Hymenoptera: Megachilidae) in a Monte Desert Reserve in Mid-Western Argentina Nydia Vitale, Diego P

Total Page:16

File Type:pdf, Size:1020Kb

Hymenoptera: Megachilidae) in a Monte Desert Reserve in Mid-Western Argentina Nydia Vitale, Diego P Ecology and nesting biology of the wood-boring bee Trichothurgus laticeps (Hymenoptera: Megachilidae) in a Monte desert reserve in mid-western Argentina Nydia Vitale, Diego P. Vázquez To cite this version: Nydia Vitale, Diego P. Vázquez. Ecology and nesting biology of the wood-boring bee Trichothurgus laticeps (Hymenoptera: Megachilidae) in a Monte desert reserve in mid-western Argentina. Apidologie, Springer Verlag, 2017, 48 (1), pp.31-40. 10.1007/s13592-016-0446-6. hal-01532475 HAL Id: hal-01532475 https://hal.archives-ouvertes.fr/hal-01532475 Submitted on 2 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:31–40 Original article * INRA, DIB and Springer-Verlag France, 2016 DOI: 10.1007/s13592-016-0446-6 Ecology and nesting biology of the wood-boring bee Trichothurgus laticeps (Hymenoptera: Megachilidae) in a Monte desert reserve in mid-western Argentina 1 1,2 Nydia VITALE , Diego P. VÁZQUEZ 1Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, 5500, Mendoza, Argentina 2Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina Received 14 January 2016 – Revised 17 March 2016 – Accepted 31 March 2016 Abstract – Studying bee nests can enlighten our understanding of feeding specialization and phylogenetic relationships of bees. We studied the nesting and feeding habits of Trichothurgus laticeps in the Monte desert ecosystem. Our results show that T. laticeps is attracted to pre-existing cavities in wood (trap nests), which were further excavated for nest construction; nest cells are unlined and provisioned almost exclusively with pollen of the cactus Opuntia sulphurea . The species overwinters inside a hard cocoon. Our results reinforce the hypothesis previously proposed by other authors that the unworked pollen mass and oligolecty are plesiomorphic characters in the Megachilidae, and that the wood-boring behavior for nest construction indicates convergent evolution with the Xylocopinae. We also propose that the cocoon structure might represent an evolutionary novelty for the Lithurginae. host-plant specialization / Lithurginae / nesting behavior and structure / phylogenetic relationships / solitary bees 1. INTRODUCTION Megachilinae (Danforth et al. 2013; Hedtke et al. 2013). It is accepted that Fideliinae is the sister The study of bee nests, including their architec- clade to the remainder of the family (Danforth et ture, the structure of brood cells, the type of provi- al. 2013;Hedtkeetal.2013;Litmanetal.2011; sions, and larval behavior, may enhance our under- Michener 2007). While morphological studies standing of the ecology and evolution of bees (Gonzalez et al. 2012) indicate that the (Michener 2007). The Megachilidae is an impos- Pararhophitinae are more basal than the ing bee family, with over 4000 described species Lithurginae, molecular studies are less conclusive, (Ascher and J. Pickering 2010). Phylogenetic stud- given that both groups exhibit several ies suggest this family is monophyletic (Danforth plesiomorphic characters (Hedtke et al. 2013; et al. 2013;Hedtkeetal.2013; Litman et al. 2011; Litman et al. 2011). Roig-Alsina et al. 1993) with four subfamilies: Studying bee nests can also illuminate our un- Fideliinae, Lithurginae, Pararhophitinae, and derstanding of feeding specialization in bees. Although a number of bee species have been iden- tified as purported pollen specialists (e.g., Neff Electronic supplementary material The online version of 2003;NeffandSimpson1992), in many cases, this this article (doi:10.1007/s13592-016-0446-6) contains supplementary material, which is available to authorized conjecture rests primarily on visitation observations users. or scopal pollen loads, which usually represent a single foraging trip (Sipes and Tepedino 2005). In Corresponding author: N. Vitale, [email protected] contrast, pollen provisions in bee nests offer copi- Manuscript editor: Klaus Hartfelder ous information on the foraging habits of female 32 N. Vitale and D.P. Vázquez bees, integrating their resource use in space and Our study focuses on Trichothurgus laticeps time. Several studies have so far attempted to eval- Friese, 1906, a species occurring in xeric regions uate pollen specialization in bees using pollen pro- of Argentina. We studied the foraging and nesting visions in brood cells (Bosch et al. 1993;Buschini biology of T. laticeps , including cell provisions, et al. 2009; Dórea et al. 2013; Gonçalves et al. 2012; cocoon structure, and nest architecture. Rust et al. 2004; Schlindwein et al. 2009). The available information on nesting and feed- 2. MATERIAL AND METHODS ing habits is extremely limited for some groups in the Megachilidae, which hinders our understand- 2.1. Study sites and field