Gaseous Argon

Total Page:16

File Type:pdf, Size:1020Kb

Gaseous Argon Safetygram 3 Gaseous argon Gaseous argon is tasteless, colorless, odorless, noncorrosive, and nonflammable. Argon belongs to the family of rare inert gases. It is the most plentiful of the rare gases making up approximately 1% of the earth’s atmosphere. It is monatomic and extremely inert, forming no known chemical compounds. Since argon is inert, special materials of construction are not normally required. Vessels and piping must be selected and designed to withstand the pressure and temperatures involved and comply with applicable codes and regulations. Manufacture Argon is produced by an air separation unit (ASU) through the liquefaction of atmospheric air and separation of the argon by continuous cryogenic distillation. The argon is then removed as a cryogenic liquid. Uses Argon serves as a shielding gas to protect metals from oxidation during welding. Inert gas welding is the preferred method of joining several ferrous and nonferrous alloys. The metals and semiconductor manufacturing industries employ argon as a purge or inerting gas in furnaces, or other processing steps. In some instances, liquid argon is introduced and then vaporized over the surface of volatile or reactive molten metals to significantly reduce oxidation and/or volatility using an inert “blanket” of gas. High-volume flow rates of argon are introduced via specialized lances or “tuyeres” in a variety of melting and refining processes. The argon typically acts as a “shroud” gas to provide protection to the tuyere. It also promotes removal of impurities and/or dissolved gases in several refining processes. Argon is also widely used in the lighting industry for filling bulbs and in combination with other rare gases for special color effects. Health effects Table 1: Compressed Argon Physical and Chemical Properties Since argon is odorless, colorless, Chemical Formula Ar tasteless, and nonirritating, it has no Molecular Weight 39.95 warning properties. Argon is non- Boiling Point @ 1 atm –302.6°F (–185.9°C) toxic and inert. It can act as a simple Freezing Point @ 1 atm –308.8°F (–189.4°C) asphyxiant by displacing the oxygen Critical Temperature –188.4°F (–122.4°C) in air to levels below that required to Critical Pressure 705.8 psia (48.0 atm) support life. Inhalation of argon in ex- Density, Liquid, @ BP, 1 atm 87.02 lb/ft3 (1394 kg/m3) cessive amounts can cause dizziness, Density, Gas @ 68°F (20°C), 1 atm 0.1034 lb/ft3 (1.656 kg/m3) nausea, vomiting, loss of conscious- Specific Gravity, Gas (air=1) @ 68°F (20°C), 1 atm 1.38 ness, and death. Death may result Specific Gravity, Liquid (water=1) @ 68°F (20°C), 1 atm 1.40 from errors in judgment, confusion, or Specific Volume @ 68°F (20°C), 1 atm 9.68 ft3/lb (0.604 m3/kg) loss of consciousness, which prevents Latent Heat of Vaporization 69.8 Btu/lb (162.3 kJ/kg) self- rescue. At low oxygen concen- Expansion Ratio, Liquid to Gas, BP to 68°F (20°C) 1 to 840 trations, unconsciousness and death may occur in seconds and without warning. Cylinders Valve connections Personnel, including rescue workers, Cylinders are manufactured according Different valve outlet connections are should not enter areas where the to Transportation regulations, which used based on national or regional oxygen concentration is below 19.5%, specify the material of construction, standards. In North America, the unless provided with a self-contained method of manufacture, testing, and Compressed Gas Association (CGA) breathing apparatus (SCBA) or what products they are permitted to recommends three different connec- air-line respirator. be filled with, as well as other details. tions for argon, depending on the A cylinder is a hollow tube with a pressure of the container. In addi- For more information on oxygen- closed concave base that permits it tion, a high-integrity connection, also deficient atmospheres, consult to stand upright. The opposite end is known as a Diameter Index Safety Air Products’ Safetygram #17, “Dangers tapered to a small opening, threaded System (DISS) connection, has been of Oxygen-Deficient Atmospheres.” to accommodate the installation of assigned to argon. Cylinders contain- a valve. A threaded neck ring is at- ing argon at pressures up to 3,000 psig Containers tached to the tapered end to allow a use a CGA 580 connection; cylinders Argon is shipped and stored in high- protective cylinder cap to be installed. with pressures between 3,001 and pressure cylinders, tubes, or tube Cylinders may be used individually or 5,500 psig use the CGA 680 connec- trailers, depending upon the quantity in groups. When used in groups, the tion; and cylinders with pressures required by the user. Containers are cylinders should be piped together for between 5,501 and 7,500 psig use a designed and manufactured according stationary storage or to form portable CGA 677 connection. The DISS connec- to applicable codes and specifications banks. tion assigned to argon is 718. for the pressures and temperatures