Anti-Reflection Coating of Large-Format Lenses for Sub-Mm Applications

Total Page:16

File Type:pdf, Size:1020Kb

Anti-Reflection Coating of Large-Format Lenses for Sub-Mm Applications Anti-reflection coating of large-format lenses for sub-mm applications Peter C. Hargrave Cardiff University, Department of Physics & Astronomy, 5 The Parade, Cardiff CF24 3AA, UK [email protected] Giorgio Savini Department of Physics and Astronomy, University College London, Gower Street, London CF24 3AA, UK ABSTRACT We have recently developed a repeatable and reliable technique for anti-reflection coating large lenses, suitable for use at sub-mm wavelengths. Small lenses have been coated using this technique, and are currently flying on-board Herschel- SPIRE and Planck-HFI. We have recently coated much larger, highly-curved lenses (up to 380 mm diameter) for the EBEX and Polarbear cosmic microwave background (CMB) experiments. In this paper, we present details of the coating technique, experimental results of coated samples, and comparison of the results to theoretical predictions. We also present an indication of their technology readiness level (TRL) for future space applications such as B-Pol. Keywords: sub-mm, lens, anti-reflection, coating, optics, telescope 1. INTRODUCTION There is increasing need to employ refractive optical components in millimetre (mm) and submillimetre (sub-mm) optical systems. This is particularly true for experiments designed to detect the B-mode signal from the polarization of the cosmic microwave background. In order to reach the sensitivity goals of such experiments, it is unlikely that a Gregorian reflector and feedhorn system alone, such as used on Planck [1], will have enough throughput. To achieve higher focal plane area utilization, the individual pixels must be smaller, leading to a higher edge taper. This problem has traditionally been addressed in mm and sub-mm systems by the use of a reflective cold Lyot stop, created with re- imaging optics. Many of the new generation of focal plane detector array technologies also require a flat, telecentric field, also created with re-imaging optics. As throughput grows and f-number shrinks, re-imaging optics with reflectors becomes more difficult because of the limited amount of space for folded beams to clear obstructions. Cold lenses are the natural solution, but they come with a set of their own problems. Several experiments which employ cold re-imaging lenses coupled to a Gregorian telescope have already been deployed (ACT, SPT, GBT) or are nearing deployment (POLARBEAR and EBEX [2]). Additionally, the BICEP and BICEP2 [3] experiments employ solely refractive optics. However, these systems are still in the initial operational phase, and the full polarization performance has yet to be determined. Future CMB-polarization satellite missions have been proposed (EPICS, CMB-Pol, B-Pol) which make use of several refractive telescopes, each telescope optimised over a narrow frequency band. This optical configuration should provide low aberrations and polarization for a large focal plane and large field of view. Additionally, it should provide minimal beam imperfections, such as differential ellipticity, differential beam width and differential gain. But there are many uncertainties over the performance modelling of such systems. Reflections in optical systems cause loss and lead to systematic effects. For typical plastic lenses, reflections can be >10% at each surface. Reflections can be >30% for silicon substrates. Additionally, reflection from lenses causes polarized ghosting which must be reduced. These effects can be greatly reduced by the use of anti-reflection (AR) coatings. This paper describes a new technique for applying broadband mm and sub-mm anti-reflection coating layers to large, highly-curved lens substrates. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, edited by Wayne S. Holland, Jonas Zmuidzinas, Proc. of SPIE Vol. 7741, 77410S © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.856919 Proc. of SPIE Vol. 7741 77410S-1 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/02/2014 Terms of Use: http://spiedl.org/terms 2. ANTI-REFLECTION COATING THEORY AND TECHNIQUES 2.1 Theory and design For a slab of dielectric material of index of refraction ns, without AR coatings the reflective loss is given by 2 ª()1- ns º R … » (1) ()1+ ns ¼ at each surface at normal incidence. For silicon (ns=3.4), R is 30%. The application of anti-reflection coating on a flat slab of dielectric substrate, with a given index of refraction ns follows two very simple guidelines. The first is to ensure that a coating material with an optical index of refraction nc is available, where nc ns at the same frequency at which ns is measured. The second requirement is to make sure that it is possible to obtain, manufacture or engineer the thickness of the coating material such that its resulting thickness is one quarter of the required transmission wavelength within the material. These simple theoretical requirements don’t always translate as easily into the real world, where materials are available with a limited range of index of refraction, which limits choice of materials and application. Moreover, a number of secondary requirements, which do not concern optical design directly, need to be taken into account which are highly relevant