methods ing of their phylogenetic relationships. This is the case for the Lithurginae, for which the information Data used in this study come from field studies on nesting habits is particularly limited. This sub- conducted between 2006 and 2012 in the Monte family includes four genera: Lithurgus , Desert of Villavicencio Nature Reserve, Mendoza, Lithurgopsis , Microthurge , and Trichothurgus . Argentina (Chacoff et al. 2012;Dorado2011; There is information about the nesting biology of Vázquez et al. 2009, 2012; Table I). Because data come the former three genera from several studies, with from several projects running simultaneously at the at least 12 studies on Lithurgus and Lithurgopsis same sites, there are minor differences in the sampling species (Rozen 2013; Rozen and Hall 2014), one methods used in different years. In 2006 and 2007, four study on one Microthurge species (M. corumbae ; sample sites were located near a dry temporary stream at Garófalo et al. 1992), and additional notes on the ca. 1240 m above sea level. In 2008, data were collected occurrence of other species in South America at 18 sites located at different elevations above sea level (Ascher and J. Pickering 2010; Moure and Melo (range 1078–1450 m), post fire age (range 1–50+ 2012). Most species in these three genera excavate years), and vegetation types. In 2009–2011, data were their burrows in wood and construct their nests with collected at six sites located at 1115–1750 m above sea unlined brood cells (Rozen 2013); trophically, they level. Additional sites were included in 2012, range from oligolectic, feeding on few plant species expanding the elevational range of the studies. (Díaz and Cocucci 2003), to polylectic, feeding on Data on pollinator visitation to flowers came from a many plant species of multiple families (Güler and study conducted between 2006 and 2011 (Chacoff et al. Sorkun 2007). The information available for 2012 and additional unpublished results). Pollinator Trichothurgus is comparatively rather limited, visits to flowers were recorded in the spring and early coming from anecdotal nesting observations of summer (September to December or January) in six T. dubius (Claude-Joseph 1926;Rozen1973)and consecutive flowering seasons. We recorded flower vis- astudyofT. bolithophilus in which this species iting insects on plant species in weekly surveys, sam- was observed nesting in dry horse dung (Sarzetti pling the whole community as comprehensively as pos- et al. 2012). Although Trichothurgus species were sible (see Chacoff et al. 2012 for further details on believed to feed primarily on pollen from cactus sampling methods). (Michener 2007), T. bolithophilus was recorded Bees were studied using wooden trap nests. Each feeding primarily on pollen from the Asteraceae study site was a 200 × 100 m rectangular area with six and Amaranthaceae (Sarzetti et al. 2012). Thus, it sampling points separated by 100 m. Each sample point is unclear whether the anecdotic records of the nest consisted of two poles separated by 10 m. Each pole building and provisioning habits of T. dubius and contained 24 traps of three different sizes: eight traps of T. bolithophilus are representative of the diversity 14 cm hole length and 0.5 cm of hole diameter, eight of nesting habits of Trichothurgus , and whether the traps measuring 14 cm × 0.8 cm, and eight traps mea- above observations indicate a departure from the suring 28 × 1.1 cm; the smaller traps were placed at wood nesting habits of Lithurgus and Microthurge . 0.70 m from the ground, the longer at 0.40 m. All study Answering these questions should improve our sites were visited weekly to conduct plant abundance understanding of the evolution of the nesting habits surveys and to collect nests in the spring and summer, of lithurgine bees and of the phylogenetic relation- the flowering and bee activity season in the study area. ships within this group and with other bee groups. We used all data sets to describe the natural history of Ecology and nesting biology of T. laticeps 33 Table I. Resume of study aims and data use for the T. laticeps nest sites in a Monte desert reserve. Aim Year Number of sites Number of nests built Natural history (whole study) 2007–2012 21 221 Phenology 2009 1 11 Visits to flowers (census) 2006–2011 2 – Temporal co- 2007–2012 2 42 occurrence Spatial co- 2008 18 21 occurrence Larval pollen 2008–2009 11 80 provision Parasite attack 2012 1 1 T. laticeps collected between 2008 and 2012 in the sites with the species level function of R’s package described above. For the analysis of plant/bee spatial bipartite. The index d measures the deviation co-occurrence, we used the 2008 data. To study inter- from randomly distributed interactions, and varies annual variation in nesting habits, we used the 2008– between 0 (extreme generalization) and 1 (extreme 2011 data for the two sites for which we had uninter- specialization).
