Steven Chu Papers SC0828

Total Page:16

File Type:pdf, Size:1020Kb

Steven Chu Papers SC0828 http://oac.cdlib.org/findaid/ark:/13030/kt100035k7 Online items available Guide to the Steven Chu Papers SC0828 Daniel Hartwig, James Keith & Jenny Johnson Department of Special Collections and University Archives October 2010 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Steven Chu Papers SC0828 1 SC0828 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Steven Chu papers creator: Chu, Steven. Identifier/Call Number: SC0828 Physical Description: 34 Linear Feet Date (inclusive): 1949-2013 Date (bulk): bulk Abstract: Papers pertain primarily to topics in physics and include notes, overhead transparencies from his lectures, reprints, articles, memos, proposals, correspondence, charts, and drawings. Subjects include electric dipole moment, diode lasers, and dye lasers; and there are some materials pertaining to departmental matters. Also included in the collection is the 1989 paper by P. Galison, B. Hevly, and R. Lowen, "Controlling the Monster - Stanford and the Growth of Physics Research, 1935-1962." Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/depts/spc/pubserv/permissions.html. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Cite As Steven Chu Papers (SC0828). Dept. of Special Collections and University Archives, Stanford University Libraries, Stanford, Calif. Biographical/Historical Sketch Steven Chu is the William R. Kenan, Jr. Professor of Physics and Professor of Molecular and Cellular Physiology at Stanford University. From January 2009 until April, 2013, Dr. Chu served as the 12th U.S. Secretary of Energy under President Barack Obama. During his tenure, the Department of Energy annual budget was approximately $26 Billion and was entrusted an additional $36 B through the Recovery Act. As the longest serving Energy Secretary, he began several initiatives including ARPA-E (Advanced Research Projects Agency – Energy), the Energy Innovation Hubs, and the Clean Energy Ministerial meetings. During his time at the DOE, the deployment of renewable energy in the U.S. doubled. As the first scientist to head the DOE, Dr. Chu helped identify and recruit a dozen outstanding scientists and engineers; he worked to create a “Bell Labs” culture in ARPA-E, which is now being disseminated in other parts of the Energy Department such as the solar photovoltaic program, “SunShot.” From 2004-2009, he was the Director of the Lawrence Berkeley National Laboratory and Professor of Physics and Professor of Molecular and Cell Biology at the University of California Berkeley. Prior to those positions, he was the Theodore and Francis Geballe Professor of Physics and Applied Physics at Stanford University. During this time at Stanford (1987 – 2004) he twice chaired the Department of Physics and helped start Bio-X, a multi-disciplinary initiative that brings together the physical and biological sciences with engineering and medicine. From 1978 – 1987, he worked at AT&T Bell Laboratories, including four years as Head of the Quantum Electronics Research Department. Chu’s thesis and postdoctoral work was one of the first successful observations of parity non-conservation in atomic transitions, confirming the Weinberg-Salam-Glashow theory that unified weak and electromagnetic interactions. While at Bell Laboratories Chu and A. Mills performed the first laser spectroscopy of positronium, the fundamental atom consisting of an electron and the positron, and muonium, an atom consisting of a proton and muon. While also at Bell Labs, Chu also made contributions in condensed matter studies of exciton energy transfer, Anderson Localization, and made the first observation of anomalous (faster than light and negative velocity) pulse propagation. While at Bell labs, Chu led the group that showed how to first cool and then trap atoms with light. The “optical tweezers” trap, first demonstrated during the course of the atom trapping work, is widely used in biology. Other contributions include the demonstration of the magneto-optic trap, the most widely used atom trap today. At Stanford, he developed the theory of laser cooling of actual, multilevel atoms (also independently by Claude Cohen-Tannoudji and Jean Dalibard), and Guide to the Steven Chu Papers SC0828 2 SC0828 demonstrated the first atomic fountain/fountain atomic clock. For this work, he was the co-recipient the Nobel Prize in Physics in 1997. He group also introduced atom interferometry based on optical pulses of light, a technique that has remained the most precise form of atom interferometry after two decades. Chu and his colleagues used atom interferometry test the equivalence principle between a macroscopic object and a quantum object to an accuracy of several parts per billion and in the precision measurement of the coupling constant that defines the strength of