to the success of the application. For instance, if the coated lens needs to be cooled, then thermal expansion coefficients of the substrate and coating should be matched as closely as possible if the system is to survive cryogenic cycling. The nature of anti-reflection coatings can be very different depending on the wavelength that the coating is optimised for. As in this work we are focussing on coatings for large optical elements to be used at sub-mm to mm wavelengths, we will discuss only issues relevant to such materials. Lens and coating material design considerations Design considerations when choosing the lens substrate and coating materials should include:- x Thermal conductivity of substrate material. If the lens component is of large diameter and is to be used cold, then radiative heating of the lens needs to be controlled by the use of thermal IR blocking filters. x Availability of suitable coating materials. The range of materials with a suitable refractive index to match a certain substrate material is limited. The choice may be further limited by the form and thermo-mechanical properties of that coating material. x Machineability of substrate material. x Intrinsic birefringence of the substrate material. x Stress-induced birefringence caused by cooling to cryogenic temperatures. x Transmission losses in the substrate material. The waveband of the experiment obviously limits this choice. Typical material data for suitable materials for use in the mm and sub-mm range are shown in Table 1. It should be borne in mind that these material parameters will vary as a function of temperature and as a function of frequency. More detailed material information can be found in Lamb (1996) [4]. Coating thickness and index Unlike optical and near infrared coatings, where deposition is obtained with layers which are deposited through evaporation or sputtering, the thickness required at these large wavelengths makes it more practical to employ layers of material that are available at thickness values close to the required quarter-wavelength in the material (few hundreds of microns). A suitable coating material must meet the requirements on refractive index for matching to the substrate, but also be flexible and ductile enough to allow it to be laminated to a curved substrate. The theoretical ideal value for the required thickness can not always be exactly coincident with the available values of coating material thickness, or can deviate slightly from the achieved thickness after application due to the bonding Proc. of SPIE Vol. 7741 77410S-2 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/02/2014 Terms of Use: http://spiedl.org/terms process. Similarly, the index of refraction is unlikely to be an exact match to the theoretically required value indicated above, or will have a wavelength dependence that will unlikely match the above relation at all wavelengths. For these reasons, modelling the efficiency of the anti-reflection coating becomes necessary, and a wavelength dependent transmission line code has been produced in order to predict the performance of the coating prior to its application. This allows for a tuned design of the coating in question, allowing us to choose in some cases slightly different thickness for the two sides of the lens when the exact required value happens to be in between two readily available values, or when the lens is required to work in a spectral range larger than a small interval around a given wavelength. Typically this is required when a band width >30% is desired. After the coating is applied, spectroscopic measurements of the optical element will allow the recovery of the exact optical parameters by comparing with variations on the original simulation. Spectroscopic measurements are straightforward for a flat slab, and can be done with a lens too providing that either a small aperture at the centre is used, or that the comparison be made with an identical uncoated lens. Table 1. Dielectric properties of materials suitable for mm and sub-mm lenses and coatings. Material Index n Loss tangent (150GHz), tan d Silicon 3.42 2.2 x 10-4 Sapphire 3.07 / 3.40 2.3 / 1.2 x 10-4 TMM 10i 3.13 TMM 10 3.03 TMM 6 2.55 TMM 4 2.12 TMM 3 1.81 Quartz 1.87 0.001 Cirlex® 1.84 0.008 Stycast 1266 1.68 0.023 HDPE 1.54 3 x 10-4 LDPE 1.51 3 x 10-4 Polypropylene 1.50 6.5 x 10-4 PTFE 1.44 3 x 10-4 Porous PTFE 1.2 Coating thermo-mechanics A serious design consideration for coating lenses to be used at cryogenic temperatures is that, as far as possible, the thermal expansion coefficients of the substrate material and coating material should be closely matched, if the system is to survive multiple thermal cycles.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Molecular Materials for Nonlinear Optics
    RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para­ physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam­ Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com­ is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal­ molecular solids mere aggregations of molecules held to­ line fIlms, and amorphous compositions. In these materi­ gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug­ solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic.
    [Show full text]
  • 25 Geometric Optics
    CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light.