Recommended publications
  • Pollination of Two Species of Ferocactus: Interactions Between Cactus-Specialist Bees and Their Host Plants
    Functional Blackwell Publishing, Ltd. Ecology 2005 Pollination of two species of Ferocactus: interactions 19, 727–734 between cactus-specialist bees and their host plants M. E. MCINTOSH Department of Ecology and Evolutionary Biology, 1041 E. Lowell Street; BioSciences West, Room 310, University of Arizona, Tucson, AZ 85721, USA Summary 1. Resolving the controversy over the prevalence of generalization in plant–pollinator interactions requires field studies characterizing the pollination effectiveness of all a plant’s floral visitors. Herein, the pollination effectiveness of all visitors to two species of barrel cactus (Ferocactus) was quantified. 2. Flowers of both species were pollinated almost exclusively by cactus-specialist bees: 99% (F. cylindraceus (Engelm.) Orcutt) and 94% (F. wislizeni (Engelm.) Britt. and Rose) of all seeds produced in this study resulted from cactus bee visits. 3. For F. cylindraceus, the cactus-specialist Diadasia rinconis was the most abundant visitor. For F. wislizeni, three cactus-specialists (including D. rinconis) plus generalists in the family Halictidae (which did not act as pollinators) each accounted for a quarter of all visits. 4. Diadasia rinconis visits to F. wislizeni flowers were more effective (per-visit) than visits by the other two cactus-specialists. 5. Pollen-collecting and nectar-collecting visits were equally effective. Nectar-collecting visits were the most abundant. 6. Apart from the non-pollinating halictids, floral visitors surprisingly did not include commonly co-occurring generalist bees. 7. These data suggest that, just as apparently specialized flowers may be visited by a diverse assemblage of generalists, so apparently generalized flowers may be visited predominantly by specialists, and that these specialists may perform virtually all of the pollination.
    [Show full text]
  • Hymenoptera, Apoidea, Megachilidae)1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 39/1 111-116 23.7.2007 Consideraciones taxonómicas sobre Lithurgus sublaevis PÉREZ 1897 y Lithurgus chrysurus FONSCOLOMBE 1834 (Hymenoptera, Apoidea, Megachilidae)1 F.J. ORTIZ-SÁNCHEZ, C. ORNOSA & F. TORRES Abstract: Taxonomic considerations on Lithurgus sublaevis PÉREZ 1897 and Lithurgus chrysurus FONSCOLOMBE 1834 (Hymenoptera, Apoidea, Megachilidae). We have studied the lectotype of Lithurgus sublaevis and it has been compared with long series of Lithurgus chrysurus from six Spanish provinces. The synonymy between the two species is confirmed. Key words: Lithurgus sublaevis, Lithurgus chrysurus, synonymy, Hymenoptera, Megachilidae, Spain. R e s u m e n : Tras el estudio del lectotipo de Lithurgus sublaevis y su comparación con largas series de individuos de Lithurgus chrysurus, se confirma la sinonimia entre ambas especies. Palabras clave: Lithurgus sublaevis, Lithurgus chrysurus, sinonimia, Hymenoptera, Megachilidae, España. Introducción Lithurgus sublaevis se describió a partir de un único ejemplar, un macho de "Cataluña" (PÉREZ 1897). Después de su descripción, diversos autores reiteraron la cita, que CEBALLOS recogió en su catálogo de 1956. Más tarde, VAN DER ZANDEN (1986) citó material de la especie procedente de las provincias de Huesca y Valladolid y, aunque aseguraba que no había encontrado el tipo, planteaba dudas sobre si se trataba de "una especie diferenciada o, más probablemente, una forma anómala de Lithurgus chrysurus". El propio VAN DER ZANDEN, en otro momento, pudo estudiar material recolectado en el sur de España por uno de los autores de este trabajo; sólo los machos fueron identificados por él como Lithurgus sublaevis, mientras que las hembras, de la misma localidad, fueron etiquetadas como Lithurgus chrysurus.
