Feasibility of Converting New York State's Energy Production to Wind

Total Page:16

File Type:pdf, Size:1020Kb

Feasibility of Converting New York State's Energy Production to Wind Project Number RWT-1304 Feasibility of Converting New York State’s Energy Production to Wind, Water and Sunlight An Interactive Qualifying Project Report Submitted to the faculty of Worcester Polytechnic Institute In partial fulfillment of the requirements for the Degree of Bachelor of Science By ____________________ Sean Callaghan ___________________ John Goddard __________________ Charles Mendes Date: March 11, 2013 Approved: _________________ Robert W. Thompson, PhD Project Advisor _________________ Aaron N Deskins, PhD Project Advisor Project Number RWT-1304 Table of Contents Section 1: Introduction .................................................................................................................................. 3 Section 2: Energy Source Background ......................................................................................................... 4 2.1 Wind Power ........................................................................................................................................ 4 2.1.1 History of Wind Power ................................................................................................................ 4 2.1.2 Maturity of the Technology ......................................................................................................... 6 2.1.3 Near Future Technology .............................................................................................................. 8 2.1.4 Cost .............................................................................................................................................. 9 2.1.5 Experiences ................................................................................................................................ 10 2.1.5.1 Princeton Lighting Commission ......................................................................................... 10 2.1.5.2 Hull Windmill Project ......................................................................................................... 12 2.1.6 Feasibility (Pros and Cons) ........................................................................................................ 14 2.2 Hydropower ...................................................................................................................................... 15 2.2.1 History of Hydropower .............................................................................................................. 15 2.2.2 Maturity of Hydropower ............................................................................................................ 16 2.2.3 Cost of Hydropower ................................................................................................................... 18 2.2.4 Positives of Hydropower ............................................................................................................ 18 2.2.5 Negatives of Hydro Power ......................................................................................................... 19 2.2.6 Experiences using Hydropower ................................................................................................. 20 2.2.6.1 Niagara Falls ....................................................................................................................... 20 2.2.6.2 Hoover Dam ........................................................................................................................ 21 2.2.6.3 Niagara Mohawk Company ................................................................................................ 21 2.3 Solar Power ....................................................................................................................................... 22 2.3.1 History of Solar Power ............................................................................................................... 22 2.3.2 Maturity of Solar Power ............................................................................................................. 23 2.3.3 How Solar Panels are made ....................................................................................................... 27 2.3.4 Cost of Solar Panels ................................................................................................................... 29 2.3.5 Major Issues ............................................................................................................................... 30 2.3.6 Experiences with Solar Power ................................................................................................... 31 2.3.6.1 Mann Orchards .................................................................................................................... 31 2.3.6.2 Princeton House .................................................................................................................. 33 2.3.6.3 Hardwick House .................................................................................................................. 34 1 Section 3: Implementation Issues ............................................................................................................... 35 3.1 Stability ............................................................................................................................................. 35 3.2 Transmission ..................................................................................................................................... 37 3.3 Economic .......................................................................................................................................... 39 Section 4: Mark Jacobson ........................................................................................................................... 43 4.1 Jacobson’s Background & Education ............................................................................................... 43 4.2 Jacobson’s Works ............................................................................................................................. 46 4.3 Opposition & Criticism to Jacobson’s Work .................................................................................... 49 4.4 Supporters of Jacobson’s Work ........................................................................................................ 50 Section 5: The Plan ..................................................................................................................................... 