    [Show full text]
  • Antireflective Coatings
    materials Review Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review Mehdi Keshavarz Hedayati 1,* and Mady Elbahri 1,2,3,* 1 Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kiel 24143, Germany 2 Nanochemistry and Nanoengineering, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany 3 Nanochemistry and Nanoengineering, School of Chemical Technology, Aalto University, Kemistintie 1, Aalto 00076, Finland * Correspondence: [email protected] (M.K.H.); mady.elbahri@aalto.fi (M.E.); Tel.: +49-431-880-6148 (M.K.H.); +49-431-880-6230 (M.E.) Academic Editor: Lioz Etgar Received: 2 May 2016; Accepted: 15 June 2016; Published: 21 June 2016 Abstract: Reduction of unwanted light reflection from a surface of a substance is very essential for improvement of the performance of optical and photonic devices. Antireflective coatings (ARCs) made of single or stacking layers of dielectrics, nano/microstructures or a mixture of both are the conventional design geometry for suppression of reflection. Recent progress in theoretical nanophotonics and nanofabrication has enabled more flexibility in design and fabrication of miniaturized coatings which has in turn advanced the field of ARCs considerably. In particular, the emergence of plasmonic and metasurfaces allows for the realization of broadband and angular-insensitive ARC coatings at an order of magnitude thinner than the operational wavelengths. In this review, a short overview of the development of ARCs, with particular attention paid to the state-of-the-art plasmonic- and metasurface-based antireflective surfaces, is presented. Keywords: antireflective coating; plasmonic metasurface; absorbing antireflective coating; antireflection 1.
    [Show full text]
  • Fiber Optics Standard Dictionary
    FIBER OPTICS STANDARD DICTIONARY THIRD EDITION JOIN US ON THE INTERNET WWW: http://www.thomson.com EMAIL: [email protected] thomson.com is the on-line portal for the products, services and resources available from International Thomson Publishing (ITP). This Internet kiosk gives users immediate access to more than 34 ITP publishers and over 20,000 products. Through thomson.com Internet users can search catalogs, examine subject-specific resource centers and subscribe to electronic discussion lists. You can purchase ITP products from your local bookseller, or directly through thomson.com. Visit Chapman & Hall's Internet Resource Center for information on our new publications, links to useful sites on the World Wide Web and an opportunity to join our e-mail mailing list. Point your browser to: bttp:/Iwww.cbapball.com or http://www.thomson.com/chaphaWelecteng.html for Electrical Engineering A service of I ® JI FIBER OPTICS STANDARD DICTIONARY THIRD EDITION MARTIN H. WEIK SPRINGER-SCIENCE+BUSINESS MEDIA, B.v. JOIN US ON THE INTERNET WWW: http://www.thomson.com EMAIL: [email protected] thomson.com is the on-line portal for the products, services and resources available from International Thomson Publishing (ITP). This Internet kiosk gives users immediate access to more than 34 ITP publishers and over 20,000 products. Through thomson.com Internet users can search catalogs, examine subject­ specific resource centers and subscribe to electronic discussion lists. You can purchase ITP products from your local bookseller, or directly through thomson.com. Cover Design: Said Sayrafiezadeh, Emdash Inc. Copyright © 1997 Springer Science+Business Media Dordrecht Originally published by Chapman & Hali in 1997 Softcover reprint ofthe hardcover 3rd edition 1997 Ali rights reserved.
    [Show full text]
  • Fiber Optic Communications
    FIBER OPTIC COMMUNICATIONS EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and used to transmit signals over long distances. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optic Data Transmission Systems Fiber optic data transmission systems send information over fiber by turning electronic signals into light. Light refers to more than the portion of the electromagnetic spectrum that is near to what is visible to the human eye. The electromagnetic spectrum is composed of visible and near -infrared light like that transmitted by fiber, and all other wavelengths used to transmit signals such as AM and FM radio and television. The electromagnetic spectrum. Only a very small part of it is perceived by the human eye as light. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optics Transmission Low Attenuation Very High Bandwidth (THz) Small Size and Low Weight No Electromagnetic Interference Low Security Risk Elements of Optical Transmission Electrical-to-optical Transducers Optical Media Optical-to-electrical Transducers Digital Signal Processing, repeaters and clock recovery. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Types of Optical Fiber Multi Mode : (a) Step-index – Core and Cladding material has uniform but different refractive index. (b) Graded Index – Core material has variable index as a function of the radial distance from the center. Single Mode – The core diameter is almost equal to the wave length of the emitted light so that it propagates along a single path.