electromagnetic interactions. Using the optical tweezers, Chu introduced methods to simultaneously visualize and manipulate single bio-molecules. This work led to investigations in polymer dynamics (using DNA as the model polymer) that included studies of reputation and relaxation in polymer solutions, the discovery of “molecular individualism”, and the observation of hysteresis in the coil-stretch transition. In single molecule biology, Chu, with James Spudich and Robert Simmons, designed and developed an apparatus that was able to measure the force on an actin filament held by optical tweezers when myosin molecular motors attached to the actin hydrolyzed ATP. Chu and his group were the first group to use FRET (Fluorescence Resonance Energy Transfer) to study the individual molecules tethered to a glass surface. This advance allowed the Chu and his collaborators to perform the first single molecule studies of the unfolding and multiple pathways of the refolding of the Tetrahymena, the accommodation and proofreading mechanism of the ribosome, and studies of the enzymology of the hairpin ribozyme and helicase enzymes. During this time Chu helped start Bio-X at Stanford University, a multi-disciplinary program that combined the physical and biological sciences with medicine and engineering. More recent single molecule studies the role of SNARE and associated proteins responsible for neural vesicle fusion and the demonstration of the assembly of the pre-initiation complex and followed by eukaryotic transcription. His group has also been applying sub-wavelength optical imaging to studies of cancer signaling, the structural development of growing bio-films, while improving the spatial resolution to sub-nanometer resolution by developing a method to measure and correct the non-uniform response of light in CCD cameras. During the past ten years, Chu has also become active in marshaling scientists and resources to address the energy problem with new pathways to sustainable, CO2 neutral energy. He co-chaired the Inter-Academy Council report “Transitioning to Sustainable Energy.” He was a member of the NAS/NAE/NRC committees that produced the reports, “Rising Above the Gathering Storm” and “America’s Energy Future.” The “Rising Above the Gathering Storm” report recommended the establishment of a new funding agency within the Department of Energy, ARPA-E (Advanced Research Projects Agency – Energy) that would focus on high-risk high reward energy research that could result in the invention of disruptive technologies. Chu led the Lawrence Berkeley National Laboratory (LBNL) from August 2004 to January 2009. He stepped down to become the 12th U.S. Secretary of Energy until April 2013. As the fist scientist to hold a cabinet position and the longest serving Energy Secretary, he began several initiatives including ARPA-E (Advanced Research Projects Agency – Energy), the Energy Innovation Hubs, and the Clean Energy Ministerial meetings. Also during his tenure, the deployment of renewable energy doubled in the U.S. and solar energy deployment increased 10-fold. Chu was personally involved in recruiting numerous outstanding scientists and engineers into the DOE, creating a more Bell-labs like culture in how the Department evaluates and awards proposals. With colleagues from LBNL, he developed an improved methodology for setting federal appliances standards. Chu was personally tasked by President Obama to assist BP in stopping the Deepwater Horizon oil leak in the Gulf of Mexico and to assist the Government of Japan with the tsunami-damaged nuclear reactors at Fukushima-Daiichi. After his government service, Chu has returned to Stanford to become Professor of Physics and Professor of Molecular and Cellular Physiology, where he will teach and continue his research in biophysics, biomedicine, energy and energy economics. The holder of 10 patents, Dr. Chu has published
Recommended publications
  • Fotonica Ed Elettronica Quantistica
    Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE William Esco (W. E.) Moerner Harry S. Mosher Professor and Professor, by courtesy, of Applied Physics Department of Chemistry and Biophysics Program Stanford University, Stanford, California 94305-5080 650-723-1727 (phone), 650-725-0259 (fax), e-mail: [email protected] Education 1975 B.S. Physics Washington University (Final Honors) St. Louis, Missouri B.S. Electrical Engineering (Final Honors) A.B. Mathematics (summa cum laude) 1978 M.S. Cornell University (Physics) Ithaca, New York 1982 Ph.D. Cornell University (Physics) Ithaca, New York Thesis Topic: Vibrational Relaxation Dynamics of an IR-Laser-Excited Molecular Impurity Mode in Alkali Halide Lattices Thesis Advisor: Professor A. J. Sievers Academic Honors 1963-82 Grade Point Average of All A's (4.0) 1971-75 Alexander S. Langsdorf Engineering Fellow, Washington University 1975 Dean's Award for Unusually Exceptional Academic Achievement 1975 Ethan A. H. Shepley Award for Outstanding Achievement (university-wide) 1975-79 National Science Foundation Graduate Fellow Career Summary 2016- Affiliated Faculty Member, Stanford Neurosciences Institute 2014- Faculty Fellow, ChEM-H at Stanford 2011-2014 Chemistry Department Chair 2005- Professor, by courtesy, of Applied Physics 2002- Harry S. Mosher Professor of Chemistry 1998- Professor of Chemistry Department of Chemistry Stanford University 1 Multidisciplinary education and research program on single-molecule spectroscopy, imaging, and quantum optics in solids, proteins, and liquids; single-molecule biophysics in cells;
