Multiple Viewpoint Rendering for Three-Dimensional Displays Michael W. Halle

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Viewpoint Rendering for Three-Dimensional Displays Michael W. Halle Multiple Viewpoint Rendering for Three-Dimensional Displays Michael W. Halle S.B., Massachusetts Institute of Technology (1988) S.M.V.S., Massachusetts Institute of Technology (1991) Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology June 1997 c Massachusetts Institute of Technology 1997. All rights reserved. Author Program in Media Arts and Sciences, School of Architecture and Planning March 14, 1997 Certified by Stephen A. Benton Professor of Media Arts and Sciences Thesis Supervisor Accepted by Stephen A. Benton Chairman, Departmental Committee on Graduate Students Multiple Viewpoint Rendering for Three-Dimensional Displays by Michael W. Halle Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning on March 14, 1997, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract This thesis describes a computer graphics method for efficiently rendering images of static ge- ometric scene databases from multiple viewpoints. Three-dimensional displays such as parallax panogramagrams, lenticular panoramagrams, and holographic stereograms require samples of im- age data captured from a large number of regularly spaced camera images in order to produce a three-dimensional image. Computer graphics algorithms that render these images sequentially are inefficient because they do not take advantage of the perspective coherence of the scene. A new algorithm, multiple viewpoint rendering (MVR), is described which produces an equivalent set of images one to two orders of magnitude faster than previous approaches by considering the image set as a single spatio-perspective volume. MVR uses a computer graphics camera geometry based on a common model of parallax-based three-dimensional displays. MVR can be implemented us- ing variations of traditional computer graphics algorithms and accelerated using standard computer graphics hardware systems. Details of the algorithm design and implementation are given, includ- ing geometric transformation, shading, texture mapping and reflection mapping. Performance of a hardware-based prototype implementation and comparison of MVR-rendered and conventionally rendered images are included. Applications of MVR to holographic video and other display sys- tems, to three-dimensional image compression, and to other camera geometries are also given. Thesis Supervisor: Stephen A. Benton Title: Professor of Media Arts and Sciences This work has been sponsored in part by the Honda R & D Company, NEC, IBM, and the Design Staff of the General Motors Corporation. Doctoral dissertation committee Thesis Advisor Stephen A. Benton Professor of Media Arts and Sciences Massachusetts Institute of Technology Thesis Reader V. Michael Bove Associate Professor of Media Technology Massachusetts Institute of Technology Thesis Reader Seth Teller Assistant Professor of Computer Science and Engineering Massachusetts Institute of Technology Acknowledgements I begin by thanking my thesis committee: V. Michael Bove of the Media Laboratory, Seth Teller of the Laboratory for Computer Science, and my professor Stephen Benton of the Media Lab. This process has not been a conventional one, and they have shown helpfulness and flexibility throughout it. As my professor, Dr. Benton has been most generous in the support of this work, and my understanding of three-dimensional displays would never have developed without his mentorship over the years. I owe the Spatial Imaging Group at MIT my heartfelt thanks for their support of this research and of me. In particular, Wendy Plesniak, Ravikanth Pappu, and John Underkoffler helped me through my the trying writing and presentation time and looked over drafts of this manuscript. In addition, Wendy designed the beautiful teacup used as a test object in this thesis. All the members of the Spatial Imaging Group and the entire MIT Media Laboratory, both past and present, have been my colleagues and friends since I came to the lab in 1985. I also offer my appreciation for the patience and financial and personal support extended by my group at the Brigham and Women’s Hospital. Ferenc Jolesz and Ron Kikinis have tolerated the lengthy absence this document has caused and have extended only kindness, patience and concern in exchange. The entire gang at the Surgical Planning Lab has just been great to me. Funding from Robert Sproull from Sun Microsystems supported me at the hospital during part of the time this document was written; I am proud to be part of another of his contributions to the field of computer graphics. Finally, I would not be writing this document today if it were not for the education and encour- agement given to me by my parents, the sense of discovery and pride they instilled in me, and the sacrifices they made so that I could choose to have what they could not. They taught me to find wonder in the little things in the world; I could not imagine what my life would be like without that lesson. 