES ____________ Release 5.5 Final (50.86 / 50.88) November, 1999 Advanced Visual Systems Inc.________ Part Number: 330-0120-02 Rev L NOTICE This document, and the software and other products described or referenced in it, are con®dential and proprietary products of Advanced Visual Systems Inc. or its licensors. They are provided under, and are subject to, the terms and conditions of a written license agreement between Advanced Visual Systems and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless oth- erwise permitted by that agreement. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUI- TABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY ADVANCED VISUAL SYSTEMS FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ADVANCED VISUAL SYSTEMS WHATSOEVER. ADVANCED VISUAL SYSTEMS MAKES NO WAR- RANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR- POSE. ADVANCED VISUAL SYSTEMS SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMI- TATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF ADVANCED VISUAL SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The speci®cations and other information contained in this document for some purposes may not be com- plete, current or correct, and are subject to change without notice.
    [Show full text]
  • Visual Computing Systems CMU 15-769, Fall 2016 Lecture
    Lecture 20: Scheduling the Graphics Pipeline on a GPU Visual Computing Systems CMU 15-769, Fall 2016 Today ▪ Real-time 3D graphics workload metrics ▪ Scheduling the graphics pipeline on a modern GPU CMU 15-769, Fall 2016 Quick aside: tessellation CMU 15-769, Fall 2016 Triangle size (data from 2010) 30 20 10 Percentage of total triangles of total Percentage 0 [0-1] [1-5] [5-10] [10-20] [20-30] [30-40] [40-50] [50-60] [60-70] [70-80] [80-90] [90-100] [> 100] Triangle area (pixels) [source: NVIDIA] CMU 15-769, Fall 2016 Low geometric detail Credit: Pro Evolution Soccer 2010 CMU (Konami) 15-769, Fall 2016 Surface tessellation Approximating Subdivision Surfaces with Gregory Patches Procedurally generate Approximatingfne triangle mesh from coarse Subdivision mesh representation Surfaces with Gregory Patches for Hardwarefor Hardware Tessellation Tessellation CharlesCharles Loop Loop Scott SchaeferScott Schaefer TianyunTianyun Ni NiIgnacio Casta˜noIgnacio Casta˜no MicrosoftMicrosoft Research Research TexasTexas A&M A&M University University NVIDIANVIDIA NVIDIA NVIDIA Coarse geometry Post-Tessellation (fne) geometry [image credit:Figure Loop et al. 1: 2009]The first image (far left) illustrates an input control mesh; CMUregular 15-769, Fall 201 (gold)6 faces do not have an incident extraordinary vertex, irregularFigure quads 1: The (purple) first haveimage at (far least left) one extraordinary illustrates an ve inputrtex, and control triangular mesh; (green)regular faces (gold) are allowed. faces do The not second have an and incident third images extraordinary show vertex, theirregular parametric quads patches (purple) we generate. have at The least final one image extraordinary is of the same vertex, surface and with triangular a displacement (green) map faces applied.
    [Show full text]