involved. The quantity of product a Tubes Pressure-relief devices container can hold is determined by Tubes are manufactured according to In North America and Asia, argon con- its water capacity and pressure rating. varying regional standards and regu- tainers are equipped with pressure- lations, depending on whether they relief devices to protect from overpres- are used for transportation or mount- surization. Argon cylinders less than ed permanently at a site. Tubes are 65" long use a frangible disk device. generally mounted on a truck-trailer Cylinders over 65" use a combination chassis or railcar bed or placed at sta- device consisting of a frangible disk tionary locations when large amounts backed by a fusible alloy. Combination of argon are needed. A tube is a pipe devices require that both the tempera- that is tapered on both ends. Each end ture and pressure requirements be is threaded to allow the installation of reached before the device will relieve. valves, connections, or relief devices. In Europe, pressure relief devices are not commonly used on cylinders. Shipment of gaseous Storage • If difficulty is experienced operat- • Cylinders should be stored up- ing the container valve or using the argon container connections, discontinue Compliance with applicable right in a well ventilated, dry, use and contact the gas supplier. Dangerous Goods regulations is cool, secure area that is protected Use only the proper connections required for all shipments by motor from the weather and preferably on the container. DO NOT USE freight, rail, air and water. These regu- fire-resistant. ADAPTERS! lations describe the marking, labeling, • No part of a cylinder should ever placarding, and shipping papers re- be allowed to exceed 125˚F (52˚C) • Always open a compressed gas quired. International shipments by air and areas should be free of combus- cylinder valve slowly to avoid rapid must comply with International Air tible materials. Never deliberately system pressurization. Transport Association/International overheat a cylinder to increase the • NEVER insert an object (e.g. wrench, Civil Air Organization (IATA/ICAO) pressure or discharge rate. Dangerous Goods regulations. Final screwdriver, pry bar, etc.) into the acceptance for air transport is at the • Cylinders should be stored away opening of the cylinder cap. Doing discretion of the airline. International from heavily traveled areas and so may damage or inadvertently shipments by water must com- emergency exits. open the valve. Use only a specially ply with International Maritime designed strap-wrench to remove Organization (IMO) regulations. • Avoid areas where salt and other overtightened or rusted caps. corrosive materials are present. • Never tamper with the safety de- Safety considerations • The valve outlet seal and valve pro- vices on valves or cylinders. The hazards associated with argon are tective cap should be left in place asphyxiation and the high pressure of until the cylinder has been secured • Use piping and equipment designed the gas in containers and systems. against a wall or bench, or placed in to withstand the maximum pres- sures encountered. If oxygen-deficient atmospheres are a cylinder stand and is ready for use. suspected or can occur, use oxygen • When returning empty cylinders, • Use a pressure reducing regulator monitoring equipment to test for insure the valve is closed and that or separate control valve along with oxygen-deficient atmospheres. some positive pressure remains properly designed pressure relief Review the appropriate Safety Data in the cylinder. Replace any valve devices to safely discharge gas to Sheet (SDS). outlet and protective caps originally working systems. shipped with the container, and • Use a check valve to prevent reverse Buildings label the cylinder as “Empty.” Do gas flow into the containers. Provide adequate ventilation in areas not store full and empty containers using argon. Provide monitoring for together. • It is recommended that all vents be areas where oxygen displacement piped to the exterior of the building may occur. A 19.5% oxygen concentra- Handling and are in accordance with local tion in the air is the minimum recom- • Never drop, drag, roll or slide cyl- regulations. mended for working without special inders. Use a specifically designed breathing equipment. hand-truck for cylinder movement. • Refilling or shipping a compressed gas cylinder without the consent of Remember, argon has no warning • Never attempt to lift a cylinder by the owner is not allowed. properties! its cap. • Wrenches should never be used to open or close a valve equipped with a handwheel. If the valve is faulty, contact the gas supplier. Personal protective Emergency Response System T 800-523-9374 (Continental U.S. and Puerto Rico) equipment (PPE) T +1-610-481-7711 (other locations) Personnel must be thoroughly For regional ER telephone numbers, please refer to the local SDS 24 hours a day, 7 days a week for assistance involving Air Products and Chemicals, Inc.