4 Contents 1 Introduction 8 1.1Images,models,andcomputation.......................... 9 1.2 Beyond single viewpoint rendering .......................... 11 This work: multiple viewpoint rendering ....................... 12 Chapterpreview.................................... 12 2 The plenoptic function and three-dimensional information 14 2.1 Introduction . ..................................... 14 2.1.1 Asingleobservation............................. 14 2.1.2 Imaging.................................... 15 2.1.3 Animation.................................. 16 2.1.4 Parallax.................................... 17 2.2Depthrepresentations................................. 18 2.2.1 Directional emitters .............................. 21 2.2.2 Occlusion and hidden surfaces ........................ 22 2.2.3 Transparency................................. 22 2.2.4 Fullparallaxandhorizontalparallaxonlymodels.............. 24 2.3Camerasandtheplenopticfunction......................... 25 2.4Parallax-baseddepthsystems............................. 27 2.4.1 Parallaxisthree-dimensionalinformation.................. 28 2.4.2 Displayissues................................ 30 2.5 The photorealistic imaging pipeline ......................... 31 3 Spatial display technology 34 3.1Spatialdisplays.................................... 34 3.1.1 Terminologyofspatialdisplays....................... 34 3.1.2 Photographs:minimalspatialdisplays.................... 35 3.1.3 Stereoscopes................................. 35 3.2 Multiple viewpoint display technologies ....................... 36 3.2.1 Parallaxbarrierdisplays........................... 37 3.2.2 Lenticularsheetdisplays........................... 38 3.2.3 Integral photography . .......................... 39 3.2.4 Holography.................................. 40 3.2.5 Holographicstereograms........................... 41 3.3Acommonmodelforparallaxdisplays........................ 41 3.4Implicationsforimagegeneration.......................... 45 5 4 Limitations of conventional rendering 48 4.1 Bottlenecks in rendering ............................... 48 4.2Improvinggraphicsperformance........................... 49 4.3Testingexistinggraphicssystems........................... 51 4.4Usingperspectivecoherence............................. 53 5 Multiple viewpoint rendering 55 5.1The“regularshearing”geometry........................... 55 5.2Thespatio-perspectivevolume............................ 57 5.2.1 Epipolarplaneimages............................ 58 5.2.2 Polygons and polygon tracks ......................... 60 5.2.3 Polygon slices and PSTs . .......................... 60 5.3 Multiple viewpoint rendering . .......................... 62 5.3.1 BasicgraphicalpropertiesoftheEPI..................... 63 5.4TheMVRalgorithm................................. 65 5.5Overview....................................... 65 5.6SpecificstagesofMVR................................ 68 5.6.1 Geometricscanconversion.......................... 68 5.6.2 Viewindependentshading.......................... 70 5.6.3 Back face culling and two-sided lighting ................... 70 5.6.4 Hiddensurfaceelimination.......................... 73 5.6.5 Anti-aliasing................................. 74 5.6.6 Clipping................................... 74 5.6.7 Texturemapping............................... 75 5.6.8 Viewdependentshading........................... 79 5.6.9 Combiningdifferentshadingalgorithms................... 86 5.6.10 Image data reformatting . .......................... 87 5.6.11Fullparallaxrendering............................ 88 6 Implementation details 90 6.1Basicstructure.................................... 90 6.2BeforetheMVRpipeline............................... 91 6.3 Scene input . ..................................... 91 6.4MVRper-sequencecalculations........................... 92 6.4.1 Per-vertexcalculations............................ 92 6.4.2 Polygon slicing ................................ 94 6.5Device-dependentrendering............................. 96 6.5.1 Conversiontorenderingprimitives...................... 97 6.5.2 Texturemapping............................... 102 6.5.3 Reflectionmapping.............................. 102 6.5.4 Hiddensurfaceremoval........................... 103 6.5.5 Multiple rendering passes .......................... 103 6.6Output......................................... 104 6.7Fullparallaxrenderingissues............................. 105 7 Performance Tests 106 7.1Testparameters...................................
