Energy-Centric Processor Scheduling Algorithm for Battery-Limited Mobile Systems

Total Page:16

File Type:pdf, Size:1020Kb

Energy-Centric Processor Scheduling Algorithm for Battery-Limited Mobile Systems DEPARTAMENTO DEINGENIERÍA TELEMÁTICA Y ELECTRÓNICA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y SISTEMAS DE TELECOMUNICACIÓN Energy-based Fair Queuing: Energy-centric Processor Scheduling Algorithm for Battery-limited Mobile Systems TESIS DOCTORAL Jianguo Wei Master Universitario en Ingeniería de Sistemas y Servicios para la Sociedad de la Información DIRECTOR Eduardo Juárez Martínez Ph.D. ès Sciences Techniques from the Swiss Federal Institute of Technology in Lausanne 2015 Resumen Los dispositivos móviles modernos disponen cada vez de más funcionalidad debido al rápido avance de las tecnologías de las comunicaciones y computaciones móviles. Sin embargo, la capacidad de la batería no ha experimentado un aumento equivalente. Por ello, la experiencia de usuario en los sistemas móviles modernos se ve muy afectada por la vida de la batería, que es un factor inestable de difícil de control. Para abordar este problema, investigaciones anteriores han propuesto un esquema de gestion del consumo (PM) centrada en la energía y que proporciona una garantía sobre la vida operativa de la batería mediante la gestión de la energía como un recurso de primera clase en el sistema. Como el planificador juega un papel fundamental en la administración del consumo de energía y en la garantía del rendimiento de las aplicaciones, esta tesis explora la optimización de la experiencia de usuario para sistemas móviles con energía limitada desde la perspectiva de un planificador que tiene en cuenta el consumo de energía en un contexto en el que ésta es un recurso de primera clase. En esta tesis se analiza en primer lugar los factores que contribuyen de forma general a la experiencia de usuario en un sistema móvil. Después se determinan los requisitos esenciales que afectan a la experiencia de usuario en la planificación centrada en el consumo de energía, que son el reparto proporcional de la potencia, el cumplimiento de las restricciones temporales, y cuando sea necesario, el compromiso entre la cuota de potencia y las restricciones temporales. Para cumplir con los requisitos, el algoritmo clásico de fair queueing y su modelo de referencia se extienden desde los dominios de las comunicaciones y ancho de banda de CPU hacia el dominio de la energía, y en base a ésto, se propone el algoritmo energy-based fair queueing (EFQ) para proporcionar una planificación basada en la energía. El algoritmo EFQ está diseñado para compartir la potencia consumida entre las tareas mediante su planificación en función de la energía consumida y de la cuota reservada. La cuota de consumo de cada tarea con restricciones temporales está protegida frente a diversos cambios que puedan ocurrir en el sistema. Además, para dar mejor soporte i a las tareas en tiempo real y multimedia, se propone un mecanismo para combinar con el algoritmo EFQ para dar preferencia en la planificación durante breves intervalos de tiempo a las tareas más urgentes con restricciones temporales.Las propiedades del algoritmo EFQ se evaluan a través del modelado de alto nivel y la simulación. Los resultados de las simulaciones indican que los requisitos esenciales de la planificación centrada en la energía pueden lograrse. El algoritmo EFQ se implementa más tarde en el kernel de Linux. Para evaluar las propiedades del planificador EFQ basado en Linux, se desarrolló un banco de pruebas experimental basado en una sitema empotrado, un programa de banco de pruebas multihilo, y un conjunto de pruebas de código abierto. A través de experimentos específicamente diseñados, esta tesis verifica primero las propiedades de EFQ en la gestión de la cuota de consumo de potencia y la planificación en tiempo real y, a continuación, explora los beneficios potenciales de emplear la planificación EFQ en la optimización de la experiencia de usuario para sistemas móviles con energía limitada. Los resultados experimentales sobre la gestión de la cuota de energía muestran que EFQ es más eficaz que el planificador de Linux-CFS en la gestión de energía, logrando un reparto proporcional de la energía del sistema independientemente de en qué dispositivo se consume la energía. Los resultados experimentales en la planificación en tiempo real demuestran que EFQ puede lograr de forma eficaz, flexible y robusta el cumplimiento de las restricciones temporales aunque se dé el caso de aumento del el número de tareas o del error en la estimación de energía. Por último, un análisis comparativo de los resultados experimentales sobre la optimización de la experiencia del usuario demuestra que, primero, EFQ es más eficaz y flexible que los algoritmos tradicionales de planificación del procesador, como el que se encuentra por defecto en el planificador de Linux y, segundo, que proporciona la posibilidad de optimizar y preservar la experiencia de usuario para los sistemas móviles con energía limitada. ii Abstract Modern mobile devices have been becoming increasingly powerful in functionality and entertainment as the next-generation mobile computing and