    [Show full text]
  • On the Pima County Multi-Species Conservation Plan, Arizona
    United States Department of the Interior Fish and ,Vildlife Service Arizona Ecological Services Office 2321 West Royal Palm Road, Suite 103 Phoenix, Arizona 85021-4951 Telephone: (602) 242-0210 Fax: (602) 242-2513 In reply refer to: AESO/SE 22410-2006-F-0459 April 13, 2016 Memorandum To: Regional Director, Fish and Wildlife Service, Albuquerque, New Mexico (ARD-ES) (Attn: Michelle Shaughnessy) Chief, Arizona Branch, Re.. gul 7/to . D'vision, Army Corps of Engineers, Phoenix, Arizona From: Acting Field Supervisor~ Subject: Biological and Conference Opinion on the Pima County Multi-Species Conservation Plan, Arizona This biological and conference opinion (BCO) responds to the Fish and Wildlife Service (FWS) requirement for intra-Service consultation on the proposed issuance of a section lO(a)(l)(B) incidental take permit (TE-84356A-O) to Pima County and Pima County Regional Flood Control District (both herein referenced as Pima County), pursuant to section 7 of the Endangered Species Act of 1973 (U.S.C. 1531-1544), as amended (ESA), authorizing the incidental take of 44 species (4 plants, 7 mammals, 8 birds, 5 fishes, 2 amphibians, 6 reptiles, and 12 invertebrates). Along with the permit application, Pima County submitted a draft Pima County Multi-Species Conservation Plan (MSCP). On June 10, 2015, the U.S. Army Corps of Engineers (ACOE) requested programmatic section 7 consultation for actions under section 404 of the Clean Water Act (CW A), including two Regional General Permits and 16 Nationwide Permits, that are also covered activities in the MSCP. This is an action under section 7 of the ESA that is separate from the section 10 permit issuance to Pima Couny.
    [Show full text]
  • Components of Nest Provisioning Behavior in Solitary Bees (Hymenoptera: Apoidea)*
    Apidologie 39 (2008) 30–45 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007055 Review article Components of nest provisioning behavior in solitary bees (Hymenoptera: Apoidea)* John L. Neff Central Texas Melittological Institute, 7307 Running Rope, Austin, Texas 78731, USA Received 13 June 2007 – Revised 28 September 2007 – Accepted 1 October 2007 Abstract – The components of nest provisioning behavior (resources per cell, transport capacity, trip dura- tion, trips per cell) are examined for a data set derived from the literature and various unpublished studies. While there is a trade-off between transport capacity and trips required per cell, the highest provisioning rates are achieved by bees carrying very large pollen loads at intermediate trip durations. Most solitary bees appear to be either egg or resource limited, so sustained provisioning rates over one cell per day are unusual. Provisioning rate / body size / transport capacity / solitary bees / trip duration 1. INTRODUCTION tradeoffs between provisioning one large cell or two small cells direct, indirect, or nonex- There is a vast literature on the foraging tac- istent? Are provisioning rates related to body tics of bees: what kinds of flowers to visit, how size? long to spend on a flower, how many flowers Provisioning rate is a general term and can in an inflorescence to visit, when to turn, and simply refer to the rate (mass per unit time) so forth. Much of this work is done within a at which foragers bring various food items framework of whether a forager should max- (pollen, nectar, oils, carrion, or whatever) to imize harvesting rate or foraging efficiency their nests.