Recommended publications
  • And Abiogenesis
    Historical Development of the Distinction between Bio- and Abiogenesis. Robert B. Sheldon NASA/MSFC/NSSTC, 320 Sparkman Dr, Huntsville, AL, USA ABSTRACT Early greek philosophers laid the philosophical foundations of the distinction between bio and abiogenesis, when they debated organic and non-organic explanations for natural phenomena. Plato and Aristotle gave organic, or purpose-driven explanations for physical phenomena, whereas the materialist school of Democritus and Epicurus gave non-organic, or materialist explanations. These competing schools have alternated in popularity through history, with the present era dominated by epicurean schools of thought. Present controversies concerning evidence for exobiology and biogenesis have many aspects which reflect this millennial debate. Therefore this paper traces a selected history of this debate with some modern, 20th century developments due to quantum mechanics. It ¯nishes with an application of quantum information theory to several exobiology debates. Keywords: Biogenesis, Abiogenesis, Aristotle, Epicurus, Materialism, Information Theory 1. INTRODUCTION & ANCIENT HISTORY 1.1. Plato and Aristotle Both Plato and Aristotle believed that purpose was an essential ingredient in any scienti¯c explanation, or teleology in philosophical nomenclature. Therefore all explanations, said Aristotle, answer four basic questions: what is it made of, what does it represent, who made it, and why was it made, which have the nomenclature material, formal, e±cient and ¯nal causes.1 This aristotelean framework shaped the terms of the scienti¯c enquiry, invisibly directing greek science for over 500 years. For example, \organic" or \¯nal" causes were often deemed su±cient to explain natural phenomena, so that a rock fell when released from rest because it \desired" its own kind, the earth, over unlike elements such as air, water or ¯re.
    [Show full text]
  • Viscosity of Gases References
    VISCOSITY OF GASES Marcia L. Huber and Allan H. Harvey The following table gives the viscosity of some common gases generally less than 2% . Uncertainties for the viscosities of gases in as a function of temperature . Unless otherwise noted, the viscosity this table are generally less than 3%; uncertainty information on values refer to a pressure of 100 kPa (1 bar) . The notation P = 0 specific fluids can be found in the references . Viscosity is given in indicates that the low-pressure limiting value is given . The dif- units of μPa s; note that 1 μPa s = 10–5 poise . Substances are listed ference between the viscosity at 100 kPa and the limiting value is in the modified Hill order (see Introduction) . Viscosity in μPa s 100 K 200 K 300 K 400 K 500 K 600 K Ref. Air 7 .1 13 .3 18 .5 23 .1 27 .1 30 .8 1 Ar Argon (P = 0) 8 .1 15 .9 22 .7 28 .6 33 .9 38 .8 2, 3*, 4* BF3 Boron trifluoride 12 .3 17 .1 21 .7 26 .1 30 .2 5 ClH Hydrogen chloride 14 .6 19 .7 24 .3 5 F6S Sulfur hexafluoride (P = 0) 15 .3 19 .7 23 .8 27 .6 6 H2 Normal hydrogen (P = 0) 4 .1 6 .8 8 .9 10 .9 12 .8 14 .5 3*, 7 D2 Deuterium (P = 0) 5 .9 9 .6 12 .6 15 .4 17 .9 20 .3 8 H2O Water (P = 0) 9 .8 13 .4 17 .3 21 .4 9 D2O Deuterium oxide (P = 0) 10 .2 13 .7 17 .8 22 .0 10 H2S Hydrogen sulfide 12 .5 16 .9 21 .2 25 .4 11 H3N Ammonia 10 .2 14 .0 17 .9 21 .7 12 He Helium (P = 0) 9 .6 15 .1 19 .9 24 .3 28 .3 32 .2 13 Kr Krypton (P = 0) 17 .4 25 .5 32 .9 39 .6 45 .8 14 NO Nitric oxide 13 .8 19 .2 23 .8 28 .0 31 .9 5 N2 Nitrogen 7 .0 12 .9 17 .9 22 .2 26 .1 29 .6 1, 15* N2O Nitrous
    [Show full text]
  • Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Ions