communication technologies are rapidly advanced. However, the battery capacity has not experienced an equivalent increase. The user experience of modern mobile systems is therefore greatly affected by the battery lifetime, which is an unstable factor that is hard to control. To address this problem, previous works proposed energy-centric power management (PM) schemes to provide strong guarantee on the battery lifetime by globally managing energy as the first-class resource in the system. As the processor scheduler plays a pivotal role in power management and application performance guarantee, this thesis explores the user experience optimization of energy-limited mobile systems from the perspective of energy-centric processor scheduling in an energy-centric context. This thesis first analyzes the general contributing factors of the mobile system user experience. Then it determines the essential requirements on the energy-centric processor scheduling for user experience optimization, which are proportional power sharing, time-constraint compliance, and when necessary, a tradeoff between the power share and the time-constraint compliance. To meet the requirements, the classical fair queuing algorithm and its reference model are extended from the network and CPU bandwidth sharing domain to the energy sharing domain, and based on that, the energy-based fair queuing (EFQ) algorithm is proposed for performing energy-centric processor scheduling. The EFQ algorithm is designed to provide proportional power shares to tasks by scheduling the tasks based on their energy consumption and weights. The power share of each time-sensitive task is protected upon the change of the scheduling environment to guarantee a stable performance, and any instantaneous power share that is overly allocated to one time-sensitive task can be fairly re-allocated to the other tasks. In addition, to better support real-time and multimedia scheduling, certain real-time friendly mechanism is combined into the EFQ algorithm to give time-limited scheduling preference to the time-sensitive tasks. iii Through high-level modelling and simulation, the properties of the EFQ algorithm are evaluated. The simulation results indicate that the essential requirements of energy-centric processor scheduling can be achieved. The EFQ algorithm is later implemented in the Linux kernel. To assess the properties of the Linux-based EFQ scheduler, an experimental test-bench based on an embedded platform, a multithreading test-bench program, and an open-source benchmark suite is developed. Through specifically-designed experiments, this thesis first verifies the properties of EFQ in power share management and real-time scheduling, and then, explores the potential benefits of employing EFQ scheduling in the user experience optimization for energy-limited mobile systems. Experimental results on power share management show that EFQ is more effective than the Linux-CFS scheduler in managing power shares and it can achieve a proportional sharing of the system power regardless of on which device the energy is spent. Experimental results on real-time scheduling demonstrate that EFQ can achieve effective, flexible and robust time-constraint compliance upon the increase of energy estimation error and task number. Finally, a comparative analysis of the experimental results on user experience optimization demonstrates that EFQ is more effective and flexible than traditional processor scheduling algorithms, such as those of the default Linux scheduler, in optimizing and preserving the user experience of energy-limited mobile systems. iv Acknowledgements This thesis could not have been completed without the support and effort of many. First of all, I would like to thank all the professors and lab mates in GDEM-CITSEM. My first thank goes to my official supervisor, Eduardo Juárez Martínez, from whom I have learned how to conduct research works with critical thinking. Eduardo is a knowledgeable professor with great patience on guiding students, and he always provides valuable and quick comments to my research work. Thanks to the other professors in GDEM: César Sanz Álvaro, Matías Javier Garrido González, Fernando Pescador del Oso and Pedro José Lobo Perea, for their efforts in providing and creating such a friendly and helpful working environment in the lab. Thanks also to my lab mates, especially Rong Ren, who came to GDEM together with me and we started the Master and PhD at the same time. It has been a pleasure to work together with her during the past four years. Thanks to Juanjo and Enrique, I have benefited a lot through the cooperation and the exchange of idea with them. Thanks to David, Gonzalo, Ernesto, Miguel and Oscar, for their generous help both in the work and in everyday life. Without their help, my life in Madrid would be much tougher. I enjoy talking with them during the lunch and appreciate their efforts to push me speak more Spanish. I would also like to thank my family and friends. Thanks to my parents, for their hard working to bring me up and ensure my receiving a good-quality of education, for their greatness and unselfishness to let their only child fly as far as he can and freely chase his life.