Recommended publications
  • Discover Materials Infographic Challenge
    Website: www.discovermaterials.uk Twitter: @DiscovMaterials Instagram: @discovermaterials Email: [email protected] Discover Materials Infographic Challenge The Challenge: We would like you to produce an infographic that highlights and explores a material that has been important to you during the pandemic. We will be awarding prizes for the top two infographics based upon the following criteria: visual appeal content (facts/depth/breadth) range of sources Entries must be submitted to: [email protected] by 9pm (BST) on Sunday 2nd August and submitted as a picture file. Please include your name, as the author of the infographic, within the image. In submitting the infographic to be judged, you are agreeing that the graphic can be shared by Discover Materials more widely. Introduction: An infographic provides us with a short, interesting and timely manner to communicate a complex idea with the wider public. An important aspect of using an infographic is that our target is to make something with high shareability and this can be achieved by telling a good story with a design that conveys data in a manner that is easily interpreted, as highlighted in Figure 1. In this challenge we want you to consider a material that has been important in the pandemic. There are a huge range of materials that have been vitally important to us all during these chaotic and challenging times. We could imagine materials that have been important in personal protection & healthcare, materials that Figure 1: The overlapping aspects of a good infographic enable our new forms of engagement and https://www.flickr.com/photos/dashburst/8448339735 communication in the digital world, or the ‘day- to-day’ materials that we rely upon and without which we would find modern life incredibly difficult.
    [Show full text]
  • Visual Literacy of Infographic Review in Dkv Students’ Works in Bina Nusantara University
    VISUAL LITERACY OF INFOGRAPHIC REVIEW IN DKV STUDENTS’ WORKS IN BINA NUSANTARA UNIVERSITY Suprayitno School of Design New Media Department, Bina Nusantara University Jl. K. H. Syahdan, No. 9, Palmerah, Jakarta 11480, Indonesia [email protected] ABSTRACT This research aimed to provide theoretical benefits for students, practitioners of infographics as the enrichment, especially for Desain Komunikasi Visual (DKV - Visual Communication Design) courses and solve the occurring visual problems. Theories related to infographic problems were used to analyze the examples of the student's infographic work. Moreover, the qualitative method was used for data collection in the form of literature study, observation, and documentation. The results of this research show that in general the students are less precise in the selection and usage of visual literacy elements, and the hierarchy is not good. Thus, it reduces the clarity and effectiveness of the infographic function. This is the urgency of this study about how to formulate a pattern or formula in making a work that is not only good and beautiful but also is smart, creative, and informative. Keywords: visual literacy, infographic elements, Visual Communication Design, DKV INTRODUCTION Desain Komunikasi Visual (DKV - Visual Communication Design) is a term portrayal of the process of media in communicating an idea or delivery of information that can be read or seen. DKV is related to the use of signs, images, symbols, typography, illustrations, and color. Those are all related to the sense of sight. In here, the process of communication can be through the exploration of ideas with the addition of images in the form of photos, diagrams, illustrations, and colors.
    [Show full text]
  • Avs Developer's Guide
    333333333 3333 AVS DEVELOPER'S 333333333333GUIDE Release 4 May, 1992 Advanced Visual Systems Inc.33333333 Part Number: 320-0013-02, Rev B NOTICE This document, and the software and other products described or referenced in it, are con®dential and proprietary products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC. WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The speci®cations and other information contained in this document for some purposes may not be complete, current or correct, and are subject to change without notice. The reader should consult AVS Inc.
    [Show full text]
  • Maps and Diagrams. Their Compilation and Construction
    ~r HJ.Mo Mouse andHR Wilkinson MAPS AND DIAGRAMS 8 his third edition does not form a ramatic departure from the treatment of artographic methods which has made it a standard text for 1 years, but it has developed those aspects of the subject (computer-graphics, quantification gen- erally) which are likely to progress in the uture. While earlier editions were primarily concerned with university cartography ‘ourses and with the production of the- matic maps to illustrate theses, articles and books, this new edition takes into account the increasing number of professional cartographer-geographers employed in Government departments, planning de- partments and in the offices of architects pnd civil engineers. The authors seek to ive students some idea of the novel and xciting developments in tools, materials, echniques and methods. The growth, mounting to an explosion, in data of all inds emphasises the increasing need for discerning use of statistical techniques, nevitably, the dependence on the com- uter for ordering and sifting data must row, as must the degree of sophistication n the techniques employed. New maps nd diagrams have been supplied where ecessary. HIRD EDITION PRICE NET £3-50 :70s IN U K 0 N LY MAPS AND DIAGRAMS THEIR COMPILATION AND CONSTRUCTION MAPS AND DIAGRAMS THEIR COMPILATION AND CONSTRUCTION F. J. MONKHOUSE Formerly Professor of Geography in the University of Southampton and H. R. WILKINSON Professor of Geography in the University of Hull METHUEN & CO LTD II NEW FETTER LANE LONDON EC4 ; © ig6g and igyi F.J. Monkhouse and H. R. Wilkinson First published goth October igj2 Reprinted 4 times Second edition, revised and enlarged, ig6g Reprinted 3 times Third edition, revised and enlarged, igyi SBN 416 07440 5 Second edition first published as a University Paperback, ig6g Reprinted 5 times Third edition, igyi SBN 416 07450 2 Printed in Great Britain by Richard Clay ( The Chaucer Press), Ltd Bungay, Suffolk This title is available in both hard and paperback editions.