    J. Phys. Chem. A 2000, 104, 3655-3669 3655 Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Ions. 5. PAHs Incorporating a Cyclopentadienyl Ring† D. M. Hudgins,* C. W. Bauschlicher, Jr., and L. J. Allamandola NASA Ames Research Center, MS 245-6, Moffett Field, California 94035 J. C. Fetzer CheVron Research Company, Richmond, California 94802 ReceiVed: NoVember 5, 1999; In Final Form: February 9, 2000 The matrix-isolation technique has been employed to measure the mid-infrared spectra of the ions of several polycyclic aromatic hydrocarbons whose structures incorporate a cyclopentadienyl ring. These include the cations of fluoranthene (C16H10), benzo[a]fluoranthene, benzo[b]fluoranthene, benzo[j]fluoranthene, and benzo- [k]fluoranthene (all C20H12 isomers), as well as the anions of benzo[a]fluoranthene and benzo[j]fluoranthene. With the exception of fluoranthene, which presented significant theoretical difficulties, the experimental data are compared to theoretically calculated values obtained using density functional theory (DFT) at the B3LYP/ 4-31G level. In general, there is good overall agreement between the two data sets, with the positional agreement between the experimentally measured and theoretically predicted bands somewhat better than that associated with their intensities. The results are also consistent with previous experimental studies of polycyclic aromatic hydrocarbon ions. Specifically, in both the cationic and anionic species the strongest ion bands typically cluster in the 1450 to 1300 cm-1 range, reflecting an order-of-magnitude enhancement in the CC stretching and CH in-plane bending modes between 1600 and 1100 cm-1 in these species. The aromatic CH out-of- plane bending modes, on the other hand, are usually modestly suppressed (e 2x - 5x) in the cations relative to those of the neutral species, with the nonadjacent CH modes most strongly affected.
    [Show full text]
  • Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture
    Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture Stephen Lucas 05/11/10 Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture Stephen Lucas With laboratory partner: Christopher Richards University College London 5th November 2010 Abstract: The ratio of specific heats, γ, at constant pressure, Cp and constant volume, Cv, have been determined by measuring the oscillation frequency when a ball bearing undergoes simple harmonic motion due to the gravitational and pressure forces acting upon it. The γ value is an important gas property as it relates the microscopic properties of the molecules on a macroscopic scale. In this experiment values of γ were determined for input gases: CO2, Ar, N2, and an Ar + N2 mixture in the ratio 0.51:0.49. These were found to be: 1.1652 ± 0.0003, 1.4353 ± 0.0003, 1.2377 ± 0.0001and 1.3587 ± 0.0002 respectively. The small uncertainties in γ suggest a precise procedure while the discrepancy between experimental and accepted values indicates inaccuracy. Systematic errors are suggested; however it was noted that an average discrepancy of 0.18 between accepted and experimental values occurred. If this difference is accounted for, it can be seen that we measure lower vibrational contributions to γ at room temperature than those predicted by the equipartition principle. It can be therefore deduced that the classical idea of all modes contributing to γ is incorrect and there is actually a „freezing out‟ of vibrational modes at lower temperatures. I. Introduction II. Method The primary objective of this experiment was to determine the ratio of specific heats, γ, for gaseous Ar, N2, CO2 and an Ar + N2 mixture.