Recommended publications
  • Lecture 11: Deadlock, Scheduling, & Synchronization October 3, 2019 Instructor: David E
    CS 162: Operating Systems and System Programming Lecture 11: Deadlock, Scheduling, & Synchronization October 3, 2019 Instructor: David E. Culler & Sam Kumar https://cs162.eecs.berkeley.edu Read: A&D 6.5 Project 1 Code due TOMORROW! Midterm Exam next week Thursday Outline for Today • (Quickly) Recap and Finish Scheduling • Deadlock • Language Support for Concurrency 10/3/19 CS162 UCB Fa 19 Lec 11.2 Recall: CPU & I/O Bursts • Programs alternate between bursts of CPU, I/O activity • Scheduler: Which thread (CPU burst) to run next? • Interactive programs vs Compute Bound vs Streaming 10/3/19 CS162 UCB Fa 19 Lec 11.3 Recall: Evaluating Schedulers • Response Time (ideally low) – What user sees: from keypress to character on screen – Or completion time for non-interactive • Throughput (ideally high) – Total operations (jobs) per second – Overhead (e.g. context switching), artificial blocks • Fairness – Fraction of resources provided to each – May conflict with best avg. throughput, resp. time 10/3/19 CS162 UCB Fa 19 Lec 11.4 Recall: What if we knew the future? • Key Idea: remove convoy effect –Short jobs always stay ahead of long ones • Non-preemptive: Shortest Job First – Like FCFS where we always chose the best possible ordering • Preemptive Version: Shortest Remaining Time First – A newly ready process (e.g., just finished an I/O operation) with shorter time replaces the current one 10/3/19 CS162 UCB Fa 19 Lec 11.5 Recall: Multi-Level Feedback Scheduling Long-Running Compute Tasks Demoted to Low Priority • Intuition: Priority Level proportional
    [Show full text]
  • Process Scheduling Ii
    PROCESS SCHEDULING II CS124 – Operating Systems Spring 2021, Lecture 12 2 Real-Time Systems • Increasingly common to have systems with real-time scheduling requirements • Real-time systems are driven by specific events • Often a periodic hardware timer interrupt • Can also be other events, e.g. detecting a wheel slipping, or an optical sensor triggering, or a proximity sensor reaching a threshold • Event latency is the amount of time between an event occurring, and when it is actually serviced • Usually, real-time systems must keep event latency below a minimum required threshold • e.g. antilock braking system has 3-5 ms to respond to wheel-slide • The real-time system must try to meet its deadlines, regardless of system load • Of course, may not always be possible… 3 Real-Time Systems (2) • Hard real-time systems require tasks to be serviced before their deadlines, otherwise the system has failed • e.g. robotic assembly lines, antilock braking systems • Soft real-time systems do not guarantee tasks will be serviced before their deadlines • Typically only guarantee that real-time tasks will be higher priority than other non-real-time tasks • e.g. media players • Within the operating system, two latencies affect the event latency of the system’s response: • Interrupt latency is the time between an interrupt occurring, and the interrupt service routine beginning to execute • Dispatch latency is the time the scheduler dispatcher takes to switch from one process to another 4 Interrupt Latency • Interrupt latency in context: Interrupt! Task