    [Show full text]
  • The Shallow Water Wave Ray Tracing Model SWRT
    The Shallow Water Wave Ray Tracing Model SWRT Prepared for: BMT ARGOSS Our reference: BMTA-SWRT Date of issue: 20 Apr 2016 Prepared for: BMT ARGOSS The Shallow Water Wave Ray Tracing Model SWRT Document Status Sheet Title : The Shallow Water Wave Ray Tracing Model SWRT Our reference : BMTA-SWRT Date of issue : 20 Apr 2016 Prepared for : BMT ARGOSS Author(s) : Peter Groenewoud (BMT ARGOSS) Distribution : BMT ARGOSS (BMT ARGOSS) Review history: Rev. Status Date Reviewers Comments 1 Final 20 Apr 2016 Ian Wade, Mark van der Putte and Rob Koenders Information contained in this document is commercial-in-confidence and should not be transmitted to a third party without prior written agreement of BMT ARGOSS. © Copyright BMT ARGOSS 2016. If you have questions regarding the contents of this document please contact us by sending an email to [email protected] or contact the author directly at [email protected]. 20 Apr 2016 Document Status Sheet Prepared for: BMT ARGOSS The Shallow Water Wave Ray Tracing Model SWRT Contents 1. INTRODUCTION ..................................................................................................................... 1 1.1. MODEL ENVIRONMENTS .............................................................................................................. 1 1.2. THE MODEL IN A NUTSHELL ......................................................................................................... 1 1.3. EXAMPLE MODEL CONFIGURATION OFF PANAMA .........................................................................
    [Show full text]
  • COATING TRACES Coating
    Backgrounder COATING TRACES Coating HIGH REFLECTION COATING TRACES ND:YAG/ND:YLF ..........................................................................................................T-26 TUNABLE LASER MIRRORS .........................................................................................T-28 Coating Traces MISCELLANEOUS MIRRORS ........................................................................................T-30 ANTI-REFLECTION COATING TRACES ANTI-REFLECTIVE OVERVIEW ....................................................................................T-31 0 DEGREE ANGLE OF INCIDENCE ............................................................................T-33 Material Properties 45 DEGREE ANGLE OF INCIDENCE ..........................................................................T-36 CUBES AND POLARIZING COMPONENTS TRACES .........................................................T-38 Optical Specifications cvilaseroptics.com T-25 HIGH REFLECTION COATING TRACES: Y1-Y4, HM AT 0 DEGREE INCIDENCE Optical Coatings and Materials Traces Y1 - 1064nm - 0 DEGREES Y2 - 532nm - 0 DEGREES Y3 - 355nm - 0 DEGREES Y4 - 266nm - 0 DEGREES HM - 1064/532nm - 0 DEGREES P-POL: UNP: - - - - - S-POL: 0°: - - - - - - T-26 cvilaseroptics.com Backgrounder Coating HIGH REFLECTION COATING TRACES: Y1-Y4, HM, YH, AT 45 DEGREE INCIDENCE Y1 - 1064nm - 45 DEGREES Y2 - 532nm - 45 DEGREES Coating Traces Material Properties Y3 - 355nm - 45 DEGREES Y4 - 266nm - 45 DEGREES Optical Specifications HM - 1064/532nm - 45 DEGREES YH - 1064/633nm - 45 DEGREES
    [Show full text]
  • Antireflection Coatings for High Power Fiber Laser Optics Authors: Gherorghe Honciuc, Emiliano Ioffe, Jurgen Kolbe, Ophir Optics Group, MKS Instruments Inc
    Antireflection Coatings for High Power Fiber Laser Optics Authors: Gherorghe Honciuc, Emiliano Ioffe, Jurgen Kolbe, Ophir Optics Group, MKS Instruments Inc. INTRODUCTION Finally, a long service life of the optics is important for the High-power kilowatt-level fiber lasers (wavelength in spec- user in order to minimize downtime of the laser machine. tral range 1.0 – 1.1µm) are used in important applications This can be achieved only if absorption of the AR coatings in macro material processing, particularly for cutting and is very low. welding metal sheets. In these applications, optics (lenses, In this paper, we review the materials, coating technolo- protective windows) are needed to work properly at corre- gies and measurement techniques used at Ophir Optics spondingly high laser power and power density levels. For for high-performance low absorption fiber laser optics these optics, absorption losses are of crucial importance: manufacturing. absorption of laser radiation leads to increased tempera- ture and a correspondingly higher refractive index of the RAW MATERIAL optics. This changes the properties of the transmitted la- There are two material categories regarding the ser beam and can therefore impair the performance of the absorption of fused silica: manufacturing process. In addition, temperature increase • (a) Fused silica with absorption greater than 1 ppm/cm, can cause internal mechanical stress and eventually dam- e. g. Corning 7980 age the optics. To avoid this, optics with lowest possible • (b) Fused silica with absorption less than 1 ppm/cm, [1] absorption losses must be used. e. g. Suprasil 3001 . The most common raw material for these optics is fused Due to the high cost of material of category (b), it should silica which is available with sufficiently low absorption.