    [Show full text]
  • Graph Visualization and Navigation in Information Visualization 1
    HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 1 Graph Visualization and Navigation in Information Visualization: a Survey Ivan Herman, Member, IEEE CS Society, Guy Melançon, and M. Scott Marshall Abstract—This is a survey on graph visualization and navigation techniques, as used in information visualization. Graphs appear in numerous applications such as web browsing, state–transition diagrams, and data structures. The ability to visualize and to navigate in these potentially large, abstract graphs is often a crucial part of an application. Information visualization has specific requirements, which means that this survey approaches the results of traditional graph drawing from a different perspective. Index Terms—Information visualization, graph visualization, graph drawing, navigation, focus+context, fish–eye, clustering. involved in graph visualization: “Where am I?” “Where is the 1 Introduction file that I'm looking for?” Other familiar types of graphs lthough the visualization of graphs is the subject of this include the hierarchy illustrated in an organisational chart and Asurvey, it is not about graph drawing in general. taxonomies that portray the relations between species. Web Excellent bibliographic surveys[4],[34], books[5], or even site maps are another application of graphs as well as on–line tutorials[26] exist for graph drawing. Instead, the browsing history. In biology and chemistry, graphs are handling of graphs is considered with respect to information applied to evolutionary trees, phylogenetic trees, molecular visualization. maps, genetic maps, biochemical pathways, and protein Information visualization has become a large field and functions. Other areas of application include object–oriented “sub–fields” are beginning to emerge (see for example Card systems (class browsers), data structures (compiler data et al.[16] for a recent collection of papers from the last structures in particular), real–time systems (state–transition decade).
    [Show full text]
  • Toward Unified Models in User-Centered and Object-Oriented
    CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design William Hudson Abstract Many members of the HCI community view user-centered design, with its focus on users and their tasks, as essential to the construction of usable user inter- faces. However, UCD and object-oriented design continue to develop along separate paths, with very little common ground and substantially different activ- ities and notations. The Unified Modeling Language (UML) has become the de facto language of object-oriented development, and an informal method has evolved around it. While parts of the UML notation have been embraced in user-centered methods, such as those in this volume, there has been no con- certed effort to adapt user-centered design techniques to UML and vice versa. This chapter explores many of the issues involved in bringing user-centered design and UML closer together. It presents a survey of user-centered tech- niques employed by usability professionals, provides an overview of a number of commercially based user-centered methods, and discusses the application of UML notation to user-centered design. Also, since the informal UML method is use case driven and many user-centered design methods rely on scenarios, a unifying approach to use cases and scenarios is included. 9.1 Introduction 9.1.1 Why Bring User-Centered Design to UML? A recent survey of software methods and techniques [Wieringa 1998] found that at least 19 object-oriented methods had been published in book form since 1988, and many more had been published in conference and journal papers. This situation led to a great 313 314 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design deal of division in the object-oriented community and caused numerous problems for anyone considering a move toward object technology.