55 5.1 Jacobson’s World Plan ...................................................................................................................... 55 5.2 The California Plan ........................................................................................................................... 59 5.3 Jacobson’s New York State Plan ...................................................................................................... 60 5.4 Resources not desired for WWS ....................................................................................................... 62 Section 6: Evaluation of the Plan ................................................................................................................ 63 6.1 Stability of Jacobson’s Plan .............................................................................................................. 63 6.2 Transmission ..................................................................................................................................... 69 6.3 Economic Evaluation ........................................................................................................................ 71 6.4 Social ................................................................................................................................................ 74 Section 7: Suggestions for Plan Improvement ............................................................................................ 77 Section 8: Conclusion ................................................................................................................................. 80 Bibliography ............................................................................................................................................... 81 Appendix ..................................................................................................................................................... 85 Princeton Lighting Commission ............................................................................................................. 85 Hull ......................................................................................................................................................... 86 Mann’s Orchards ..................................................................................................................................... 89 Princeton Household ............................................................................................................................... 90 Hardwick Household .............................................................................................................................. 91 2 Section 1: Introduction In the present day renewable resources like solar power, wind power, and hydropower have been gaining popularity among the masses. Many see them as the replacements of the coal and oil resource that are used today. A civil and environmental professor from Stanford University, Mark Z. Jacobson, has come up with multiple plans
Recommended publications
  • Comparative Review of a Dozen National Energy Plans: Focus on Renewable and Efficient Energy
    Technical Report A Comparative Review of a Dozen NREL/TP-6A2-45046 National Energy Plans: Focus on March 2009 Renewable and Efficient Energy Jeffrey Logan and Ted L. James Technical Report A Comparative Review of a Dozen NREL/TP-6A2-45046 National Energy Plans: Focus on March 2009 Renewable and Efficient Energy Jeffrey Logan and Ted L. James Prepared under Task No. SAO7.9C50 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • The BRIDGE Linking Engin Ee Ring and Soci E T Y
    Spring 2010 THE ELECTRICITY GRID The BRIDGE LINKING ENGIN ee RING AND SOCI E TY The Impact of Renewable Resources on the Performance and Reliability of the Electricity Grid Vijay Vittal Securing the Electricity Grid S. Massoud Amin New Products and Services for the Electric Power Industry Clark W. Gellings Energy Independence: Can the U.S. Finally Get It Right? John F. Caskey Educating the Workforce for the Modern Electric Power System: University–Industry Collaboration B. Don Russell The Smart Grid: A Bridge between Emerging Technologies, Society, and the Environment Richard E. Schuler Promoting the technological welfare of the nation by marshalling the knowledge and insights of eminent members of the engineering profession. The BRIDGE NatiOnaL AcaDemY OF Engineering Irwin M. Jacobs, Chair Charles M. Vest, President Maxine L. Savitz, Vice President Thomas F. Budinger, Home Secretary George Bugliarello, Foreign Secretary C.D. (Dan) Mote Jr., Treasurer Editor in Chief (interim): George Bugliarello Managing Editor: Carol R. Arenberg Production Assistant: Penelope Gibbs The Bridge (ISSN 0737-6278) is published quarterly by the National Aca- demy of Engineering, 2101 Constitution Avenue, N.W., Washington, DC 20418. Periodicals postage paid at Washington, DC. Vol. 40, No. 1, Spring 2010 Postmaster: Send address changes to The Bridge, 2101 Constitution Avenue, N.W., Washington, DC 20418. Papers are presented in The Bridge on the basis of general interest and time- liness. They reflect the views of the authors and not necessarily the position of the National Academy of Engineering. The Bridge is printed on recycled paper. © 2010 by the National Academy of Sciences. All rights reserved.
    [Show full text]
  • Jacobson and Delucchi (2009) Electricity Transport Heat/Cool 100% WWS All New Energy: 2030
    Energy Policy 39 (2011) 1154–1169 Contents lists available at ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials Mark Z. Jacobson a,n, Mark A. Delucchi b,1 a Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA b Institute of Transportation Studies, University of California at Davis, Davis, CA 95616, USA article info abstract Article history: Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing Received 3 September 2010 them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing Accepted 22 November 2010 worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, Available online 30 December 2010 water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future Keywords: energy demand, availability of WWS resources, numbers of WWS devices, and area and material Wind power requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that Solar power 3,800,000 5 MW wind turbines, 49,000 300 MW concentrated solar plants, 40,000 300 MW solar Water power PV power plants, 1.7 billion 3 kW rooftop PV systems, 5350 100 MW geothermal power plants, 270 new 1300 MW hydroelectric power plants, 720,000 0.75 MW wave devices, and 490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes.