    [Show full text]
  • Interactive Rendering with Coherent Ray Tracing
    EUROGRAPHICS 2001 / A. Chalmers and T.-M. Rhyne Volume 20 (2001), Number 3 (Guest Editors) Interactive Rendering with Coherent Ray Tracing Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner Computer Graphics Group, Saarland University Abstract For almost two decades researchers have argued that ray tracing will eventually become faster than the rasteri- zation technique that completely dominates todays graphics hardware. However, this has not happened yet. Ray tracing is still exclusively being used for off-line rendering of photorealistic images and it is commonly believed that ray tracing is simply too costly to ever challenge rasterization-based algorithms for interactive use. However, there is hardly any scientific analysis that supports either point of view. In particular there is no evidence of where the crossover point might be, at which ray tracing would eventually become faster, or if such a point does exist at all. This paper provides several contributions to this discussion: We first present a highly optimized implementation of a ray tracer that improves performance by more than an order of magnitude compared to currently available ray tracers. The new algorithm makes better use of computational resources such as caches and SIMD instructions and better exploits image and object space coherence. Secondly, we show that this software implementation can challenge and even outperform high-end graphics hardware in interactive rendering performance for complex environments. We also provide an brief overview of the benefits of ray tracing over rasterization algorithms and point out the potential of interactive ray tracing both in hardware and software. 1. Introduction Ray tracing is famous for its ability to generate high-quality images but is also well-known for long rendering times due to its high computational cost.
    [Show full text]
  • Chapter 19/ Optical Properties
    Chapter 19 /Optical Properties The four notched and transpar- ent rods shown in this photograph demonstrate the phenomenon of photoelasticity. When elastically deformed, the optical properties (e.g., index of refraction) of a photoelastic specimen become anisotropic. Using a special optical system and polarized light, the stress distribution within the speci- men may be deduced from inter- ference fringes that are produced. These fringes within the four photoelastic specimens shown in the photograph indicate how the stress concentration and distribu- tion change with notch geometry for an axial tensile stress. (Photo- graph courtesy of Measurements Group, Inc., Raleigh, North Carolina.) Why Study the Optical Properties of Materials? When materials are exposed to electromagnetic radia- materials, we note that the performance of optical tion, it is sometimes important to be able to predict fibers is increased by introducing a gradual variation and alter their responses. This is possible when we are of the index of refraction (i.e., a graded index) at the familiar with their optical properties, and understand outer surface of the fiber. This is accomplished by the mechanisms responsible for their optical behaviors. the addition of specific impurities in controlled For example, in Section 19.14 on optical fiber concentrations. 766 Learning Objectives After careful study of this chapter you should be able to do the following: 1. Compute the energy of a photon given its fre- 5. Describe the mechanism of photon absorption quency and the value of Planck’s constant. for (a) high-purity insulators and semiconduc- 2. Briefly describe electronic polarization that re- tors, and (b) insulators and semiconductors that sults from electromagnetic radiation-atomic in- contain electrically active defects.
    [Show full text]
  • General Optics Design Part 2
    GENERAL OPTICS DESIGN PART 2 Martin Traub – Fraunhofer ILT [email protected] – Tel: +49 241 8906-342 © Fraunhofer ILT AGENDA Raytracing Fundamentals Aberration plots Merit function Correction of optical systems Optical materials Bulk materials Coatings Optimization of a simple optical system, evaluation of the system Seite 2 © Fraunhofer ILT Why raytracing? • Real paths of rays in optical systems differ more or less to paraxial paths of rays • These differences can be described by Seidel aberrations up to the 3rd order • The calculation of the Seidel aberrations does not provide any information of the higher order aberrations • Solution: numerical tracing of a large number of rays through the optical system • High accuracy for the description of the optical system • Fast calculation of the properties of the optical system • Automatic, numerical optimization of the system Seite 3 © Fraunhofer ILT Principle of raytracing 1. The system is described by a number of surfaces arranged between the object and image plane (shape of the surfaces and index of refraction) 2. Definition of the aperture(s) and the ray bundle(s) launched from the object (field of view) 3. Calculation of the paths of all rays through the whole optical system (from object to image plane) 4. Calculation and analysis of diagrams suited to describe the properties of the optical system 5. Optimizing of the optical system and redesign if necessary (optics design is a highly iterative process) Seite 4 © Fraunhofer ILT Sequential vs. non sequential raytracing 1. In sequential raytracing, the order of surfaces is predefined very fast and efficient calculations, but mainly limited to imaging optics, usually 100..1000 rays 2.
    [Show full text]