    [Show full text]
  • Liquid Argon
    Safetygram 8 Liquid argon Liquid argon is tasteless, colorless, odorless, noncorrosive, nonflammable, and extremely cold. Belonging to the family of rare gases, argon is the most plentiful, making up approximately 1% of the earth’s atmosphere. It is monatomic and extremely inert, forming no known chemical compounds. Since argon is inert, special materials of construction are not required. However, materials of construction must be selected to withstand the low temperature of liquid argon. Vessels and piping should be designed to American Society of Mechanical Engineers (ASME) specifications or the Department of Transportation (DOT) codes for the pressures and temperatures involved. Although used more commonly in the gaseous state, argon is commonly stored and transported as a liquid, affording a more cost-effective way of providing product supply. Liquid argon is a cryogenic liquid. Cryogenic liquids are liquefied gases that have a normal boiling point below –130°F (–90°C). Liquid argon has a boiling point of –303°F (–186°C). The temperature difference between the product and the surrounding environment, even in winter, is substantial. Keeping this surrounding heat from the product requires special equipment to store and handle cryogenic liquids. A typical system consists of the following components: a cryogenic storage tank, one or more vaporizers, a pressure control system, and all of the piping required for fill, vaporization. The cryogenic tank is constructed, in principle, like a vacuum bottle. It is designed to keep heat away from the liquid that is contained in the inner vessel. Vaporizers convert the liquid argon to its gaseous state. A pressure control manifold controls the pressure at which the gas is fed to the process.
    [Show full text]
  • Absorption and Laser Induced Fluorescence Spectroscopy Of
    Astronomy in Focus, Volume 1, Focus Meeting 12, E17 XXIXth IAU General Assembly, August 2015 c International Astronomical Union 2017 Piero Benvenuti, ed. doi:10.1017/S1743921317005075 Absorption and Laser Induced Fluorescence Spectroscopy of Neutral Polycyclic Aromatic Hydrocarbons in Argon matrices Salma Bejaoui 1,2, Farid Salama 1 and Ella Sciamma-O’Brien 1,3 1 NASA Ames Research Center, Mail Stop 245-6, Moffett Field, California 94035-1000 2 NPP, Oak Ridge Associated Universities 3 BAER Institute, Petaluma, CA email: [email protected] Keywords. PAH, fluorescence, UV-VIS, ERE, comet. Polycyclic aromatic hydrocarbons (PAHs) are considered as plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments, as well as for broad emission band features seen in cometary spectra. We report the absorption spectra of phenanthrene, anthracene, fluoranthene, pentacene, pyrene, chrysene and triphenylene isolated at 10 K in solid argon matrices together with laser induced fluores- cence (LIF) spectra at 355 nm of matrix-isolated anthracene and fluoranthene. LIF spectra are compared with the UV/blue fluorescence spectra of the Red Rectangle Nebula (RR). The LIF spectra measured in solid Ar matrices have been shifted to the predicted position of the PAH band emission in the gas phase for comparison with the astronomical observations (Fig. 1). These preliminary results indicate that small neutral PAHs can well account for the blue fluorescence observed in the RR as it has been previously proposed (Vijh, et al. (2004)). LIF spectra of anthracene measured in Ar matrices are also compared to the emission spectra of 1P/Halley’s inner coma(Fig.
    [Show full text]
  • Unique Properties of Water!