    [Show full text]
  • GWEC Global Wind Report 2016
    GLOBAL WIND REPORT ANNUAL MARKET UPDATE 2016 Opening up new markets for business: Mongolia 8TH NATIONAL RENEWABLE ENERGY FORUM Ulaanbaatar, Mongolia 5 May 2017 Mongolia’s wind has the technical potential of 1TW. GWEC is paving the road to that potential. www.gwec.net TABLE OF CONTENTS Preface . 4 Foreword from our sponsor . 6 Corporate Sourcing of Renewables – A New Market Driver for Wind . 8 Global Status of Wind Power in 2016 . 12 Market Forecast 2017-2021 . 20 Argentina . 26 Australia . 28 Brazil . 30 Canada . 32 Chile . 34 PR China . 36 Denmark . 40 The European Union . 42 Finland . 44 Germany . 46 India . 48 Japan . 50 Mexico . 52 Netherlands . 54 Norway . 56 Offshore Wind . 58 South Africa . 66 Turkey . 68 United States . 70 Vietnam . 72 About GWEC . 74 GWEC – Global Wind 2016 Report 3 PREFACE verall, the wind industry fi nished up 2016 in good installations of 8,203 MW were about the same as 2015’s, and shape, with solid prospects for 2017 and beyond. The despite the political goings-on, seem to be on track for a strong O economics of the industry continue to improve, with 2017, with 18+ GW either under construction or in advanced record low prices for the winning tender in Morocco last year stages of development. So far so good – fi ngers crossed! of about $30/MWh, and very competitive prices in auctions Europe’s numbers were surprisingly strong, actually sur- around the world, while more and more companies’ P&Ls have passing 2015 for Europe as a whole on the strength of Turkey’s come out of the red and into the black.
    [Show full text]
  • Battle Mountain RMP Scoping Report
    US Department of the Interior Bureau of Land Management Battle Mountain District Office, Nevada Resource Management Plan and Environmental Impact Statement SCOPING SUMMARY REPORT JULY 2011 TABLE OF CONTENTS Section Page SUMMARY .................................................................................................................................. S-1 1. INTRODUCTION ............................................................................................................ 1-1 1.1 Purpose of and Need for the Resource Management Plan ................................................ 1-1 1.2 Description of the RMP Planning Area .................................................................................... 1-2 1.3 Overview of Public Involvement Process ............................................................................... 1-4 1.4 Description of the Scoping Process ......................................................................................... 1-5 1.4.1 Newsletter and Mailing List ......................................................................................... 1-5 1.4.2 Press Release .................................................................................................................. 1-5 1.4.3 Project Website ............................................................................................................. 1-6 1.4.4 Scoping Open Houses .................................................................................................. 1-6 1.4.5 Notice of Intent ............................................................................................................
    [Show full text]
  • Appendix H Public Comments and Responses to DEIS
    APPENDIX H PUBLIC COMMENTS AND RESPONSES ON DRAFT ENVIRONMENTAL IMPACT STATEMENT According to NEPA, federal agencies are required to identify and formally respond to all substantive public comments. A standardized content analysis process was conducted to analyze the public comments on the Draft EIS. Each comment letter and email message received was read, analyzed and considered by BLM, Reclamation, and Western to ensure that all substantive comments were identified. In performing this analysis, the BLM, Reclamation, and Western relied on the Council on Environmental Quality’s regulations to determine what constituted a substantive comment. A substantive comment does one or more of the following: Questions, with a reasonable basis, the accuracy of the information and/or analysis in the EIS. Questions, with a reasonable basis, the adequacy of the information and/or analysis in the EIS. Presents reasonable alternatives other than those presented in the Draft EIS that meet the purpose and need of the proposed action and addresses significant issues. Questions, with a reasonable basis, the merits of an alternative or alternatives. Causes changes in or revisions to the proposed action. Questions, with a reasonable basis, the adequacy of the planning process itself. Thirty-seven individual comment letters and/or emails were submitted to the BLM during the 45-day comment period. Within the 37 comment letters, 322 comments were identified and addressed. Comments on the Draft EIS that failed to meet the above description were considered non-substantive because they expressed personal opinions or preferences that were not relevant to the adequacy or accuracy of the Draft EIS, or represented commentary regarding resource management unrelated to the Draft EIS.