    [Show full text]
  • 2009 Pinon Canyon Invertebrate Survey Report
    "- - 70.096 60.096 50.096 40.096 30.096 20.096 10.096 0.0% Fig. 1 Most abundant Apiformes species calculated as a proportion of the total abundance of Apiformes in the collection period. Pinon Canyon Maneuver Site, 2008. 04% 1 j 0.391> 0.2% 0.1% 0.0% Fig. 2 Least abundant Apiformes species calculated as a proportion of the total abundance of Apiformes in the collection period. Pinon Canyon Maneuver Site, 2008.7 Fig. 3 Most abundant Carabidae species calculated as a proportion of the total abundance of Carabidae in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 4 Least abundant Carabidae species calculated as a proportion of the total abundance of Carabidae in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 5 Asilidae species abundance calculated as a proportion of the total abundace of Asilidae in the collection period. Pinon Canyon Maneuver Site, 2008. 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% Fig. 6 Butterfly species abundance calculated as a proportion of the total abundance of butterflies in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 7 Most abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 8 Moderately abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 9 Least abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period.
    [Show full text]
  • The Very Handy Bee Manual
    The Very Handy Manual: How to Catch and Identify Bees and Manage a Collection A Collective and Ongoing Effort by Those Who Love to Study Bees in North America Last Revised: October, 2010 This manual is a compilation of the wisdom and experience of many individuals, some of whom are directly acknowledged here and others not. We thank all of you. The bulk of the text was compiled by Sam Droege at the USGS Native Bee Inventory and Monitoring Lab over several years from 2004-2008. We regularly update the manual with new information, so, if you have a new technique, some additional ideas for sections, corrections or additions, we would like to hear from you. Please email those to Sam Droege ([email protected]). You can also email Sam if you are interested in joining the group’s discussion group on bee monitoring and identification. Many thanks to Dave and Janice Green, Tracy Zarrillo, and Liz Sellers for their many hours of editing this manual. "They've got this steamroller going, and they won't stop until there's nobody fishing. What are they going to do then, save some bees?" - Mike Russo (Massachusetts fisherman who has fished cod for 18 years, on environmentalists)-Provided by Matthew Shepherd Contents Where to Find Bees ...................................................................................................................................... 2 Nets ............................................................................................................................................................. 2 Netting Technique ......................................................................................................................................
    [Show full text]
  • Metal Acquisition in the Weaponized Ovipositors of Aculeate Hymenoptera
    Zoomorphology https://doi.org/10.1007/s00435-018-0403-1 ORIGINAL PAPER Harden up: metal acquisition in the weaponized ovipositors of aculeate hymenoptera Kate Baumann1 · Edward P. Vicenzi2 · Thomas Lam2 · Janet Douglas2 · Kevin Arbuckle3 · Bronwen Cribb4,5 · Seán G. Brady6 · Bryan G. Fry1 Received: 17 October 2017 / Revised: 12 March 2018 / Accepted: 17 March 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The use of metal ions to harden the tips and edges of ovipositors is known to occur in many hymenopteran species. However, species using the ovipositor for delivery of venom, which occurs in the aculeate hymenoptera (stinging wasps, ants, and bees) remains uninvestigated. In this study, scanning electron microscopy coupled with energy-dispersive X-ray analysis was used to investigate the morphology and metal compositional differences among aculeate aculei. We show that aculeate aculei have a wide diversity of morphological adaptations relating to their lifestyle. We also demonstrate that metals are present in the aculei of all families of aculeate studied. The presence of metals is non-uniform and concentrated in the distal region of the stinger, especially along the longitudinal edges. This study is the first comparative investigation to document metal accumulation in aculeate aculei. Keywords Scanning electron microscopy · Energy-dispersive X-ray spectroscopy · EDS · Aculeata · Aculeus · Cuticle · Metal accumulation Introduction with the most severe responses (as perceived by humans) delivered by taxa including bullet ants (Paraponera), taran- Aculeata (ants, bees, and stinging wasps) are the most con- tula hawk wasps (Pepsis), and armadillo wasps (Synoeca) spicuous of the hymenopteran insects, and are known pre- (Schmidt 2016).