    [Show full text]
  • Embedded Systems
    Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya Department of Electronics and Communication Engineering STUDY MATERIAL for III rd Year VI th Semester Subject Name: EMBEDDED SYSTEMS Prepared by Dr.P.Venkatesan, Associate Professor, ECE, SCSVMV University Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya Department of Electronics and Communication Engineering PRE-REQUISITE: Basic knowledge of Microprocessors, Microcontrollers & Digital System Design OBJECTIVES: The student should be made to – Learn the architecture and programming of ARM processor. Be familiar with the embedded computing platform design and analysis. Be exposed to the basic concepts and overview of real time Operating system. Learn the system design techniques and networks for embedded systems to industrial applications. Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya Department of Electronics and Communication Engineering SYLLABUS UNIT – I INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS Complex systems and micro processors– Embedded system design process –Design example: Model train controller- Instruction sets preliminaries - ARM Processor – CPU: programming input and output- supervisor mode, exceptions and traps – Co- processors- Memory system mechanisms – CPU performance- CPU power consumption. UNIT – II EMBEDDED COMPUTING PLATFORM DESIGN The CPU Bus-Memory devices and systems–Designing with computing platforms – consumer electronics architecture – platform-level performance analysis - Components for embedded programs- Models of programs-
    [Show full text]
  • Advanced Scheduling
    Administrivia • Project 1 due Friday noon • If you need longer, email cs140-staff. - Put “extension” in the subject - Tell us where you are, and how much longer you need. - We will give short extensions to people who don’t abuse this • Section Friday to go over project 2 • Project 2 Due Friday, Feb. 7 at noon • Midterm following Monday, Feb. 10 • Midterm will be open book, open notes - Feel free to bring textbook, printouts of slides - Laptop computers or other electronic devices prohibited 1 / 38 Fair Queuing (FQ) [Demers] • Digression: packet scheduling problem - Which network packet should router send next over a link? - Problem inspired some algorithms we will see today - Plus good to reinforce concepts in a different domain. • For ideal fairness, would use bit-by-bit round-robin (BR) - Or send more bits from more important flows (flow importance can be expressed by assigning numeric weights) Flow 1 Flow 2 Round-robin service Flow 3 Flow 4 2 / 38 SJF • Recall limitations of SJF from last lecture: - Can’t see the future . solved by packet length - Optimizes response time, not turnaround time . but these are the same when sending whole packets - Not fair Packet scheduling • Differences from CPU scheduling - No preemption or yielding—must send whole packets . Thus, can’t send one bit at a time - But know how many bits are in each packet . Can see the future and know how long packet needs link • What scheduling algorithm does this suggest? 3 / 38 Packet scheduling • Differences from CPU scheduling - No preemption or yielding—must send whole packets .