    Name: _______ANSWER KEY_______________ Class: _____ Date: _______________ Unique Properties of Water! Word Bank: Adhesion Evaporation Polar Surface tension Cohesion Freezing Positive Universal solvent Condensation Melting Sublimation Dissolve Negative 1. The electrons are not shared equally between the hydrogen and oxygen atoms of water creating a Polar molecule. 2. The polarity of water allows it to dissolve most substances. Because of this it is referred to as the universal solvent 3. Water molecules stick to other water molecules. This property is called cohesion. 4. Hydrogen bonds form between adjacent water molecules because the positive charged hydrogen end of one water molecule attracts the negative charged oxygen end of another water molecule. 5. Water molecules stick to other materials due to its polar nature. This property is called adhesion. 6. Hydrogen bonds hold water molecules closely together which causes water to have high surface tension. This is why water tends to clump together to form drops rather than spread out into a thin film. 7. Condensation is when water changes from a gas to a liquid. 8. Sublimation is when water changes from a solid directly to a gas. 9. Freezing is when water changes from a liquid to a solid. 10. Melting is when water changes from a solid to a liquid. 11. Evaporation is when water changes from a liquid to a gas. 12. Why does ice float? Water expands as it freezes, so it is LESS DENSE AS A SOLID. 13. What property refers to water molecules resembling magnets? How are these alike? Polar bonds create positive and negative ends of the molecule.
    [Show full text]
  • Inert Gas & Winemaking a Moremanual !™ by Shea A.J
    Inert Gas & Winemaking A MoreManual !™ by Shea A.J. Comfort www.MoreWineMaking.com 1–800–823–0010 The Importance of Inert Gas therefore eliminating any headspace (as is the case when filling/topping-up barrels), but as we shall see in the next During aging, if a wine is not protected from both microbial section this may not always be practical. spoilage and oxygen at all times it is likely to spoil. Protecting wine usually involves maintaining proper SO 2 Expansion & Contraction — The Need For levels and keeping containers full. Additionally, purging your headspaces with inert gas to effectively remove the Headspaces: oxygen greatly increases the amount of protection. When Unless you are in a situation with a guarantee of temperature stability, as with a glycol-jacketed tank, or a it comes to using SO2, the benefits are widely understood and in-depth information describing its usage is readily temperature-controlled storage area, tanks and carboys available in most winemaking literature. Yet, often when should have a small headspace kept at the top (note that these texts refer to purging with inert gas they fail to barrels should not have any space in them when filled/ explain the actual, step-by-step techniques needed to topped). This headspace is needed because it helps to do so. It is important be aware that creating an effective compensate for the expansion and contraction of the blanket of gas to protect your wine requires more than liquid due to ambient temperature changes (remember just shooting some Argon into the headspace of your things expand when heated and contract when cooled).
    [Show full text]
  • Biological Effects of Noble Gases
    Physiol. Res. 56 (Suppl. 1): S39-S44, 2007 Biological Effects of Noble Gases J. RŮŽIČKA, J. BENEŠ, L. BOLEK, V. MARKVARTOVÁ Department of Biophysics, Medical Faculty of Charles University, Plzeň, Czech Republic Received May 23, 2007 Accepted May 29, 2007 On-line available May 31, 2007 Summary Noble gases are known for their inertness. They do not react chemically with any element at normal temperature and pressure. Through that, some of them are known to be biologically active by their sedative, hypnotic and analgesic properties. Common inhalation anesthetics are characterized by some disadvantages (toxicity, decreased cardiac output, etc). Inhalation of xenon introduces anesthesia and has none of the above disadvantages, hence xenon seems to be the anesthetic gas of the future (with just one disadvantage – its cost). It is known that argon has similar anesthetic properties (under hyperbaric conditions), which is much cheaper and easily accessible. The question is if this could be used in clinical practice, in anesthesia of patients who undergo treatment in the hyperbaric chamber. Xenon was found to be organ-protective. Recent animal experiments indicated that xenon decreases infarction size after ischemic attack on brain or heart. The goal of our study is to check if hyperbaric argon has properties similar to those of xenon. Key words Noble gases • Xenon• Argon • Diving • Anesthesia • Stroke Introduction it is the point of this work. Above all, available information and our own observation concerning xenon Helium, neon, argon, krypton, xenon and radon and argon will be gathered here. are elements of the eighth group of the periodic table of Argon is the longest known and the least rare gas elements.