    [Show full text]
  • Predicting Changes in Bee Assemblages Following State Transitions at North American Dryland Ecotones
    Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1-20-2020 Predicting Changes in Bee Assemblages Following State Transitions at North American Dryland Ecotones Melanie R. Kazenel University of New Mexico Karen W. Wright Texas A&M University Julieta Bettinelli University of New Mexico Terry L. Griswold Utah State University Kenneth D. Whitney University of New Mexico Jennifer A. Rudgers University of New Mexico Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Other Animal Sciences Commons Recommended Citation Kazenel, M.R., Wright, K.W., Bettinelli, J. et al. Predicting changes in bee assemblages following state transitions at North American dryland ecotones. Sci Rep 10, 708 (2020). https://doi.org/10.1038/ s41598-020-57553-2 This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. www.nature.com/scientificreports OPEN Predicting changes in bee assemblages following state transitions at North American dryland ecotones Melanie R. Kazenel1,4*, Karen W. Wright1,2,4, Julieta Bettinelli1, Terry L. Griswold3, Kenneth D. Whitney1 & Jennifer A. Rudgers1 Drylands worldwide are experiencing ecosystem state transitions: the expansion of some ecosystem types at the expense of others. Bees in drylands are particularly abundant and diverse, with potential for large compositional diferences and seasonal turnover across ecotones. To better understand how future ecosystem state transitions may infuence bees, we compared bee assemblages and their seasonality among sites at the Sevilleta National Wildlife Refuge (NM, USA) that represent three dryland ecosystem types (and two ecotones) of the southwestern U.S.
    [Show full text]
  • Lithurgus Chrysurus Fonscolombe (Apoidea: Megachilidae: Lithurginae)
    AMERICAN MUSEUM NOVITATES Number 3804, 12 pp. May 22, 2014 Early nesting biology of the wood-nesting adventive bee, Lithurgus chrysurus Fonscolombe (Apoidea: Megachilidae: Lithurginae) JEROME G. ROZEN, JR.,1 AND ELI S. WYMAN2 ABSTRACT This, the second study of the nesting biology of Lithurgus chrysurus Fonscolombe found at Palmerton, Carbon Co., Pennsylvania, describes its nest construction, provisioning, egg deposi- tion, and larval development. The first study (Rozen, 2013) was based on observations on the late-stage nesting biology in early fall, when these activities were no longer being performed. Comparisons are made with activities of the native Lithurgopsis apicalis (Cresson); in general, the two species have similar, but not identical, nesting biologies. Because Lithurgus chrysurus is an adventive bee native to the Mediterranean regions and is capable of constructing nests in both soft wood as well as firmer wood, it is unclear why it has not expanded its range to any great extent in the New World. INTRODUCTION The nesting biology of Lithurgus chrysurus Fonscolombe was recently described based on observations gathered in October 2012 from infested firewood logs, horizontally stacked in the open, in Palmerton, Carbon Co., Pennsylvania (Rozen, 2013: fig. 1). Although adult bees were first seen there in midsummer, that study was undertaken well after the nesting season, when bees were no longer flying and provisioning nests. Consequently, information on the nature of the provisions, early larval development, egg and larval anatomy, as well as 1 Division of Invertebrate Zoology. 2 Division of Invertebrate Zoology. Copyright © American Museum of Natural History 2014 ISSN 0003-0082 2 AMERICAN Museum NOVItates NO.
    [Show full text]
  • Author Queries Journal: Proceedings of the Royal Society B Manuscript: Rspb20110365
    Author Queries Journal: Proceedings of the Royal Society B Manuscript: rspb20110365 SQ1 Please supply a title and a short description for your electronic supplementary material of no more than 250 characters each (including spaces) to appear alongside the material online. Q1 Please clarify whether we have used the units Myr and Ma appropriately. Q2 Please supply complete publication details for Ref. [23]. Q3 Please supply publisher details for Ref. [26]. Q4 Please supply title and publication details for Ref. [42]. Q5 Please provide publisher name for Ref. [47]. SQ2 Your paper has exceeded the free page extent and will attract page charges. ARTICLE IN PRESS Proc. R. Soc. B (2011) 00, 1–8 1 doi:10.1098/rspb.2011.0365 65 2 Published online 00 Month 0000 66 3 67 4 68 5 Why do leafcutter bees cut leaves? New 69 6 70 7 insights into the early evolution of bees 71 8 1 1 2,3 72 9 Jessica R. Litman , Bryan N. Danforth , Connal D. Eardley 73 10 and Christophe J. Praz1,4,* 74 11 75 1 12 Department of Entomology, Cornell University, Ithaca, NY 14853, USA 76 2 13 Agricultural Research Council, Private Bag X134, Queenswood 0121, South Africa 77 3 14 School of Biological and Conservation Sciences, University of KwaZulu-Natal, Private Bag X01, 78 15 Scottsville, Pietermaritzburg 3209, South Africa 79 4 16 Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchatel, Emile-Argand 11, 80 17 2000 Neuchatel, Switzerland 81 18 Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous 82 19 when observed in closely related lineages.