    [Show full text]
  • (FCFS) Scheduling
    Lecture 4: Uniprocessor Scheduling Prof. Seyed Majid Zahedi https://ece.uwaterloo.ca/~smzahedi Outline • History • Definitions • Response time, throughput, scheduling policy, … • Uniprocessor scheduling policies • FCFS, SJF/SRTF, RR, … A Bit of History on Scheduling • By year 2000, scheduling was considered a solved problem “And you have to realize that there are not very many things that have aged as well as the scheduler. Which is just another proof that scheduling is easy.” Linus Torvalds, 2001[1] • End to Dennard scaling in 2004, led to multiprocessor era • Designing new (multiprocessor) schedulers gained traction • Energy efficiency became top concern • In 2016, it was shown that bugs in Linux kernel scheduler could cause up to 138x slowdown in some workloads with proportional energy waist [2] [1] L. Torvalds. The Linux Kernel Mailing List. http://tech-insider.org/linux/research/2001/1215.html, Feb. 2001. [2] Lozi, Jean-Pierre, et al. "The Linux scheduler: a decade of wasted cores." Proceedings of the Eleventh European Conference on Computer Systems. 2016. Definitions • Task, thread, process, job: unit of work • E.g., mouse click, web request, shell command, etc.) • Workload: set of tasks • Scheduling algorithm: takes workload as input, decides which tasks to do first • Overhead: amount of extra work that is done by scheduler • Preemptive scheduler: CPU can be taken away from a running task • Work-conserving scheduler: CPUs won’t be left idle if there are ready tasks to run • For non-preemptive schedulers, work-conserving is not always
    [Show full text]
  • Lottery Scheduler for the Linux Kernel Planificador Lotería Para El Núcleo
    Lottery scheduler for the Linux kernel María Mejía a, Adriana Morales-Betancourt b & Tapasya Patki c a Universidad de Caldas and Universidad Nacional de Colombia, Manizales, Colombia, [email protected] b Departamento de Sistemas e Informática at Universidad de Caldas, Manizales, Colombia, [email protected] c Department of Computer Science, University of Arizona, Tucson, USA, [email protected] Received: April 17th, 2014. Received in revised form: September 30th, 2014. Accepted: October 20th, 2014 Abstract This paper describes the design and implementation of Lottery Scheduling, a proportional-share resource management algorithm, on the Linux kernel. A new lottery scheduling class was added to the kernel and was placed between the real-time and the fair scheduling class in the hierarchy of scheduler modules. This work evaluates the scheduler proposed on compute-intensive, I/O-intensive and mixed workloads. The results indicate that the process scheduler is probabilistically fair and prevents starvation. Another conclusion is that the overhead of the implementation is roughly linear in the number of runnable processes. Keywords: Lottery scheduling, Schedulers, Linux kernel, operating system. Planificador lotería para el núcleo de Linux Resumen Este artículo describe el diseño e implementación del planificador Lotería en el núcleo de Linux, este planificador es un algoritmo de administración de proporción igual de recursos, Una nueva clase, el planificador Lotería (Lottery scheduler), fue adicionado al núcleo y ubicado entre la clase de tiempo-real y la clase de planificador completamente equitativo (Complete Fair scheduler-CFS) en la jerarquía de los módulos planificadores. Este trabajo evalúa el planificador propuesto en computación intensiva, entrada-salida intensiva y cargas de trabajo mixtas.
    [Show full text]
  • 2. Virtualizing CPU(2)
    Operating Systems 2. Virtualizing CPU Pablo Prieto Torralbo DEPARTMENT OF COMPUTER ENGINEERING AND ELECTRONICS This material is published under: Creative Commons BY-NC-SA 4.0 2.1 Virtualizing the CPU -Process What is a process? } A running program. ◦ Program: Static code and static data sitting on the disk. ◦ Process: Dynamic instance of a program. ◦ You can have multiple instances (processes) of the same program (or none). ◦ Users usually run more than one program at a time. Web browser, mail program, music player, a game… } The process is the OS’s abstraction for execution ◦ often called a job, task... ◦ Is the unit of scheduling Program } A program consists of: ◦ Code: machine instructions. ◦ Data: variables stored and manipulated in memory. Initialized variables (global) Dynamically allocated (malloc, new) Stack variables (function arguments, C automatic variables) } What is added to a program to become a process? ◦ DLLs: Libraries not compiled or linked with the program (probably shared with other programs). ◦ OS resources: open files… Program } Preparing a program: Task Editor Source Code Source Code A B Compiler/Assembler Object Code Object Code Other A B Objects Linker Executable Dynamic Program File Libraries Loader Executable Process in Memory Process Creation Process Address space Code Static Data OS res/DLLs Heap CPU Memory Stack Loading: Code OS Reads on disk program Static Data and places it into the address space of the process Program Disk Eagerly/Lazily Process State } Each process has an execution state, which indicates what it is currently doing ps -l, top ◦ Running (R): executing on the CPU Is the process that currently controls the CPU How many processes can be running simultaneously? ◦ Ready/Runnable (R): Ready to run and waiting to be assigned by the OS Could run, but another process has the CPU Same state (TASK_RUNNING) in Linux.