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Having a Good Time: a Triumph of Science & Technology
    UDC’s Office of Research & Graduate Studies, SEAS, LSAMP, & STEM Center Invite You to a Seminar on Having a Good Time: A Triumph of Science & Technology Presented by Dr. William D. Phillips, NIST Nobel Laureate in Physics, 1997 © Robert Rathe © Robert Rathe Date: Tuesday, March 13, 2012 Time: 12:30 PM Location: Building 41-A03 Abstract: People have long been interested in timekeeping. In the 18th century, this interest became particularly keen because of technological demands: the need for accurate navigation on the high seas. While many people believed that the answer to sufficiently good timekeeping at sea would be found in astronomical measurements, it was earthbound engineering that literally won the prize. The construction of accurate seagoing clocks revolutionized navigation in the 18th and 19th centuries. The advent of even more accurate clocks—atomic clocks—in the 20th century gave birth to a new revolution in navigation—the Global Positioning System. This ever-more advanced system for satellite navigation owes its success both to excellent engineering and to seemingly arcane science. Dr. William D. Phillips is a Senior Fellow at the National Institute of Standards and Technology (NIST), where he leads the Laser Cooling and Trapping Group. He shared the 1997 Nobel Prize in physics with Dr. Steven Chu, now Secretary of Energy, and with Dr. Claude Cohen-Tannoudji, an Algerian-born French physicist, “for development of methods to cool and trap atoms with laser light.” With a physics bachelor’s degree from Juniata College in Pennsylvania and a Ph.D. from MIT, Phillips started his career at NIST only a few years after it left UDC’s Van Ness campus for its location in Gaithersburg.
    [Show full text]
  • James Spudich, Ph.D. the Myosin Mesa and Beyond: on the Underlying Molecular Basis of Hyper-Contractility Caused by Hypertrophic Card
    JAMES SPUDICH, PH.D. THE MYOSIN MESA AND BEYOND: ON THE UNDERLYING MOLECULAR BASIS OF HYPER-CONTRACTILITY CAUSED BY HYPERTROPHIC CARD APRIL 6, 2017 3:00 P.M. 208 LIGHT HALL SPONSORED BY: THE DEPARTMENT OF CELL AND DEVELOPMENTAL BIOLOGY Upcoming Discovery Lecture: ERIC GOUAUX, PH.D. Senior Scientist, Vollum Institute Jennifer and Bernard Lacroute Term Chair in Neuroscience Research Investigator, HHMI April 20, 2017 208 Light Hall / 4:00 P.M. 1190-4347-Institution-Discovery Lecture Series-Spudich-BK-CH.indd 1 3/21/17 11:11 AM THE MYOSIN MESA AND BEYOND: ON THE UNDERLYING MOLECULAR BASIS OF HYPER-CONTRACTILITY CAUSED BY JAMES SPUDICH, PH.D. STANFORD UNIVERSITY SCHOOL OF MEDICINE DEPARTMENT OF BIOCHEMISTRY THE MYOSIN MESA AND BEYOND: DOUGLASS M. AND NOLA LEISHMAN PROFESSOR OF ON THE UNDERLYING MOLECULAR BASIS CARDIOVASCULAR DISEASE OF HYPER-CONTRACTILITY CAUSED BY MEMBER, NATIONAL ACADEMY OF SCIENCES HYPERTROPHIC CARD After 40 years of developing and utilizing assays to understand the James Spudich, Douglass M. and Nola Leishman Professor of molecular basis of energy transduction by the myosin family of Cardiovascular Disease, is in the Department of Biochemistry at Stanford molecular motors, all members of my laboratory are now focused on University School of Medicine. He received his B.S. in chemistry from understanding the underlying biochemical and biophysical bases of the University of Illinois in 1963 and his Ph.D. in biochemistry from human hypertrophic (HCM) and dilated (DCM) cardiomyopathies. Stanford in 1968. He did postdoctoral work in genetics at Stanford and Our primary focus is on HCM since these mutations cause the heart in structural biology at the MRC Laboratory in Cambridge, England.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • By Krista Conger It Was Around 3 P.M. on a Thursday Last October When James Spudich and Suzanne Pfeffer Poked Their Heads Into T