    [Show full text]
  • Diversity and Conservation of Leaf Cutter Bees (Hymenoptera: Megachilidae)
    Advances in Plants & Agriculture Research Mini Review Open Access Diversity and conservation of leaf cutter bees (Hymenoptera: megachilidae) Abstract Volume 8 Issue 1 - 2018 Plants pollination is an important ecosystem service provided by insects to mankind. Veeresh kumar,1 Kumaranag KM2 Among insects, hymenopterans are considered as efficient pollinators of several 1ICAR-Central Agro Forestry Research Institute, India cultivated and uncultivated plant species. The leafcutter bees in the family Megachilidae 2Division of Entomology, Indian Agricultural Research Institute are one of the important pollinators of many agricultural, horticultural, medicinal and (IARI), India aromatic crops. These bees being important pollinators of many wild plant species also play an important role in maintenance of the ecosystem. In this context, conservation Correspondence: Veeresh kumar, ICAR-Central Agro of pollinators has emerged as a major issue. One of the conservation strategies is to Forestry Research Institute, Jhansi, UP, India place hollow reeds of Ipomoea carnea Jacq. For trap nesting leaf-cutter bees. Email [email protected] Keywords: nestin, abundance, floral association, biology, traps, pollination, pollen, Received: December 11, 2017 | Published: February 07, 2018 nectar, megachilids, non-Apis bees Introduction to be more abundant during June, July, September and October and moderately abundant during May, August, November and December More than one-third of the world’s crops require pollination to set and lowest during January to April. Rank abundance of different 1 seeds and fruits Dias et al. It is likely that wild bee community is species of leaf cutter bees indicated that Megachile lanata was more sufficient to provide services for multiple crops, including some that are abundant (27.01%), followed by M.
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide
    890 _____________Mun. Ent. Zool. Vol. 5, Suppl., October 2010________ MEGACHILIDS BEES (HYMENOPTERA: APOIDEA) OF AYNALI FORESTS WITH FOUR NEW RECORDS FOR IRAN Samad Khaghaninia*, Yasemin Güler** and Mozhgan Mousavi*** * Dept. of Plant Protection, Faculty of Agriculture, University of Tabriz, 51664, Tabriz, IRAN. E-mail: [email protected] ** Plant Protection Central Research Institute, Ankara, TURKEY. *** Dept. of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, TURKEY. [Khaghaninia, S., Güler, Y. & Mousavi, M. 2010. Megachilids bees (Hymenoptera: Apoidea) of Aynali forests with four new records for Iran. Munis Entomology & Zoology, 5, suppl.: 890-895] ABSTRACT: A survey was conducted on Megachilids fauna of Aynali forests, in East Azarbaijan province during 2008-2009. Fourteen species belonging to seven genera were identified which totally are as new records for studied area and four species, Rhodanthidium septemdentatum (Lepeletier, 1841), Coelioxys afra Lepeletier, 1841, Megachile nigriventris Schenck, 1870 and Megachile lagopoda (Linnaeus, 1761), are the new records for the Iran insect fauna. KEY WORDS: Fauna, Bees, Apidae, Megachilidae, East Azerbayjan, Aynali forests, Iran. Aynali forests are located in west of Qaradag forests, a registered biosphere in world heritages by UNESCO since 1976 in East Azarbaijan province, Iran. This biosphere reserve situated in the north eastern Tabriz city with a distance of 112.6 km and UTM (Universal Transfer Mercator) coordinate system, X from 654517.66 to 655110.71 E; Y from 4306958.17 to 4308226.18 N and varying latitude from 1271 m to 1336 m. This area has rich grasslands with various species of Astraceae and Juncaceae, rangelands, forests particularly with oak and hazelnut and also rivers and springs.
    [Show full text]