    [Show full text]
  • CPU Scheduling
    CS 372: Operating Systems Mike Dahlin Lecture #3: CPU Scheduling ********************************* Review -- 1 min ********************************* Deadlock ♦ definition ♦ conditions for its occurrence ♦ solutions: breaking deadlocks, avoiding deadlocks ♦ efficiency v. complexity Other hard (liveness) problems priority inversion starvation denial of service ********************************* Outline - 1 min ********************************** CPU Scheduling • goals • algorithms and evaluation Goal of lecture: We will discuss a range of options. There are many more out there. The important thing is not to memorize the scheduling algorithms I describe. The important thing is to develop strategy for analyzing scheduling algorithms in general. ********************************* Preview - 1 min ********************************* File systems 1 02/24/11 CS 372: Operating Systems Mike Dahlin ********************************* Lecture - 20 min ********************************* 1. Scheduling problem definition Threads = concurrency abstraction Last several weeks: what threads are, how to build them, how to use them 3 main states: ready, running, waiting Running: TCB on CPU Waiting: TCB on a lock, semaphore, or condition variable queue Ready: TCB on ready queue Operating system can choose when to stop running one and when to start the next ready one. OS can choose which ready thread to start (ready “queue” doesn’t have to be FIFO) Key principle of OS design: separate mechanism from policy Mechanism – how to do something Policy – what to do, when to do it 2 02/24/11 CS 372: Operating Systems Mike Dahlin In this case, design our context switch mechanism and synchronization methodology allow OS to switch from any thread to any other one at any time (system will behave correctly) Thread/process scheduling policy decides when to switch in order to meet performance goals 1.1 Pre-emptive v.
    [Show full text]
  • Cross-Layer Resource Control and Scheduling for Improving Interactivity in Android
    SOFTWARE—PRACTICE AND EXPERIENCE Softw. Pract. Exper. 2014; 00:1–22 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe Cross-Layer Resource Control and Scheduling for Improving Interactivity in Android ∗ † Sungju Huh1, Jonghun Yoo2 and Seongsoo Hong1,2,3, , 1Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-si, Gyeonggi-do, Republic of Korea 2Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea 3Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, Republic of Korea SUMMARY Android smartphones are often reported to suffer from sluggish user interactions due to poor interactivity. This is partly because Android and its task scheduler, the completely fair scheduler (CFS), may incur perceptibly long response time to user-interactive tasks. Particularly, the Android framework cannot systemically favor user-interactive tasks over other background tasks since it does not distinguish between them. Furthermore, user-interactive tasks can suffer from high dispatch latency due to the non-preemptive nature of CFS. To address these problems, this paper presents framework-assisted task characterization and virtual time-based CFS. The former is a cross-layer resource control mechanism between the Android framework and the underlying Linux kernel. It identifies user-interactive tasks at the framework-level, by using the notion of a user-interactive task chain. It then enables the kernel scheduler to selectively promote the priorities of worker tasks appearing in the task chain to reduce the preemption latency. The latter is a cross-layer refinement of CFS in terms of interactivity. It allows a task to be preempted at every predefined period.