    [Show full text]
  • Infovis and Statistical Graphics: Different Goals, Different Looks1
    Infovis and Statistical Graphics: Different Goals, Different Looks1 Andrew Gelman2 and Antony Unwin3 20 Jan 2012 Abstract. The importance of graphical displays in statistical practice has been recognized sporadically in the statistical literature over the past century, with wider awareness following Tukey’s Exploratory Data Analysis (1977) and Tufte’s books in the succeeding decades. But statistical graphics still occupies an awkward in-between position: Within statistics, exploratory and graphical methods represent a minor subfield and are not well- integrated with larger themes of modeling and inference. Outside of statistics, infographics (also called information visualization or Infovis) is huge, but their purveyors and enthusiasts appear largely to be uninterested in statistical principles. We present here a set of goals for graphical displays discussed primarily from the statistical point of view and discuss some inherent contradictions in these goals that may be impeding communication between the fields of statistics and Infovis. One of our constructive suggestions, to Infovis practitioners and statisticians alike, is to try not to cram into a single graph what can be better displayed in two or more. We recognize that we offer only one perspective and intend this article to be a starting point for a wide-ranging discussion among graphics designers, statisticians, and users of statistical methods. The purpose of this article is not to criticize but to explore the different goals that lead researchers in different fields to value different aspects of data visualization. Recent decades have seen huge progress in statistical modeling and computing, with statisticians in friendly competition with researchers in applied fields such as psychometrics, econometrics, and more recently machine learning and “data science.” But the field of statistical graphics has suffered relative neglect.
    [Show full text]
  • What's Your Theory of Effective Schematic Map Design?
    What’s Your Theory of Effective Schematic Map Design? Maxwell. J. Roberts Department of Psychology University of Essex Colchester, UK [email protected] Abstract—Amongst designers, researchers, and the general general public accept or reject radical new creations. public, there exists a diverse array of opinion about good practice Furthermore, the lay-theories held by designers will affect the in schematic map design, and a lack of awareness that such products that they create and the recommendations that they opinions are not necessarily universally held nor supported by make. Similarly, the lay-theories of transport managers will evidence. This paper gives an overview of the range of opinion determine design specifications and the acceptance or rejection that can be encountered, the consequences that this has for of end-products. With so many different theories in circulation, published designs, and a framework for organising the various conflicts will be inevitable, hence the polarised response to the views. controversial Madrid Metro map of 2007, which generated a huge adverse reaction amongst residents: presumably, the Keywords—schematic mapping; lay-theories, expectations and transport authority believed that this was a sound design. prejudices; effective design; cognition; intelligence. Likewise, the adverse public response to the removal of the I. LAY-THEORIES OF DESIGN River Thames from the London Underground map in 2009. The lay-theory held by officials, presumably, was that the river Whenever I create a controversial new schematic map and was irrelevant to usability. The public disagreed, and the river publish it on the internet, the diversity of opinion that it evokes returned a few months later.
    [Show full text]
  • IRIS Performer™ Programmer's Guide
    IRIS Performer™ Programmer’s Guide Document Number 007-1680-030 CONTRIBUTORS Edited by Steven Hiatt Illustrated by Dany Galgani Production by Derrald Vogt Engineering contributions by Sharon Clay, Brad Grantham, Don Hatch, Jim Helman, Michael Jones, Martin McDonald, John Rohlf, Allan Schaffer, Chris Tanner, and Jenny Zhao © Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/ or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Indigo, IRIS, OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks and Crimson, Elan Graphics, Geometry Pipeline, ImageVision Library, Indigo Elan, Indigo2, Indy, IRIS GL, IRIS Graphics Library, IRIS Indigo, IRIS InSight, IRIS Inventor, IRIS Performer, IRIX, Onyx, Personal IRIS, Power Series, RealityEngine, RealityEngine2, and Showcase are trademarks of Silicon Graphics, Inc. AutoCAD is a registered trademark of Autodesk, Inc. X Window System is a trademark of Massachusetts Institute of Technology.
    [Show full text]
  • Module 4 Electronic Diagrams and Schematics
    ENGINEERING SYMBOLOGY, PRINTS, AND DRAWINGS Module 4 Electronic Diagrams and Schematics Engineering Symbology, Prints, & Drawings Electronic Diagrams & Schematics TABLE OF CONTENTS Table of Co nte nts TABLE OF CONTENTS ................................................................................................... i LIST OF FIGURES ...........................................................................................................ii LIST OF TABLES ............................................................................................................ iii REFERENCES ................................................................................................................iv OBJECTIVES .................................................................................................................. 1 ELECTRONIC DIAGRAMS, PRINTS, AND SCHEMATICS ............................................ 2 Introduction .................................................................................................................. 2 Electronic Schematic Drawing Symbology .................................................................. 3 Examples of Electronic Schematic Diagrams .............................................................. 6 Reading Electronic Prints, Diagrams and Schematics ................................................. 8 Block Drawing Symbology ......................................................................................... 13 Examples of Block Diagrams ....................................................................................