    [Show full text]
  • CHEMICAL ACTIVITY of NOBLE GASES Kr and Xe and ITS IMPACT on FISSION GAS ACCUMULATION in the IRRADIATED UO2 FUEL M
    ANNUAL REPORT 2005 Nuclear Technology in Energy Generation CHEMICAL ACTIVITY OF NOBLE GASES Kr AND Xe AND ITS IMPACT ON FISSION GAS ACCUMULATION IN THE IRRADIATED UO2 FUEL M. Szuta Institute of Atomic Energy It is generally accepted that most of the insoluble We can further assume that above a limiting value inert gas atoms Xe and Kr produced during fissioning of fission fluency (burn-up) a more intensive process of are retained in the fuel irradiated at a temperature lower irradiation induced chemical interaction occurs. Signifi- than the threshold. Some authors assume random diffu- cant part of fission gas product is thus expected to be sion of gas atoms to grain boundaries and consider the chemically bound in the matrix of UO2. effect of trapping the atoms at inter-granular bubbles From the moment of discovering the rare gases until saturation occurs. Others confirmed that bubbles (helium, neon, argon, krypton, xenon and radon) at the tend to concentrate in the grain boundaries during irra- end of XIX century until to the beginning of sixties diation. Likewise, some authors further assume that years of XX century it was considered that the noble most of the gas atoms are retained in solution in the gases are chemically inactive. matrix of grains being there immobilised or are precipi- The nobility of rare gases started to deteriorate af- tated into small fission gas bubbles. ter the first xenon compound was found by Barlett in The experimental data presented in the open litera- 1962 [1]. Barlett showed that the noble gases are capa- ture imply that we can assume that after irradiation ble of forming what one could consider as normal exposure in excess of 1018 fissions/cm3 the single gas chemical compounds, compelling chemists to readjust atom diffusion can be disregarded in description of considerably their thinking regarding these elements.
    [Show full text]
  • Periodic Table of the Elements Notes
    Periodic Table of the Elements Notes Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals (left side of the table) Nonmetals (right side of the table) Metalloids (touching the zig zag line) Basic Organization by: Atomic structure Atomic number Chemical and Physical Properties Uses of the Periodic Table Useful in predicting: chemical behavior of the elements trends properties of the elements Atomic Structure Review: Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus). Energy Levels Review: Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms Energy Levels & Valence Electrons Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only) The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons Using the Table to Identify Valence Electrons Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18. Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons.
    [Show full text]
  • Using Xenon-133 and a Scintillation Camera to Evaluate Pulmonary Function
    USING XENON-133 AND A SCINTILLATION CAMERA TO EVALUATE PULMONARY FUNCTION Merle K. Loken and Hugh D. Westgate University of Minnesota Hospitals, Minneapolis, Minnesota During the past several years considerable atten monary-function laboratory (6—9). Thus because of tion has been given to evaluating pulmonary disease their universal availability, the noble gases are being using radioisotopic techniques. The majority of the used more extensively, and, of these gases, ‘33Xehas radioactive preparations used for these studies can the best physical characteristics (5, 10—13). be divided into two general categories : colloidal In this paper we report our preliminary experience aggregates of albumin and radioactive gases. Macro using an Anger scintillation camera to record pul aggregates labeled with 1311or 99@'Tchave been used monary uptake and clearance of ‘33Xein patients extensivelyfor determining regional pulmonary per referred to our service for pulmonary-function evalu fusion and, as such, are useful for evaluating patients ation. The radioactive xenon was administered either with suspected pulmonary emboli (1—5). The dis by inhalation or intravenous injection. tribution of these macroaggregates in the lung is usually determined by conventional rectilinear scan MATERIALS AND METHODS ning although the scintillation camera has also been We obtain 133Xe in 1-curie ampules at approxi used effectively (4,5). mately biweekly intervals from Oak Ridge National To obtain information on ventilation and diffusion Laboratory. The gas is contained in a volume of one of the radioactive gases—oxygen, carbon dioxide, about 5 cc at a pressure of about 10 mmHg (Fig. 1). krypton or xenon—must be used.
    [Show full text]