    [Show full text]
  • TOWARDS TRANSPARENT CPU SCHEDULING by Joseph T
    TOWARDS TRANSPARENT CPU SCHEDULING by Joseph T. Meehean A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN–MADISON 2011 © Copyright by Joseph T. Meehean 2011 All Rights Reserved i ii To Heather for being my best friend Joe Passamani for showing me what’s important Rick and Mindy for reminding me Annie and Nate for taking me out Greg and Ila for driving me home Acknowledgments Nothing of me is original. I am the combined effort of everybody I’ve ever known. — Chuck Palahniuk (Invisible Monsters) My committee has been indispensable. Their comments have been enlight- ening and valuable. I would especially like to thank Andrea for meeting with me every week whether I had anything worth talking about or not. Her insights and guidance were instrumental. She immediately recognized the problems we were seeing as originating from the CPU scheduler; I was incredulous. My wife was a great source of support during the creation of this work. In the beginning, it was her and I against the world, and my success is a reflection of our teamwork. Without her I would be like a stray dog: dirty, hungry, and asleep in afternoon. I would also like to thank my family for providing a constant reminder of the truly important things in life. They kept faith that my PhD madness would pass without pressuring me to quit or sandbag. I will do my best to live up to their love and trust. The thing I will miss most about leaving graduate school is the people.
    [Show full text]
  • Implementation and Evaluation of Proportional Share
    IMPLEMENTATION AND EVALUATION OF PROPORTIONAL SHARE SCHEDULER ON LINUX KERNEL 2.6 A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Master of Science Pradeep Kumar Srinivasan March 2008 This thesis titled IMPLEMENTATION AND EVALUATION OF PROPORTIONAL SHARE SCHEDULER ON LINUX KERNEL 2.6 by PRADEEP KUMAR SRINIVASAN has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology of Ohio University by Frank Drews Assistant Professor of Electrical Engineering and Computer Science Dennis Irwin Dean, Russ College of Engineering and Technology ABSTRACT Srinivasan, Pradeep Kumar, M.S., March 2008, Computer Science Implementation and Evaluation of Proportional Share Scheduler on Linux Kernel 2.6 (121pp.) Director of Thesis: Frank Drews There is a steady proliferation of Time Sensitive applications, adding more di- versity to the regular workload on General Purpose Operating Systems (GPOS). Priority based Scheduling in GPOS are not designed to handle a mix of regular workload and Time Sensitive applications. An Alternative approach to handle this mixed workload is to use Proportional Share Scheduling (PSS). In PSS model, each task receives a share of the re- source in proportion to the weight assigned to it. Most of the PSS schemes proposed in the literature assume the existence of an interface, that can translate application require- ments in to weights. And some leave the onus of specifying weights to the application on the User/Application Developer. In this thesis, we describe our implementation of Earliest Eligible Virtual Deadline First (EEVDF) based PSS on Linux Kernel.
    [Show full text]
  • Scheduling, Cont
    University of New Mexico CPU Scheduling (Cont.) 02/02/2021 Professor Amanda Bienz Textbook pages 214 - 217 Operating System Concepts - 10th Edition Enhanced eText Portions from Prof. Patrick Bridges’ Slides University of New Mexico Review • Want to optimize scheduler based on some metric • So far, looked at two performance metrics • Tturnaround = Tcompletion − Tarrival • Tresponse = Tfirstrun − Tarrival University of New Mexico Review • For systems with mixed workloads, there is generally not an easy single metric to optimize (i.e. turnaround time or response time) • General-purpose systems rely on heuristic schedulers that try to balance the qualitative performance of the system • Question : What’s wrong with round robin? • Aside : How hard is ‘optimal’ scheduling for an arbitrary performance metric? University of New Mexico Multilevel Queue • Using priority scheduling, have separate queue for each priority • Schedule process in highest-priority queue University of New Mexico Multilevel Queue • Similar to priority scheduling, every process with same priority could be executed with round-robin University of New Mexico Multilevel Queue • Prioritization based upon process type University of New Mexico Multi-Level Feedback Queue (MLFQ) • Goal : general purpose scheduling • Must support two job types with distinct goals • “Interactive” programs care about response time • “Batch” programs care about turn-around time • Approach : multiple levels of round-robin: • Each level has higher priority than lower levels, and preempts them University
    [Show full text]