    [Show full text]
  • Poster Summary
    Grand Challenge Award 2008: Support for Diverse Analytic Techniques - nSpace2 and GeoTime Visual Analytics Lynn Chien, Annie Tat, Pascale Proulx, Adeel Khamisa, William Wright* Oculus Info Inc. ABSTRACT nSpace2 allows analysts to share TRIST and Sandbox files in a GeoTime and nSpace2 are interactive visual analytics tools that web environment. Multiple Sandboxes can be made and opened were used to examine and interpret all four of the 2008 VAST in different browser windows so the analyst can interact with Challenge datasets. GeoTime excels in visualizing event patterns different facets of information at the same time, as shown in in time and space, or in time and any abstract landscape, while Figure 2. The Sandbox is an integrating analytic tool. Results nSpace2 is a web-based analytical tool designed to support every from each of the quite different mini-challenges were combined in step of the analytical process. nSpace2 is an integrating analytic the Sandbox environment. environment. This paper highlights the VAST analytical experience with these tools that contributed to the success of these The Sandbox is a flexible and expressive thinking environment tools and this team for the third consecutive year. where ideas are unrestricted and thoughts can flow freely and be recorded by pointing and typing anywhere [3]. The Pasteboard CR Categories: H.5.2 [Information Interfaces & Presentations]: sits at the bottom panel of the browser and relevant information User Interfaces – Graphical User Interfaces (GUI); I.3.6 such as entities, evidence and an analyst’s hypotheses can be [Methodology and Techniques]: Interaction Techniques. copied to it and then transferred to other Sandboxes to be assembled according to a different perspective for example.
    [Show full text]
  • Vision & Implementation Plan
    Buffalo River Greenway Vision & Implementation Plan Implementation Guidelines for the Buffalo River, Cayuga Creek, Buffalo Creek and Cazenovia Creek within the City of Buffalo and Towns of Cheektowaga and West Seneca. Prepared For: Buffalo Niagara RIVERKEEPER® Prepared By: Lynn Mason, ASLA With Assistance From: Julie Barrett O’Neill Jill Spisiak Jedlicka Lynda Schneekloth May 2006 II TABLE OF CONTENTS FIGURE LIST pg. IV INVOLVED AGENCIES pg. VI EXECUTIVE SUMMARY pg. VII I. GREENWAY VISION pg. 1 1. Greenway Benefits pg. 3 2. Buffalo River Greenway Project Area pg. 8 II. GREENWAY PLANNING HISTORY pg. 15 1. Recent Projects pg. 17 2. Recent Planning Projects pg. 28 III. EXISTING GREENWAY RESOURCES pg. 29 1. Parks & Parkways pg. 31 2. Conservation Areas pg. 37 3. Bike/Hike Trails pg. 38 4. Boat Launches and Marinas pg. 41 5. Fishing Access and Hot Spots pg. 41 6. Urban Canoe Trail and Launches pg. 42 7. Heritage Interpretation Areas pg. 44 IV. PROPOSED NEW GREENWAY ELEMENTS pg. 47 1. Introduction pg. 49 2. Buffalo River Trail Segments pg. 56 3. Site Specific Opportunities pg. 58 V. IMPLEMENTATION pg. 95 1. Introduction pg. 97 2. Implementation Strategies pg. 106 3. Leveraging Resources and Identifying Funding pg. 108 4. Legislative Action pg. 110 5. Education and Encouragement pg. 110 6. Operations and Maintenance pg. 111 7. Trail Development pg. 112 8. Design Guidelines pg. 181 APPENDIX/ BACKGROUND INFORMATION pg. 189 A. Existing Greenway Resources pg. 191 B. Prohibited Uses pg. 209 C. Phytoremediation pg. 213 D. Buffalo River Paper Streets: A Status Report pg. 215 REFERENCES pg.
    [Show full text]