    BECKMAN CENTER FOR MOLECULAR AND GENETIC MEDICINE PG. 6 BECKMAN RESEARCHERS MAP INTRICACIES OF LUNG CANCER IN ONE OF THEIR OWN By Krista Conger Spudich had no way of knowing it, but the meeting he’d interrupted between Krasnow and assistant professor of pediatrics Christin Kuo, MD, had been It was around 3 p.m. on a Thursday last October when called to discuss how Krasnow could broaden his James Spudich and Suzanne Pfeffer poked their heads research, which he had been conducting mainly in into the office of Mark Krasnow, on the fourth floor of mice and small primates called mouse lemurs, to the Beckman Center for Molecular and Genetic include human cancers. But the logistical and legal Medicine, interrupting a meeting he was having with hoops that would need to be cleared prior to any a colleague. kind of human-based research were daunting, and Krasnow knew it would likely take months to obtain “Can we talk to you for a minute?” Pfeffer said. the necessary approvals. Impromptu conversations were nothing new for the Kuo, a specialist in pulmonary medicine, had been three. The longtime colleagues and friends have a lot to working with Stephen Quake, PhD, professor of talk about. Spudich, PhD, whose research focuses on bioengineering and of applied physics and co-president understanding the molecular forces that drive muscle of the Chan Zuckerberg Biohub, and postdoctoral contractions, earned a doctoral degree from Stanford scholar Spyros Darmanis, PhD, a group leader at the in 1968 under Arthur Kornberg, MD, a founding Biohub, to study the development and function of lung member of the Department of Biochemistry.
    [Show full text]
  • High-Resolution and High-Accuracy Topographic and Transcriptional
    RESEARCH ARTICLE High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier Zhijie Chen1,2†, Ronen Gabizon1†, Aidan I Brown3, Antony Lee4, Aixin Song5, Ce´ sar Dı´az-Celis1,2, Craig D Kaplan6, Elena F Koslover3, Tingting Yao5*, Carlos Bustamante1,2,4,7,8,9,10,11* 1Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States; 2Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States; 3Department of Physics, University of California, San Diego, San Diego, United States; 4Department of Physics, University of California, Berkeley, Berkeley, United States; 5Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States; 6Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States; 7Jason L Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, United States; 8Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States; 9Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States; 10Department of Chemistry, University of California, Berkeley, Berkeley, United States; 11Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, United States *For correspondence: [email protected] (TY); Abstract Nucleosomes represent mechanical and energetic barriers that RNA Polymerase II (Pol [email protected] (CB) II) must overcome during transcription. A high-resolution description of the barrier topography, its †These authors contributed modulation by epigenetic modifications, and their effects on Pol II nucleosome crossing dynamics, equally to this work is still missing. Here, we obtain topographic and transcriptional (Pol II residence time) maps of canonical, H2A.Z, and monoubiquitinated H2B (uH2B) nucleosomes at near base-pair resolution and Competing interests: The accuracy.
    [Show full text]
  • Reversed out (White) Reversed
    Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments.
    [Show full text]
  • The Election—IV Steven Weinberg
    3/26/13 The Election—IV by Steven Weinberg, Garry Wills, and Jeffrey D. Sachs | The New York Review of Books The Election—IV NOVEMBER 8, 2012 Steven Weinberg, Garry Wills, and Jeffrey D. Sachs Barack Obama; drawing by John Springs Steven Weinberg The presidency of Barack Obama began to fail on January 6, 2009, a fortnight before the president was inaugurated. Only on that day, the first day of a new Congress, the rules of the Senate could have been changed by a simple majority vote. That was the last opportunity to revise the rule that requires sixty votes to limit a filibuster. Of course, no president-elect or president has authority to change the Senate rules, but this president- elect had ample means to exert pressure on senators. For instance, he could have confronted Harry Reid of Nevada, the Senate majority leader, with the prospect of administration support for the nuclear waste disposal facility at Yucca Mountain, whose worst drawback was its unpopularity in Nevada. Alas, Barack Obama proved himself to be no Lyndon Johnson. Even though Democrats would have a majority in both houses of Congress for the next www.nybooks.com/articles/archives/2012/nov/08/election-4/?pagination=false 1/10 3/26/13 The Election—IV by Steven Weinberg, Garry Wills, and Jeffrey D. Sachs | The New York Review of Books two years, the Republican ability to filibuster in the Senate meant that bipartisan compromise would be needed to pass any legislation or approve any appointments. This sort of compromise may have been congenial to President Obama anyway, but after January 6 it was unavoidable.