    [Show full text]
  • Construction
    WIND SYSTEMS MAGAZINE GIVING WIND DIRECTION O&M: O&M: OPERATIONS O&M: Operations The Shift Toward Optimization • Predictive maintenance methodology streamlines operations • Safety considerations for the offshore wind site » Siemens adds two » Report: Global policy vessels to offshore woes dampen wind service fleet supply chain page 08 page 43 FEBRUARY 2015 FEBRUARY 2015 Moog has developed direct replacement pitch control slip rings for today’s wind turbines. The slip ring provides Fiber Brush Advantages: reliable transmission of power and data signals from the nacelle to the control system for the rotary blades. • High reliability The Moog slip ring operates maintenance free for over 100 million revolutions. The slip ring uses fiber brush • Maintenance free Moog hasMoog developed has developed direct direct replacement replacement pitch pitch controlcontrol slipslip rings rings for for today’s today’s wind wind turbines. turbines. The slip The ring slip provides ring provides Fiber Brush Advantages: technology to achieve long life without lubrication over a wide range of temperatures, humidity and rotational • Fiber Minimal Brush wear Advantages: debris reliablereliable transmission transmission of power of power and and data data signals signals from from thethe nacelle nacelle to to the the control control system system for the for rotary the rotaryblades. blades. • High reliability speeds. In addition, the fiber brush has the capability to handle high power while at the same time transferring data • generated High reliability signals.The Moog slip ring operates maintenance free for over 100 million revolutions. The slip ring uses fiber brush • Maintenance free The Moog slip ring operates maintenance free for over 100 million revolutions.
    [Show full text]
  • Wind-Power Politics - Nytimes.Com
    Wind-Power Politics - NYTimes.com http://www.nytimes.com/2008/09/14/magazine/14wind-t.html?pagewante... September 14, 2008 Wind-Power Politics By MARK SVENVOLD “The moment I read that paper,” the wind entrepreneur Peter Mandelstam recalled, “I knew in my gut where my next wind project would be.” I was having lunch with Mandelstam last fall to discuss offshore wind in general and how he and his tiny company, Bluewater Wind, came to focus on Delaware as a likely place for a nascent and beleaguered offshore wind industry to establish itself. Mandelstam had been running late all morning. I knew this because I received a half-dozen messages on my cellphone from members of his staff, who relayed his oncoming approach like air-traffic controllers guiding a wayward trans-Atlantic flight into Kennedy. This was the Bluewater touch — crisp, informative, ever-helpful, a supercharged, Eagle Scout attentiveness that was part corporate style, part calculated public-relations approach. It would pay off tremendously in his company’s barnstorming campaign of Delaware town meetings and radio appearances to capture what he had reason to believe would be the first offshore-wind project in the country’s history. These features were, unsurprisingly, manifestations of Mandelstam himself, who arrived in a suit and tie, a wry smile, his wiry hair parted in the middle and tamped down like someone who had made a smooth transition from a Don Martin cartoon. Mandelstam, a 47-year-old native New Yorker who is capable of quoting Central European poets and oddball meteorological factoids with ease, had long committed himself — and the tiny company he formed in 1999 — to building utility-scale wind-power plants offshore, a decision that, to many wind-industry observers, seemed to fly in the face of common sense.
    [Show full text]
  • Alternative & Renewable Energy
    Alternatives_Cover_Jan2009:Layout 1 1/6/2009 9:43 AM Page 1 Equity Research Industry Report January 2009 Alternative & Renewable Energy Down…But Not Out 10 Reasons We Remain Long-Term Bulls Financing Renewables in a Post-Credit Crunch World Playing the Consolidation Theme Kick-Start 2009 with Free Development Pipelines A Solar Shakeout Is Inevitable Utilities – Ben Isaacson, MBA, CFA – (416) 945-5310 Alternative & Renewable Energy For Reg AC Certification and important disclosures see Appendix A of this report. Down…But Not Out January 2009 Contents Down… 4 …But Not Out 5 Stock Recommendations 6 Sector Outperforms 6 Sector Underperforms 6 The Rest of the Pack 7 Why Renewable Power Stocks Were Down 70% in 2008 10 Global Energy Complex Worth Materially Less 10 Weak Credit and Equity Markets 12 10 Reasons We Remain Long-Term Bulls 15 Renewable Portfolio Standards Keep Growing 15 The Failed Kyoto Protocol Requires a Successor Program by 2012 15 Renewable Power Capital Costs Should Start to Flatten Shortly 16 The Implementation of Carbon-Pricing Mechanisms Are Accelerating 17 Long-Term Global Demand for Limited Fossil Fuels Continues to Rise 17 Increased Transmission to Accommodate Renewables Is Evolving 18 Political Support Continues to Strengthen for Alternative Energy 19 Energy Security and Independence Remain a Strong Societal Concern 19 Renewable Subsidy and Incentive Growth Remain Intact 20 Weak Credit and Equity Markets will Eventually Recover 20 Financing Renewables in a Post-Credit Crunch World 21 Renewable Power Project Capital