    [Show full text]
  • Curriculum Vitae James A. Spudich, Ph.D
    Curriculum Vitae James A. Spudich, Ph.D. Douglass M. and Nola Leishman Professor of Cardiovascular Disease Department of Biochemistry Stanford University School of Medicine EDUCATION 1963 University of Illinois, Chemistry Dept of Biochemistry B.S. 1968 Stanford University, Biochemistry Dept of Biochemistry Ph.D. 1968-1969 Stanford University, Molecular Genetics Dept of Biological Sciences Postdoctoral 1969-1971 Cambridge University, Structural Biology MRC Lab of Mol Biol Postdoctoral PROFESSIONAL EXPERIENCE 2012 Co-Founder, MyoKardia, Inc. 2011-present Adjunct Professor, Institute of Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India 2005-present Adjunct Professor, National Centre for Biological Sciences (NCBS) of the Tata Institute of Fundamental Research (TIFR), Bangalore, India; and TIFR, Bombay, India 1998-2002 Co-Founder and first Director, Interdisciplinary Program in Bioengineering, Biomedicine and Biosciences – Bio-X, Stanford University 1998 Co-Founder, Cytokinetics, Inc. 1992-present Professor, Dept of Biochemistry, Stanford University School of Medicine (Chairman from 1994-1998) 1989-2011 Professor, Dept of Developmental Biology, Stanford University School of Medicine 1977-1992 Professor, Dept of Structural Biology, Stanford University School of Medicine (Chairman from 1979-1984) 1976-1977 Professor, Dept of Biochemistry and Biophysics, UCSF, San Francisco 1974-1976 Associate Professor, Dept of Biochemistry and Biophysics, UCSF, San Francisco 1971-1974 Assistant Professor, Dept of Biochemistry and Biophysics,
    [Show full text]
  • Michael Sheetz, James Spudich, and Ronald Vale Receive the 2012 Albert Lasker Basic Medical Research Award
    Molecules in motion: Michael Sheetz, James Spudich, and Ronald Vale receive the 2012 Albert Lasker Basic Medical Research Award Sarah Jackson J Clin Invest. 2012;122(10):3374-3377. https://doi.org/10.1172/JCI66361. News The Albert and Mary Lasker Foundation honors three pioneers in the field of molecular motor proteins, Michael Sheetz, James Spudich, and Ronald Vale (Figure 1), for their contribution to uncovering how these proteins catalyze movement. Sheetz and Spudich developed the first biochemical assay to reconstitute myosin motor activity and showed that myosin and ATP alone were sufficient to direct transport along actin filaments. Fueled by this discovery, Vale and Sheetz examined transport in giant squid axon extracts and discovered a new motor, kinesin, that moves along microtubules. Cumulatively, their work opened the door for understanding how motor proteins drive transport of a host of molecules involved in numerous cellular processes, including cell polarity, cell division, cellular movement, and signal transduction. Muscle movement Much of the early research on cellular movement focused on understanding muscle contraction. Filaments of actin and myosin form a banding pattern in muscle that is readily visible by light microscopy, with a characteristic striated appearance. The functional unit of muscle, termed a sarcomere, repeats at regular intervals along the muscle fibers. Measurements from contracted, resting, and stretched muscle using high-resolution light microscopy supported the notion that contraction was due to the sliding of actin and myosin filaments (1, 2). In 1969, preeminent British scientist Hugh Huxley proposed that crossbridges that connect actin and myosin generate the sliding […] Find the latest version: https://jci.me/66361/pdf News Molecules in motion: Michael Sheetz, James Spudich, and Ronald Vale receive the 2012 Albert Lasker Basic Medical Research Award The Albert and Mary Lasker Founda- James Spudich joined the Huxley labora- motility along actin.
    [Show full text]