    [Show full text]
  • The Pickens Plan
    The Pickens Plan Tuesday, January 6, 2009 James A. Baker III Hall Rice University The Energy Forum of the James A. Baker III Institute for Public Policy in conjunction with the Energy & Environmental Systems Institute, the Richard E. Smalley Institute for Nanoscale Science and Technology and the Center for the Study of Environment and Society at Rice University Introduction The Honorable Edward P. Djerejian Founding Director, Baker Institute for Public Policy Presentation The Pickens Plan with T. Boone Pickens Founder, Chairman and CEO BP Capital, L.P. Tuesday, January 6, 2009 4:00 pm Doré Commons James A. Baker III Hall Rice University T. Boone Pickens Founder, Chairman and CEO BP Capital, L.P. T. Boone Pickens — founder, chairman and CEO of BP Capital, L.P. — is principally responsible for the formulation of the energy futures investment strategy of the BP Capital Commodity Fund and the BP Capital Equity Fund. BP Capital manages one of the nation’s most successful energy-oriented investment funds. Pickens frequently uses his wealth of experience in the oil and gas industry to evaluate of potential equity investments and energy sector themes. A generous philanthropist, he has given away almost $500 million. In 2006, he contributed $175 million to a wide range of causes and the formation of the T. Boone Pickens Foundation, which supports educational programs, medical research, athletics and corporate wellness, at-risk youth, the entrepreneurial process, and conservation and wildlife initiatives. Pickens started his career at Phillips Petroleum Co. in Bartlesville, Okla. Three-and-a-half-years later, he struck out on his own as an independent geologist.
    [Show full text]
  • Energy from Wind, Water and Solar Power by 2030
    RETHINKING “HOBBITS” THE EVERYTHING TV What They Mean for Human Evolution Get Ready for the Wide-Screen Web The Long-Lost Siblings of OUR SUN page 40 November 2009 www.Scientif cAmerican.com A Plan for a Sustainable Future How to get all energy from wind, water and solar power by 2030 Chronic Pain What Goes Wrong Plus: • The Future of Cars • Farms in Skyscrapers $5.99 ENERGY A PATH TO SUSTAINABLE ENERGY BY 2030 Wind, water and n December leaders from around the world for at least a decade, analyzing various pieces of will meet in Copenhagen to try to agree on the challenge. Most recently, a 2009 Stanford solar technologies Icutting back greenhouse gas emissions for University study ranked energy systems accord- can provide decades to come. The most effective step to im- ing to their impacts on global warming, pollu- 100 percent of the plement that goal would be a massive shift away tion, water supply, land use, wildlife and other from fossil fuels to clean, renewable energy concerns. The very best options were wind, so- ) dam world’s energy, sources. If leaders can have conf dence that such lar, geothermal, tidal and hydroelectric pow- ( eliminating all a transformation is possible, they might commit er—all of which are driven by wind, water or to an historic agreement. We think they can. sunlight (referred to as WWS). Nuclear power, fossil fuels. A year ago former vice president Al Gore coal with carbon capture, and ethanol were all Photos Aurora HERE’S HOW threw down a gauntlet: to repower America poorer options, as were oil and natural gas.
    [Show full text]
  • Financing the Transition to Renewable Energy in the European Union
    Bi-regional economic perspectives EU-LAC Foundation Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo. iale Luigi Bocconi Financing the transition to renewable energy in the European Union, Latin America and the Caribbean Financing the transition to renewable energy in European Union, Latin America and Caribbean EU-LAC / Università Commerc EU-LAC FOUNDATION, AUGUST 2018 Große Bleichen 35 20354 Hamburg, Germany www.eulacfoundation.org EDITION: EU-LAC Foundation AUTHORS: Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo GRAPHIC DESIGN: Virginia Scardino | https://www.behance.net/virginiascardino PRINT: Scharlau GmbH DOI: 10.12858/0818EN Note: This study was financed by the EU-LAC Foundation. The EU-LAC Foundation is funded by its members, and in particular by the European Union. The contents of this publication are the sole responsibility of the authors and cannot be considered as the point of view of the EU- LAC Foundation, its member states or the European Union. This book was published in 2018. This publication has a copyright, but the text may be used free of charge for the purposes of advocacy, campaigning, education, and research, provided that the source is properly acknowledged. The co- pyright holder requests that all such use be registered with them for impact assessment purposes. For copying in any other circumstances, or for reuse in other publications, or for translation and adaptation,
    [Show full text]